1
|
Saeki T, Yamamoto S, Akaki J, Tanaka T, Nakasone M, Ikeda H, Wang W, Inoue M, Manse Y, Ninomiya K, Morikawa T. Ameliorative effect of bofutsushosan (Fangfengtongshengsan) extract on the progression of aging-induced obesity. J Nat Med 2024; 78:576-589. [PMID: 38662301 PMCID: PMC11937147 DOI: 10.1007/s11418-024-01803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
This study aimed to compare fat accumulation in young and aged mice raised on a high-fat diet and to characterize the obesity-reducing effects of a Kampo medicine, bofutsushosan (BTS; fangfengtongshengsan in Chinese). Aged mice fed a high-fat diet containing 2% BTS extract for 28 days exhibited a significant reduction in weight gain and accumulation of visceral and subcutaneous fat, which were greater degree of reduction than those of the young mice. When the treatment period was extended to two months, the serum aspartate aminotransferase and alanine aminotransferase levels and the accumulation of fat droplets in the hepatocytes decreased. The mRNA expression of mitochondrial uncoupling protein 1 (UCP1) in the brown adipose tissue was significantly reduced in the aged mice compared to the young mice but increased by 2% in the BTS-treated aged mice. Additionally, the effect of BTS extract on oleic acid-albumin-induced triglyceride accumulation in hepatoblastoma-derived HepG2 cells was significantly inhibited in a concentration-dependent manner. Evaluation of the single crude drug extracts revealed that Forsythia Fruit, Schizonepeta Spike, and Rhubarb were the active components in BTS extract. These results suggest that BTS extract is effective against visceral, subcutaneous, and ectopic fats in the liver, which tend to accumulate with aging. Thus, BTS extract is useful in preventing and ameliorating the development of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Takafumi Saeki
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan.
| | - Saya Yamamoto
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Junji Akaki
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Takahiro Tanaka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Misaki Nakasone
- Central R&D Laboratory, Kobayashi Pharmaceutical Co., Ltd, 1-30-3 Toyokawa, Ibaraki, Osaka, 567-0057, Japan
| | - Hidemasa Ikeda
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
de Aguiar NS, Hansel FA, Reis CAF, Lazzarotto M, Wendling I. Optimizing the Vanillin-Acid Sulfuric Method to Total Saponin Content in Leaves of Yerba Mate Clones. Chem Biodivers 2024; 21:e202301883. [PMID: 38358959 DOI: 10.1002/cbdv.202301883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
Yerba mate (Ilex paraguariensis) is a forest species consumed in the form of non-alcoholic beverages in South America, with applications in foods, cosmetics, and pharmaceutical industries. The species leaves are globally recognized for their important bioactive compounds, including, saponins. We adjusted the vanillin-acid sulfuric method for determining spectrophotometrically the total saponin in yerba mate leaves. Seeking to maximize the extraction of saponins from leaves, a Doehlert design combined with Response Surface Methodology (RSM) was used, considering ethanol:water ratios and ultrasound times. In addition, the same methodology was used for the analysis of times and temperatures in the vanillin-sulfuric acid reaction heating. The contents of total saponin in mature leaves were compared in four yerba mate clones. The extraction was maximized using 40 % ethanol:60 % water and 60 minutes of ultrasound assisted extraction (UAE) without heating. For the reaction conditions, 70 °C for 10 minutes heating is recommended, and UV/Vis reading from 460 to 680 nm. Using the optimized methodology, total saponin contents ranged from 28.43 to 53.09 mg g-1 in the four yerba mate clones. The significant difference in saponin contents between clones indicate great genetic diversity and potential for clones' selection and extraction of these compounds from yerba mate leaves.
Collapse
Affiliation(s)
- Natalia Saudade de Aguiar
- Federal University of Paraná (UFPR), Departament of Forest Science, Curitiba, Paraná, Brazil, 80210-170
| | - Fabricio Augusto Hansel
- Brazilian Agricultural Research Corporation, Embrapa Forestry, Colombo, Paraná, Brazil, 83411-000
| | | | - Marcelo Lazzarotto
- Brazilian Agricultural Research Corporation, Embrapa Grape and Wine, Bento Gonçalves, Rio Grande do Sul, Brazil, 95701-008
| | - Ivar Wendling
- Federal University of Paraná (UFPR), Departament of Forest Science, Curitiba, Paraná, Brazil, 80210-170
- Brazilian Agricultural Research Corporation, Embrapa Forestry, Colombo, Paraná, Brazil, 83411-000
| |
Collapse
|
4
|
Nagatomo A, Ninomiya K, Marumoto S, Sakai C, Watanabe S, Ishikawa W, Manse Y, Kikuchi T, Yamada T, Tanaka R, Muraoka O, Morikawa T. A Gedunin-Type Limonoid, 7-Deacetoxy-7-Oxogedunin, from Andiroba ( Carapa guianensis Aublet) Reduced Intracellular Triglyceride Content and Enhanced Autophagy in HepG2 Cells. Int J Mol Sci 2022; 23:13141. [PMID: 36361930 PMCID: PMC9655357 DOI: 10.3390/ijms232113141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
The seed oil of Carapa guianensis Aublet (Andiroba) has been used in folk medicine for its insect-repelling, anti-inflammatory, and anti-malarial activities. This study aimed to examine the triglyceride (TG) reducing effects of C. guianensis-derived limonoids or other commercially available limonoids in human hepatoblastoma HepG2 cells and evaluate the expression of lipid metabolism or autophagy-related proteins by treatment with 7-deacetoxy-7-oxogedunin (DAOG; 1), a principal limonoid of C. guianensis. The gedunin-type limonoids, such as DAOG (% of control at 20 μM: 70.9 ± 0.9%), gedunin (2, 74.0 ± 1.1%), epoxyazadiradione (4, 73.4 ± 2.0%), 17β-hydroxyazadiradione (5, 79.9 ± 0.6%), 7-deacetoxy-7α-hydroxygedunin (6, 61.0 ± 1.2%), andirolide H (7, 87.4 ± 2.2%), and 6α-hydroxygedunin (8, 84.5 ± 1.1%), were observed to reduce the TG content at lower concentrations than berberine chloride (BBR, a positive control, 84.1 ± 0.3% at 30 μM) in HepG2 cells pretreated with high glucose and oleic acid. Andirobin-, obacunol-, nimbin-, and salannin-type limonoids showed no effect on the intracellular TG content in HepG2 cells. The TG-reducing effect of DAOG was attenuated by the concomitant use of compound C (dorsomorphin), an AMPK inhibitor. Further investigation on the detailed mechanism of action of DAOG at non-cytotoxic concentrations revealed that the expressions of autophagy-related proteins, LC3 and p62, were upregulated by treatment with DAOG. These findings suggested that gedunin-type limonoids from Andiroba could ameliorate fatty liver, and that the action of DAOG in particular is mediated by autophagy.
Collapse
Affiliation(s)
- Akifumi Nagatomo
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Okayama, Japan
| | - Shinsuke Marumoto
- Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Chie Sakai
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Shuta Watanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Wakana Ishikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Takashi Kikuchi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
- Faculty of Pharmacy, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Chiba, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Reiko Tanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Osaka, Japan
| |
Collapse
|