1
|
Liu N, Liang Y, Wei T, Huang X, Zhang T, Tang M. ROS-mediated NRF2/p-ERK1/2 signaling-involved mitophagy contributes to macrophages activation induced by CdTe quantum dots. Toxicology 2024; 505:153825. [PMID: 38710382 DOI: 10.1016/j.tox.2024.153825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1β and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 μmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 μM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 μM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1β and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.
Collapse
Affiliation(s)
- Na Liu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Asil SM, Narayan M. Molecular interactions between gelatin-derived carbon quantum dots and Apo-myoglobin: Implications for carbon nanomaterial frameworks. Int J Biol Macromol 2024; 264:130416. [PMID: 38428776 PMCID: PMC11290343 DOI: 10.1016/j.ijbiomac.2024.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Carbon nanomaterials (CNMs), including carbon quantum dots (CQDs), have found widespread use in biomedical research due to their low toxicity, chemical tunability, and tailored applications. Yet, there exists a gap in our understanding of the molecular interactions between biomacromolecules and these novel carbon-centered platforms. Using gelatin-derived CQDs as a model CNM, we have examined the impact of this exemplar nanomaterial on apo-myoglobin (apo-Mb), an oxygen-storage protein. Intrinsic fluorescence measurements revealed that the CQDs induced conformational changes in the tertiary structure of native, partially unfolded, and unfolded states of apo-Mb. Titration with CQDs also resulted in significant changes in the secondary structural elements in both native (holo) and apo-Mb, as evidenced by the circular dichroism (CD) analyses. These changes suggested a transition from isolated helices to coiled-coils during the loss of the helical structure of the apo-protein. Infra-red spectroscopic data further underscored the interactions between the CQDs and the amide backbone of apo-myoglobin. Importantly, the CQDs-driven structural perturbations resulted in compromised heme binding to apo-myoglobin and, therefore, potentially can attenuate oxygen storage and diffusion. However, a cytotoxicity assay demonstrated the continued viability of neuroblastoma cells exposed to these carbon nanomaterials. These results, for the first time, provide a molecular roadmap of the interplay between carbon-based nanomaterial frameworks and biomacromolecules.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Environmental Science & Engineering Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
3
|
Bai C, Yao Y, Wang Z, Huang X, Wei T, Zou L, Liu N, Zhang T, Tang M. CdTe quantum dots trigger oxidative stress and endoplasmic reticulum stress-induced apoptosis and autophagy in rat Schwann cell line RSC96. J Appl Toxicol 2022; 42:1962-1977. [PMID: 35857417 DOI: 10.1002/jat.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/07/2022]
Abstract
In the current study, the cytotoxicity and mechanisms of cadmium telluride quantum dots (CdTe QDs) on RSC96 cells were evaluated by exposing different doses of CdTe QDs for 24 h. Two types of cell death, including apoptosis and autophagy, as well as two important organelles, mitochondria and endoplasmic reticulum, were focused after CdTe QDs exposure. The results showed that CdTe QDs induced apoptosis in RSC96 cells in a concentration-dependent manner; promoted the accumulation of intracellular reactive oxygen species; decreased the mitochondrial membrane potential; caused the release of cytochrome c; and also increased the expression of Bcl-2 associated X protein, caspase-3, and cytochrome c proteins and decreased the expression of Bcl-2 protein. Further results also confirmed that CdTe QDs could be internalized by RSC96 cells, and the exposure and internalization of CdTe QDs could induce excessive endoplasmic reticulum stress in the cells, and the expression levels of binding immunoglobulin protein, C/EBP homologous protein, and caspase12 proteins were increased in a concentration-dependent manner. Moreover, autophagy-related proteins LC3II, Beclin1, and P62 all increased after CdTe QDs exposure, suggesting that CdTe QDs exposure both promoted autophagosome formation and inhibited autophagosome degradation, and that CdTe QDs affected the autophagic flow in RSC96 cells. In conclusion, CdTe QDs are able to cause apoptosis and autophagy in RSC96 cells through mitochondrial and endoplasmic reticulum stress pathways, and the possible neurotoxicity of CdTe QDs should be further investigated.
Collapse
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Henriquez G, Ahlawat J, Fairman R, Narayan M. Citric Acid-Derived Carbon Quantum Dots Attenuate Paraquat-Induced Neuronal Compromise In Vitro and In Vivo. ACS Chem Neurosci 2022; 13:2399-2409. [PMID: 35942850 DOI: 10.1021/acschemneuro.2c00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potent environmental herbicide and weedicide paraquat is linked to neuromotor defects and Parkinson's disease (PD). We have evaluated the neuroprotective role of citric acid-sourced carbon quantum dots (Cit-CQDs) on paraquat-insulted human neuroblastoma-derived SH-SY5Y cell lines and on a paraquat-exposed nematode (Caenorhabditis elegans). Our data reveal that Cit-CQDs are able to scavenge free radicals in test tube assays and mitigate paraquat-elevated reactive oxygen species (ROS) levels in SH-SY5Y cells. Furthermore, Cit-CQDs protect the cell line from paraquat, which otherwise elicits cell death. Cit-CQDs-challenged nematodes demonstrate enhanced survival rates 72 h post-paraquat exposure compared to controls. Paraquat ablates dopamine (DA) neurons, which results in compromised locomotor function in nematodes. However, the neurons remained intact when the nematodes were incubated with Cit-CQDs prior to neurotoxicant exposure. The collective data suggest Cit-CQDs offer neuroprotection for cell lines and organisms from xenotoxicant-associated neuronal injury and death. The study suggests Cit-CQDs as a potentially viable green chemistry-synthesized, biobased nanomaterial for intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela Henriquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
5
|
Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. NANO-MICRO LETTERS 2022; 14:105. [PMID: 35426525 PMCID: PMC9012800 DOI: 10.1007/s40820-022-00847-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disease that shows a high incidence in older individuals, is becoming increasingly prevalent. Unfortunately, there is no clinical cure for PD, and novel anti-PD drugs are therefore urgently required. However, the selective permeability of the blood-brain barrier (BBB) poses a huge challenge in the development of such drugs. Fortunately, through strategies based on the physiological characteristics of the BBB and other modifications, including enhancement of BBB permeability, nanotechnology can offer a solution to this problem and facilitate drug delivery across the BBB. Although nanomaterials are often used as carriers for PD treatment, their biological activity is ignored. Several studies in recent years have shown that nanomaterials can improve PD symptoms via their own nano-bio effects. In this review, we first summarize the physiological features of the BBB and then discuss the design of appropriate brain-targeted delivery nanoplatforms for PD treatment. Subsequently, we highlight the emerging strategies for crossing the BBB and the development of novel nanomaterials with anti-PD nano-biological effects. Finally, we discuss the current challenges in nanomaterial-based PD treatment and the future trends in this field. Our review emphasizes the clinical value of nanotechnology in PD treatment based on recent patents and could guide researchers working in this area in the future.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, People's Republic of China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
6
|
Wang H, Li A, Yang M, Zhao Y, Shi L, Ma R. Self-assembled nanochaperones enable the disaggregation of amyloid insulin fibrils. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Li Y, Zhai T, Chen J, Shi J, Wang L, Shen J, Liu X. Water-Dispersible Gold Nanoclusters: Synthesis Strategies, Optical Properties, and Biological Applications. Chemistry 2021; 28:e202103736. [PMID: 34854510 DOI: 10.1002/chem.202103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 12/14/2022]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials. Intrinsic discrete electronic energy levels have endowed them with fascinating electronic and optical properties. They have been widely applied in the fields of optoelectronics, photovoltaics, catalysis, biochemical sensing, bio-imaging, and therapeutics. Nevertheless, most AuNCs are synthesized in organic solvents and do not disperse in aqueous solutions; this restricts their biological applications. In this review, we focus on the recent progress in the preparation of water-dispersible AuNCs and their biological applications. We first review different methods of synthesis, including direct synthesis from hydrophilic templates and indirect phase transfer of hydrophobic AuNCs. We then discuss their photophysical properties, such as emission enhancement and fluorescence lifetimes. Next, we summarize their latest applications in the fields of biosensing, biolabeling, and bioimaging. Finally, we outline the challenges and potential for the future development of these AuNCs.
Collapse
Affiliation(s)
- Yu Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingting Zhai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.,Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200127, P. R. China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Li Y, Gao S, Du X, Ji J, Xi Y, Zhai G. Advances in autophagy as a target in the treatment of tumours. J Drug Target 2021; 30:166-187. [PMID: 34319838 DOI: 10.1080/1061186x.2021.1961792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autophagy is a multi-step lysosomal degradation process, which regulates energy and material metabolism and has been used to maintain homeostasis. Autophagy has been shown to be involved in the regulation of health and disease. But at present, there is no consensus on the relationship between autophagy and tumour, and we consider that it plays a dual role in the occurrence and development of tumour. That is to say, under certain conditions, it can inhibit the occurrence of tumour, but it can also promote the process of tumour. Therefore, autophagy could be used as a target for tumour treatment. The regulation of autophagy plays a synergistic role in the radiotherapy, chemotherapy, phototherapy and immunotherapy of tumour, and nano drug delivery system provides a promising strategy for improving the efficacy of autophagy regulation. This review summarised the progress in the regulatory pathways and factors of autophagy as well as nanoformulations as carriers for the delivery of autophagy modulators.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiyou Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
9
|
Gu P, Chen B, Zhai T, Li Q, Zuo X, Wang L, Qin A, Zhou Y, Shen J. Immunostimulatory AIE Dots for Live-Cell Imaging and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19660-19667. [PMID: 33878273 DOI: 10.1021/acsami.1c02128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical properties of nanoscale drug carriers play critical roles in regulating nano-bio interactions. For example, the superior deformability of the softer nanoparticles enables them to pass through the biofilters efficiently, facilitating their long blood circulation and better tumor penetration. However, as a novel nanocarrier system, the elimination efficiency of soft nanoparticles from cells is poorly investigated. Here, we report a facile strategy to prepare soft luminescent nanoparticles through self-assembly of amphiphilic aggregation-induced emission (AIE) fluorophores. The prepared soft AIE dots exhibit strong light emission (quantum yield, ∼27.1%) and can reveal the encapsulation and excretion process of NPs in real time. The cell results showed that soft NPs can greatly increase the transfer speed of nanomaterials into cells and accelerate their elimination from cells through the sacrifice of soft AIE dots. We also show that soft AIE dots loaded with cytosine-phosphate-guanine (CpG) oligodeoxynucleotides can induce strong immunostimulatory effects, producing a high level of various proinflammatory cytokines including tumor necrosis factor (TNF)-R, interleukin (IL)-6, and IL-12. This work demonstrates a new design strategy for synthesizing a soft nanocarrier system that can deliver drugs into cells efficiently and then be eliminated from cells quickly.
Collapse
Affiliation(s)
- Peilin Gu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zhai
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Huang X, Tang M. Research advance on cell imaging and cytotoxicity of different types of quantum Dots. J Appl Toxicol 2020; 41:342-361. [DOI: 10.1002/jat.4083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health Southeast University Nanjing P.R. China
| |
Collapse
|
11
|
Xie M, Li F, Gu P, Wang F, Qu Z, Li J, Wang L, Zuo X, Zhang X, Shen J. Gold nanoflower-based surface-enhanced Raman probes for pH mapping of tumor cell microenviroment. Cell Prolif 2019; 52:e12618. [PMID: 31033056 PMCID: PMC6669020 DOI: 10.1111/cpr.12618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Early diagnosis of tumour cells is critically important for cancer treatment. Given that the tumour environment is slightly acidic, the pH value of the cell environment can be used as a criterion for tumour diagnosis. However, mapping pH in the cell environment with high resolution, high sensitivity and accuracy remains challenging. MATERIALS AND METHODS Based on gold nanoflower as surface-enhanced Raman scattering (SERS) substrate loading with p-mercaptobenzoic acid (MPA) as pH-responsive Raman reporter, a new SERS nanoprobe for pH mapping was developed. RESULTS This probe showed a characteristic Raman spectrum signal in response to the different pH in solutions or cells. The signal intensity is positively correlated to the pH value. Moreover, this probe is self-correctable, which can help eliminate the influence of probe concentration on the accuracy of pH measuring. CONCLUSIONS We demonstrate the pH mapping of cell environment using the probe, which can be used to distinguish normal cells and tumour cells. This method may provide a new imaging tool for early diagnosis of cancer.
Collapse
Affiliation(s)
- Mo Xie
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fan Li
- Institute of Molecular Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Peilin Gu
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fei Wang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Zhibei Qu
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Jiang Li
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Lihua Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xueli Zhang
- Joint Research Center for Precision MedicineShanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian HospitalShanghaiChina
| | - Jianlei Shen
- Institute of Molecular Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
12
|
Luo Y, Han Y, Hu X, Yin M, Wu C, Li Q, Chen N, Zhao Y. Live-cell imaging of octaarginine-modified polymer dots via single particle tracking. Cell Prolif 2019; 52:e12556. [PMID: 30710394 PMCID: PMC6496536 DOI: 10.1111/cpr.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Nanocarriers can greatly enhance the cellular uptake of therapeutic agents to regulate cell proliferation and metabolism. Nevertheless, further application of nanocarriers is often limited by insufficient understanding of the mechanisms of their uptake and intracellular behaviour. MATERIALS AND METHODS Fluorescent polymer dots (Pdots) are coated with synthetic octaarginine peptides (R8) and are analysed for cellular uptake and intracellular transportation in HeLa cervical cancer cells via single particle tracking. RESULTS Surface modification with the R8 peptide efficiently improves both cellular uptake and endosomal escape of Pdots. With single particle tracking, we capture the dynamic process of internalization and intracellular trafficking of R8-Pdots, providing new insights into the mechanism of R8 in facilitating nanostructure-based cellular delivery. Furthermore, our results reveal R8-Pdots as a novel type of autophagy inducer. CONCLUSIONS This study provides new insights into R8-mediated cellular uptake and endosomal escape of nanocarriers. It potentiates biological applications of Pdots in targeted cell imaging, drug delivery and gene regulation.
Collapse
Affiliation(s)
- Yao Luo
- College of Life SciencesSichuan UniversityChengduChina
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Yuping Han
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and EmbryologyChengdu Medical CollegeChengduChina
| | - Xingjie Hu
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- School of Public HealthGuangzhou Medical UniversityGuangdongChina
| | - Min Yin
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Department of ChemistryShanghai Normal UniversityShanghaiChina
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Qian Li
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
| | - Nan Chen
- Division of Physical Biology and Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
- Department of ChemistryShanghai Normal UniversityShanghaiChina
| | - Yun Zhao
- College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
13
|
Shi Y, Xia W, Liu S, Guo J, Qi Z, Zou Y, Wang L, Duan SZ, Zhou Y, Lin C, Shi J, Wang L, Fan C, Lv M, Tang Z. Impact of Graphene Exposure on Microbial Activity and Community Ecosystem in Saliva. ACS APPLIED BIO MATERIALS 2019; 2:226-235. [DOI: 10.1021/acsabm.8b00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuting Shi
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wenjun Xia
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shima Liu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jingyang Guo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhengnan Qi
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yan Zou
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sheng-Zhong Duan
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yi Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglie Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiye Shi
- UCB Pharma, Slough, Berkshire SL1 3WE, U.K
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Min Lv
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zisheng Tang
- National Clinical
Research Center of Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Shen J, Hu R, Zhou T, Wang Z, Zhang Y, Li S, Gui C, Jiang M, Qin A, Tang BZ. Fluorescent Sensor Array for Highly Efficient Microbial Lysate Identification through Competitive Interactions. ACS Sens 2018; 3:2218-2222. [PMID: 30350949 DOI: 10.1021/acssensors.8b00650] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optical cross-reactive sensor arrays have recently been proven to be a powerful tool for high-throughput bioanalytes identification. Nevertheless, identification and classification of microbes, especially using microbial lysates as the analytes, still is a great challenge due to their complex composition. Herein, we achieve this goal by using luminogens featuring aggregation-induced emission characteristics (AIEgens) and graphene oxide (GO) to construct a microbial lysate responsive fluorescent sensor array. The combination of AIEgen with GO not only reduces the background signal but also induces the competition interactions among AIEgen, microbial lysates, and GO, which highly improves the discrimination ability of the sensor array. As a result, six microbes, including two fungi, two Gram-positive bacteria, and two Gram-negative bacteria are precisely identified. Thus, this work provides a new way to design safer and simpler sensor arrays for the discrimination of complex analytes.
Collapse
Affiliation(s)
- Jianlei Shen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Taotao Zhou
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yiru Zhang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Shiwu Li
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chen Gui
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Meijuan Jiang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors. Nat Commun 2018; 9:4347. [PMID: 30341298 PMCID: PMC6195623 DOI: 10.1038/s41467-018-06749-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 08/17/2018] [Indexed: 01/07/2023] Open
Abstract
Arsenic trioxide (ATO) is a successful chemotherapeutic drug for blood cancers via selective induction of apoptosis; however its efficacy in solid tumors is limited. Here we repurpose nanodiamonds (NDs) as a safe and potent autophagic inhibitor to allosterically improve the therapeutic efficacy of ATO-based treatment in solid tumors. We find that NDs and ATO are physically separate and functionally target different cellular pathways (autophagy vs. apoptosis); whereas their metabolic coupling in human liver carcinoma cells remarkably enhances programmed cell death. Combination therapy in liver tumor mice model results in ~91% carcinoma decrease as compared with ~28% without NDs. Treated mice show 100% survival rate in 150 days with greatly reduced advanced liver carcinoma-associated symptoms, and ~80% of post-therapy mice survive for over 20 weeks. Our work presents a novel strategy to harness the power of nanoparticles to broaden the scope of ATO-based therapy and more generally to fight solid tumors. Arsenic trioxide (ATO) based therapy in solid cancers is limited. Here they repurpose nanodiamonds (NDs) as a safe and potent autophagic inhibitor to improve the efficacy of ATO-based treatment in solid tumors and show the combination therapy to work better in orthotopic liver cancer model.
Collapse
|
16
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
17
|
Xia K, Kong H, Cui Y, Ren N, Li Q, Ma J, Cui R, Zhang Y, Shi J, Li Q, Lv M, Sun Y, Wang L, Li J, Zhu Y. Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15442-15448. [PMID: 29668248 DOI: 10.1021/acsami.8b02626] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The advent of DNA technology has demonstrated great potential in a wide range of applications, especially in the field of biology and biomedicine. However, current understanding of the toxicological effects and cellular responses of DNA nanostructures remains to be improved. Here, we chose tetrahedral DNA nanostructures (TDNs), a type of nanocarriers for delivering molecular drugs, as a model for systematic live-cell analysis of the biocompatibility of TDNs to normal bronchial epithelial cells, carcinoma cells, and macrophage. We found that the interaction behaviors of TDNs in different cell lines were very different, whereas after internalization, most of the TDNs in diverse cell lines were positioned to lysosomes. By a systematic assessment of cell responses after TDN exposure to various cells, we demonstrate that internalized TDNs have good innate biocompatibility. Interestingly, we found that TDN-bearing cells would not affect the cell cycle progression and accompany cell division and that TDNs were separated equally into two daughter cells. This study improves our understanding of the interaction of DNA nanostructures with living systems and their biocompatibility, which will be helpful for further designing DNA nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Kai Xia
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Yunzhi Cui
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ning Ren
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | | | - Jiye Shi
- UCB Pharma , Slough , SL1 14EN Berkshire , U.K
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen N, Han Y, Luo Y, Zhou Y, Hu X, Yu Y, Xie X, Yin M, Sun J, Zhong W, Zhao Y, Song H, Fan C. Nanodiamond-based non-canonical autophagy inhibitor synergistically induces cell death in oxygen-deprived tumors. MATERIALS HORIZONS 2018; 5:1204-1210. [DOI: 10.1039/c8mh00993g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Blockage of autophagic flux by nanodiamonds induces apoptosis in hypoxic tumor cells with minimal toxicity to normal tissues and enhances the effects of anti-angiogenic therapy.
Collapse
|
19
|
Zhang Y, Li M, Li Z, Li Q, Aldalbahi A, Shi J, Wang L, Fan C, Zuo X. Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9036-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Razmi H, Jabbari M, Mohammad-Rezaei R. Prussian Blue Nanoparticles Self Assembling on Electrochemically Reduced Graphene Oxide Modified GC Electrode for Sensitive Hydrogen Peroxide Detection. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201200621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|