1
|
Li WX, Gan L, Liao YL, Wu YW, Zhang BH, Guo DA, Li W. Linaggrenoids A-I, structurally diverse lindenane sesquiterpenoids with anti-hepatic fibrosis effects from Lindera aggregata. PHYTOCHEMISTRY 2025; 235:114477. [PMID: 40081555 DOI: 10.1016/j.phytochem.2025.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Linaggrenoid A (1), a highly rearranged lindenane sesquiterpenoid, together with eight undescribed lindenane sesquiterpenoid linaggrenoids B-I (2-9) and eight known analogs (10-17), were isolated from the root tubers of Lindera aggregata. Their structures, including absolute configurations, were established using spectroscopic and computational methods, as well as single-crystal X-ray diffraction. Linaggrenoids A and H (1 and 8), featuring a 5/6/3 and 3/5/6 carbocyclic ring system, respectively, demonstrated potential as anti-hepatic fibrosis agents by suppressing the expression of fibronectin, collagen I, and α-smooth muscle actin in TGF-β1-induced LX-2 cells.
Collapse
Affiliation(s)
- Wen-Xian Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yi-Ling Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yu-Wei Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - Bai-Hui Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China
| | - De-An Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China.
| | - Wei Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, People's Republic of China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, People's Republic of China.
| |
Collapse
|
2
|
Qi JJ, Qian YN, Li Y, Liu XY, Fu RY, Huang ZH, Yue JM, Zhao JX. Macoligophones A-I, prenylated acetophenone dimers and monomers from Maclurodendron oligophlebium. PHYTOCHEMISTRY 2025; 234:114445. [PMID: 39955042 DOI: 10.1016/j.phytochem.2025.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Chemical investigation of the bark of Maclurodendron oligophlebium resulted in the isolation of three prenylated acetophenone (PAP) dimers (1-3) and seventeen monomers (4-20). Among them, macoligophones A-I (1, 2, and 4-10) are previously undescribed. Utilizing chiral column, compounds 1-7 were separated into their individual enantiomers. Compound (-)-3 represents an undescribed levorotatory form of a known PAP dimer, acrotrione. Structurally, compounds 1 and 2 contain an unusual oxidized xanthene moiety featured by an uncommon enol substituent. Compound 8 incorporates a unique highly modified coumarin core, representing the second PAP bearing a C7 side chain. Their structures were determined using a combination of spectroscopic analyses, X-ray crystallography, and quantum chemical ECD calculations. Furthermore, both pairs of dimeric PAP enantiomers, (+)-/(-)-1 and (+)-/(-)-2, displayed moderate antiplasmodial activity against chloroquine-resistant Plasmodium falciparum Dd2 strain. This study not only extends the structural repertoire of this important class of aromatic compounds, but also provides a noteworthy source of inspiration for the discovery of antimalaria drugs.
Collapse
Affiliation(s)
- Jing-Jing Qi
- Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yu-Nan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Xiang-Yu Liu
- Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Rui-Yao Fu
- Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Zheng-Hui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China.
| | - Jian-Min Yue
- Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China.
| | - Jin-Xin Zhao
- Ethnomedicine and Biofunctional Molecule Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China.
| |
Collapse
|
3
|
Gao XH, Zhou B, Zimbres FM, Zhang ZY, Cassera MB, Zhao JX, Yue JM. Spirocyclic iridoid alkaloids from Plumeria rubra. Org Biomol Chem 2025; 23:960-966. [PMID: 39668723 DOI: 10.1039/d4ob01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Plumerianoids A-D (1-4) with a new intact spirocyclic iridoid alkaloid skeleton, along with a new degraded alkaloid 8-epi-plumerianine (5), and a known one (6), were isolated and characterized from Plumeria rubra. The structure of 6 was revised as (8R,13S)-plumerianine. These alkaloids consist of three epimeric pairs (1/2, 3/4, and 5/6), exhibiting virtually identical NMR spectra within each pair. Furthermore, the electronic circular dichroism (ECD) curves of each epimeric pair are roughly mirror-like, reminiscent of enantiomers. This study calls for attention on the structural elucidation of special compound classes when the associated chiral centers are far away from the chromophores and/or at the terminal of the molecules. In addition, compound 3 exhibited moderate antiplasmodial activity.
Collapse
Affiliation(s)
- Xin-Hua Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Flavia M Zimbres
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Zai-Yong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Maria B Cassera
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| |
Collapse
|
4
|
Tang Y, Zhang Y, Zhao X, Qu Q, Lei X, Wei X, Duan X, Song X. A review of botany, ethnomedicine, phytochemistry, pharmacology and toxicology of Sarcandra species. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156008. [PMID: 39305746 DOI: 10.1016/j.phymed.2024.156008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Sarcandra is one of the five genera of Chloranthaceae, which has a long history of medicinal use and high medicinal value, with excellent therapeutic effects on liver cancer, pneumonia, colitis, bone fractures, and dysentery. Among its species, Sarcandra glabra (Thunb.) Nakai has been extensively utilized in diverse compound formulations, toothpaste, tea, daily commodities, as well as health supplements. Therefore, in terms of its medicinal properties and effectiveness, the genus has considerable potential for development and utilization. PURPOSE This paper presents a systematic review of the botany, ethnomedicine, phytochemistry, pharmacology, and toxicology of Sarcandra plants, aiming to deepen our understanding of Sarcandra properties further, to provide a reference for the rational utilization of Sarcandra plant resources, and at the same time laying a foundation for the development of new medicines and the study of natural products. METHODS In this paper, we collected information about Sarcandra species through PubMed, Science Direct, Web of Science, Baidu Scholar, Google Scholar, CNKI, and other databases using the keywords Sarcandra, botany, traditional uses, chemical compounds, pharmacology and toxicology. Its botanical-related information was obtained through the Flora of China (www.iplant.cn). RESULTS Three species of Sarcandra plants worldwide are distributed from eastern Asia to India. This genus has a long history of medicinal uses, high medicinal value, and a wide range of applications. At present, 462 compounds have been isolated and identified from Sarcandra plants, and their diversity contributes to the diversity of the pharmacological effects of Sarcandra plants. Numerous studies have shown that Sarcandra plants exhibit significant antitumor, antibacterial, anti-inflammatory, antimalarial, antiviral, antithrombocytopenia, immunomodulatory, antioxidant, hepatoprotective, hypoglycemic and hypolipidemic effects, with low toxicity and side effects. However, most studies have focused on Sarcandra glabra (Thunb.) Nakai and studies on other plants of the genus have yet to be explored. CONCLUSIONS Sarcandra plants have a wide range of clinical uses and diverse chemical compounds. However, the main research has been concentrated on Sarcandra glabra (Thunb.) Nakai, and future research should explore the medicinal properties of other Sarcandra plants to expand their potential clinical applications. Meanwhile, the pharmacological activities of compounds from Sarcandra species need to be studied in greater depth and detail to provide an appropriate scientific basis for developing new drugs and natural product research.
Collapse
Affiliation(s)
- Yingying Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ying Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaomei Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiong Qu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuan Lei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuan Wei
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xi Duan
- Department of Laboratory Medicine, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Xiao Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
5
|
Chen SS, Gao Y, Chen L, Tong X, Wu PQ, Huang Y, He SJ, Yue JM, Zhou B. Immunosuppressive Breviane Spiroditerpenoids from Penicillium bialowiezense Isolated from a Medicinal Plant. JOURNAL OF NATURAL PRODUCTS 2024; 87:2468-2477. [PMID: 39380456 DOI: 10.1021/acs.jnatprod.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Breviane spiroditerpenoids are a small group of structurally interesting and complex meroterpenoids. This work focused on an endophytic fungus Penicillium bialowiezense ZBWPQ-27 that was isolated from a medicinal plant Euphorbia neriifolia, leading to the isolation of 15 breviane spiroditerpenoids with four types of polycyclic systems (1-6 and 9-17), and two new carotane sesquiterpenoids (7 and 8). The structures including absolute configurations of the new compounds 1-8 were elucidated by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. In addition, the misassigned NMR data of several resonances of the 5-methyl-TAL motif (E ring) in those of known brevianes (9-15) were corrected by spectroscopic data analysis. Biological tests revealed that brevianes with the type A ring system (6/6/6/5/6) showed moderate to significant immunosuppressive activities, and compound 11 displayed the most potent inhibitory activities against concanavalin A (ConA)-induced T cell proliferation (IC50 4.1 ± 0.2 μM) and lipopolysaccharide (LPS)-induced B cell proliferation (IC50 4.6 ± 0.2 μM), with good SI values of 28 ± 2 and 25 ± 4, respectively.
Collapse
Affiliation(s)
- Shu-Shuai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Li Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Xiao Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
6
|
Zhou B, Yue JM. Terpenoids of plants from Chloranthaceae family: chemistry, bioactivity, and synthesis. Nat Prod Rep 2024; 41:1368-1402. [PMID: 38809164 DOI: 10.1039/d4np00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Covering: 1976 to December 2023Chloranthaceae is comprised of four extant genera (Chloranthus, Sarcandra, Hedyosmum, and Ascarina), totaling about 80 species, many of which have been widely used as herbal medicines for diverse medical purposes. Chloranthaceae plants represent a rich source of structurally interesting and diverse secondary metabolites, with sesquiterpenoids and diterpenoids being the predominant structural types. Lindenane sesquiterpenoids and their oligomers, chemotaxonomical markers of the family Chloranthaceae, have shown a wide spectrum of bioactivities, attracting significant attention from organic chemists and pharmacologists. Recent achievements also demonstrated the research value of two unique structural types in this plant family, sesquiterpenoid-monoterpenoid heterodimers and meroterpenoids. This review systematically summarizes 682 structurally characterized terpenoids from 22 Chloranthaceae plants and their key biological activities as well as the chemical synthesis of selected terpenoids.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China.
| |
Collapse
|
7
|
Xiao L, Yan H, Yang S, Liu H, Li Y, Fang X, Ni W, Zhang X, Xiao W, Liu H. Lindenane sesquiterpenoid dimers with NLRP3 inflammasome inhibitory activities from Chloranthus holostegius var. shimianensis. Biomed Pharmacother 2024; 177:117087. [PMID: 38964178 DOI: 10.1016/j.biopha.2024.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Thirteen previously undescribed lindenane sesquiterpenoid dimers (LSDs), named chlorahololides G-S (1-13), were isolated from the whole plants of Chloranthus holostegius var. shimianensis, along with ten known analogues (14-23). The structures and absolute configurations of compounds 1-13 were elucidated through comprehensive spectroscopic analysis, NMR and electronic circular dichroism (ECD) calculations, and X-ray single-crystal diffraction. Chlorahololide G (1) represents the first instance of LSDs formed via a C-15-C-9' carbon-carbon single bond, whose plausible biosynthetic pathway was also proposed. Chlorahololides I and J (3 and 4) were deduced to be rare 8,9-seco and 9-deoxy LSDs with C-11-C-7' carbon-carbon bond, respectively. The inhibitory activity against NLRP3 inflammasome activation was evaluated for all isolates, with six compounds (5, 7, 8, 17, 22, and 23) exhibiting significant effects, and IC50 values ranging from 2.99 to 8.73 µM. Additionally, a preliminary structure-activity relationship analysis regarding their inhibition of NLRP3 inflammasome activation was summarized. Compound 17 exhibited dose-dependent inhibition of nigericin-induced pyroptosis in J774A.1 cells. Molecular docking studies suggested a strong interaction between compound 17 and NLRP3.
Collapse
Affiliation(s)
- Longgao Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songxue Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanxi Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650500, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming 650106, China.
| |
Collapse
|
8
|
Liu XH, Qian YN, Xie ZX, Tian PH, Huang ZH, Zhou B, Yue JM. Stereochemical insights into enantioselective antiplasmodial lignanamides from the twigs and leaves of Solanum erianthum. PHYTOCHEMISTRY 2024; 224:114163. [PMID: 38815883 DOI: 10.1016/j.phytochem.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Stereochemical investigations on the twigs and leaves of Solanum erianthum afforded five pairs of lignanamide enantiomers and a previously undescribed phenolic amide (3). Particularly, two pairs of previously undescribed lignanamide racemates (1a/1b-2a/2b) represent the first case of natural products that feature an unreported 5/5-fused N/O-biheterocyclic core. Their structures, including the absolute configurations, were determined unambiguously by using spectroscopic analyses and electronic circular dichroism calculations. A speculative biogenetic pathway for 1-3 was proposed. Interestingly, these lignanamides exhibited enantioselective antiplasmodial activities against drug-sensitive Plasmodium falciparum 3D7 strain and chloroquine-resistant Plasmodium falciparum Dd2 strain, pointing out that chirality plays an important role in drug development.
Collapse
Affiliation(s)
- Xi-Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yu-Nan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhi-Xiang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Peng-Hai Tian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zheng-Hui Huang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhang D, Xiao Z, Wang N, Huang A, Wen J, Kong L, Luo J. Trisarcglaboids A and B, two cytotoxic lindenane sesquiterpenoid trimers with a unique polymerization mode isolated from Sarcandra glabra. Bioorg Chem 2024; 146:107259. [PMID: 38460335 DOI: 10.1016/j.bioorg.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Trisarcglaboids A and B (1 and 2), representing the first example of lindenane sesquiterpenoid trimers repolymerized based on the classical [4 + 2] type dimer, together with known biogenic precursors chlorahololide D (3) and sarcandrolide A (4), were identified as chemical components of the root of Sarcandra glabra. The novel trimeric lindenane sesquiterpenoid skeletons, including their absolute configurations, were characterized using MS, NMR, ECD, and X-ray single crystal diffraction. The proposed Diels-Alder cycloaddition between Δ2(3) of the tiglic acyl group of the classical [4 + 2] type dimer and Δ15(4),5(6) of the third lindenane may serve as the key biogenic step. In addition, compound 1 exerted significant cytotoxicity against five human cancer cell lines with IC50 values ranging from 1 to 7 μM, potentially through blocking Akt phosphorylation and activating the endogenous apoptosis pathway.
Collapse
Affiliation(s)
- Danyang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhiqi Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Nan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - An Huang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jie Wen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
10
|
Wu PQ, Liu ZD, Ren YH, Zhou JS, Liu QF, Wu Y, Zhang JL, Zhou B, Yue JM. Monoterpenoid indole alkaloids from Alstonia scholaris and their Toxoplasma gondii inhibitory activity. PHYTOCHEMISTRY 2024; 220:113993. [PMID: 38266954 DOI: 10.1016/j.phytochem.2024.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Nine previously unreported various types of monoterpenoid indole alkaloids, together with seven known analogues were isolated from the stem barks of Alstonia scholaris through a silica gel free methodology. The structures of 1-9 were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Compound 1 is a modified echitamine-type alkaloid with a novel 6/5/5/7/6/6 hetero hexacyclic bridged ring system, and 8 and 9 exist as a zwitterion and trifluoroacetate salt, respectively. The anti-Toxoplasma activity of all isolates on infected Vero cells were evaluated, which revealed that compound 14 at 0.24 μM displayed potent activity. This study expanded the structural diversity of alkaloids of A. scholaris, and presented their potential application in anti-Toxoplasma drug development.
Collapse
Affiliation(s)
- Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| |
Collapse
|
11
|
Luo J, Zhang D, Tang P, Wang N, Zhao S, Kong L. Chemistry and bioactivity of lindenane sesquiterpenoids and their oligomers. Nat Prod Rep 2024; 41:25-58. [PMID: 37791885 DOI: 10.1039/d3np00022b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Covering: 1925 to July 2023Among the sesquiterpenoids with rich structural diversity and potential bioactivities, lindenane sesquiterpenoids (LSs) possess a characteristic cis, trans-3,5,6-carbocyclic skeleton and mainly exist as monomers and diverse oligomers in plants from the Lindera genus and Chloranthaceae family. Since the first identification of lindeneol from Lindera strychnifolia in 1925, 354 natural LSs and their oligomers with anti-inflammatory, antitumor, and anti-infective activities have been discovered. Structurally, two-thirds of LSs exist as oligomers with interesting skeletons through diverse polymeric patterns, especially Diels-Alder [4 + 2] cycloaddition. Fascinated by their diverse bioactivities and intriguing polycyclic architectures, synthetic chemists have engaged in the total synthesis of natural LSs in recent decades. In this review, the research achievements related to LSs from 1925 to July of 2023 are systematically and comprehensively summarized, focusing on the classification of their structures, chemical synthesis, and bioactivities, which will be helpful for further research on LSs and their oligomers.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Danyang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Pengfei Tang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Nan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Shuai Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
12
|
Chu JN, Krishnan P, Lim KH. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:53. [PMID: 38010490 PMCID: PMC10682397 DOI: 10.1007/s13659-023-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Sarcandra glabra (Thunb.) Nakai is a perennial evergreen herb categorised within the Sarcandra Gardner genus under the Chloranthaceae family. Indigenous to tropical and subtropical regions of East Asia and India, this species is extensively distributed across China, particularly in the southern regions (Sichuan, Yunnan, and Jiangxi). In addition to its high ornamental value, S. glabra has a rich history of use in traditional Chinese medicine, evident through its empirical prescriptions for various ailments like pneumonia, dysentery, fractures, bruises, numbness, amenorrhea, rheumatism, and other diseases. Besides, modern pharmacological studies have revealed various biological activities, such as antitumour, anti-bacterial, anti-viral anti-inflammatory and immunomodulatory effects. The diverse chemical constituents of S. glabra have fascinated natural product researchers since the 1900s. To date, over 400 compounds including terpenoids, coumarins, lignans, flavonoids, sterols, anthraquinones, organic acids, and organic esters have been isolated and characterised, some featuring unprecedented structures. This review comprehensively examines the current understanding of S. glabra's phytochemistry and pharmacology, with emphasis on the chemistry and biosynthesis of its unique chemotaxonomic marker, the lindenane-type sesquiterpenoids.
Collapse
Affiliation(s)
- Jin-Ning Chu
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Premanand Krishnan
- Foundation in Science, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Kuan-Hon Lim
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
13
|
Chen F, He M, Xu L, Liu Y, Yang B, Luo Y. Lindenane sesquiterpenoid monomers and oligomers: Chemistry and pharmacological activities. PHYTOCHEMISTRY 2023; 215:113866. [PMID: 37739202 DOI: 10.1016/j.phytochem.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lindenane sesquiterpenoid monomers and oligomers, characterized by a sterically congested cyclopentane and an unusual trans-5/6 ring junction, are mainly found in Chloranthaceae species and the genus Lindera Thunb (Lauraceae). Numerous studies have shown that lindenane sesquiterpenoid monomers and oligomers exhibit a broad range of biological activities, such as cytotoxicity, anti-inflammation, neuroprotection, antifungal, and anti-malarial activities. This review covers publications from the first identification of lindeneol in 1925-2023 and classifies the lindenane sesquiterpenoid derivatives into sesquiterpenoid monomers, sesquiterpenoid-monoterpene conjugates, sesquiterpenoid homodimers, sesquiterpenoid heterodimers, and trimeric sesquiterpenoids. In addition, their biological activities are summarized. This review will establish a scientific basis and provide guidance for utilizing this unique class of natural products as potential lead compounds to develop their application in treating diseases corresponding to inflammation, cancer, and plasmodium.
Collapse
Affiliation(s)
- Fangyou Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Mengli He
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lianlian Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yang Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Bao Yang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yongming Luo
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
14
|
Sun Y, Li Y, Cui L, Li Q, Wang S, Chen Z, Kong LY, Luo J. Anti-Inflammatory Lindenane Sesquiterpenoid Dimers from the Roots of Sarcandra glabra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14000-14012. [PMID: 37704568 DOI: 10.1021/acs.jafc.3c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Sarglaroids A-H (1-8), eight new lindenane dimers, and a monomer sarglaroid I (9), along with fourteen known analogues (10-23), were isolated from the roots of Sarcandra glabra. The planar structures and the absolute configurations were elucidated by HR-MS, NMR, ECD calculations, and X-ray diffraction crystallography. Sarglaroid A (1) was identified as a rare 8,9-seco lindenane dimer with a unique 5/5/5 tricyclic system. The biological evaluation showed that compounds 1 and 13 potently inhibited NO production with IC50 values at 19.8 ± 1.06 and 10.7 ± 0.25 μM, respectively, and had no cytotoxicity to RAW264.7 cells. Compound 6 significantly inhibited the LPS-/ATP-induced IL-1β release by inactivating the NLRP3 inflammasome through inhibiting the initiation and assembly by affecting the K+ efflux. Compounds 2 and 3 inhibited the proliferation of MCF-7 and MDA-MB-231 with IC50 values ranging from 5.4 to 10.2 μM.
Collapse
Affiliation(s)
- Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yaqi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Letian Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Siyuan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhenhao Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
15
|
Ribeiro GDJG, Rei Yan SL, Palmisano G, Wrenger C. Plant Extracts as a Source of Natural Products with Potential Antimalarial Effects: An Update from 2018 to 2022. Pharmaceutics 2023; 15:1638. [PMID: 37376086 DOI: 10.3390/pharmaceutics15061638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria kills more than 500,000 people yearly, mainly affecting Africa and Southeast Asia. The disease is caused by the protozoan parasite from the genus Plasmodium, with Plasmodium vivax and Plasmodium falciparum being the main species that cause the disease in humans. Although substantial progress has been observed in malaria research in the last years, the threat of the spread of Plasmodium parasites persists. Artemisinin-resistant strains of this parasite have been reported mainly in Southeast Asia, highlighting the urgent need to develop more effective and safe antimalarial drugs. In this context, natural sources, mainly from flora, remain underexplored antimalarial spaces. The present mini-review explores this space focusing on plant extracts and some of their isolated natural products with at least in vitro antiplasmodial effects reported in the literature comprising the last five years (2018-2022).
Collapse
Affiliation(s)
- Giovane de Jesus Gomes Ribeiro
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
16
|
Zhou B, Gong Q, Fu Y, Zhou JS, Zhang HY, Yue JM. Sarglamides A-E, Indolidinoid-Monoterpenoid Hybrids with Anti-neuroinflammatory Activity from a Sarcandra Species. Org Lett 2023; 25:1464-1469. [PMID: 36825855 DOI: 10.1021/acs.orglett.3c00196] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Sarglamides A-E (1-5), representing the first example of heterodimers of a trans-N-cinnamoylindolidinoid and α-phelladrene derivatives, were isolated from Sarcandra glabra subsp. brachystachys. Particularly, compounds 4 and 5 possess unprecedented cagelike 6/6/5/6/5- and 6/6/6/6/5-fused pentacyclic scaffolds, respectively. Their structures were established by spectroscopic analysis, X-ray crystallography, quantum-chemical calculations, and chemical conversions. Plausible biosynthetic pathways of 1-5 involving the coisolated enantiomers 6a and 6b were proposed. Compounds 3-7 showed inhibitory activity against lipopolysaccharide-induced inflammation in BV-2 microglial cells.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Qi Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yan Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Hai-Yan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| |
Collapse
|
17
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Zhou B, Yue JM. Natural products are the treasure pool for antimalarial agents. Natl Sci Rev 2022; 9:nwac112. [PMID: 36440452 PMCID: PMC9691342 DOI: 10.1093/nsr/nwac112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 10/05/2023] Open
Abstract
Despite the success in malaria control, it remains a life-threatening infectious disease due mainly to the persistent emergence of drug resistance. Sharpened insight into the historical achievements and current trends in antimalarial drug discovery provides more hopes and advantages on natural products for the development of the next antimalarial treatment.
Collapse
Affiliation(s)
- Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
19
|
Zhou JS, Huang SL, Gao Y, Liu QF, Leng Y, Zhou B, Yue JM. Spicatulides A-G, Phenolic-Monoterpenoid Hybrids from Chloranthus spicatus. JOURNAL OF NATURAL PRODUCTS 2022; 85:2090-2099. [PMID: 35957573 DOI: 10.1021/acs.jnatprod.2c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spicatulides A-G (1-7), seven new phenolic-monoterpenoid hybrid molecules, along with two known compounds, 8 and 9, were isolated and identified from Chloranthus spicatus. Compound 1 represents an unprecedented skeleton featuring an aryl-fused 2-oxabicyclo[4.3.1]decane moiety, and compound 2 is the first example of a denudaquinol-normonoterpenoid adduct. Their structures with absolute configurations were elucidated on the basis of spectroscopic data analyses and TDDFT-ECD calculations. Compounds 3, 5, 6, and 9 exhibited the activity of reducing lipogenesis in HepG2 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People's Republic of China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
20
|
Huang Z, Huang G, Wang X, Qin S, Fu S, Liu B. Asymmetric Total Synthesis of Natural Lindenane Sesquiterpenoid Oligomers via a Triene as a Potential Biosynthetic Intermediate. Angew Chem Int Ed Engl 2022; 61:e202204303. [DOI: 10.1002/anie.202204303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhengsong Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ganxing Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Xiao Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Song Qin
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Shaomin Fu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Bo Liu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| |
Collapse
|
21
|
Huang Z, Huang G, Wang X, Qin S, Fu S, Liu B. Asymmetric Total Synthesis of Natural Lindenane Sesquiterpenoid Oligomers via a Triene as a Potential Biosynthetic Intermediate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengsong Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Ganxing Huang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Xiao Wang
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Song Qin
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Shaomin Fu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| | - Bo Liu
- College of Chemistry Sichuan University 29 Wangjiang Rd. Chengdu Sichuan 610064 China
| |
Collapse
|
22
|
Sun Y, Chi J, Zhang L, Wang S, Chen Z, Zhang H, Kong L, Luo J. Sarglaromatics A-E: A Class of Naphthalene-Like Architecture Fused Norlindenane Sesquiterpene Dimers from Sarcandra glabra. J Org Chem 2022; 87:4323-4332. [PMID: 35230123 DOI: 10.1021/acs.joc.2c00014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sarglaromatics A-E (1-5, respectively), five unprecedented naphthalene-like architecture-fused norlindenane sesquiterpene dimers, were discovered from the roots of Sarcandra glabra. The unique naphthalene core skeleton was obtained from classical lindenane [4 + 2] dimers via a free-radical-mediated C11-C11' bond formation reaction and 12'-decarboxylation. The highly fused octonary ring skeleton was elucidated by HRMS, NMR, ECD, quantum chemical calculations, and biogenetic inspiration. Compounds 1 and 2 showed significant anti-nonalcoholic steatohepatitis (NASH) activity by inhibiting lipid deposition in L02 cells.
Collapse
Affiliation(s)
- Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Chi
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lvjun Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Siyuan Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhao Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Ge Z, Zhou B, Zimbres FM, Cassera MB, Zhao J, Yue J. Cephalotane‐Type
Norditerpenoids from
Cephalotaxus fortunei
var.
alpina. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhan‐Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Flavia M. Zimbres
- Department of Biochemistry and Molecular Biology Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens Geiorgia 30602 United States
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens Geiorgia 30602 United States
| | - Jin‐Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| | - Jian‐Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 People's Republib of China
| |
Collapse
|
24
|
Ge ZP, Zhou B, Zimbres FM, Haney RS, Liu QF, Wu Y, Cassera MB, Zhao JX, Yue JM. Cephalotane-type C 20 diterpenoids from Cephalotaxus fortunei var. alpina. Org Biomol Chem 2022; 20:9000-9009. [DOI: 10.1039/d2ob01748b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Seventeen new cephalotane-type diterpenoids were isolated from Cephalotaxus fortunei var. alpina. Compounds 14 and 15 contain an unusual 7-oxabicyclo[4.1.1]octane moiety.
Collapse
Affiliation(s)
- Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Flavia M. Zimbres
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Reagan S. Haney
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
| | - Maria B. Cassera
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia 30602, USA
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, China
| |
Collapse
|