1
|
Lin X, Chen T. A Review of in vivo Toxicity of Quantum Dots in Animal Models. Int J Nanomedicine 2023; 18:8143-8168. [PMID: 38170122 PMCID: PMC10759915 DOI: 10.2147/ijn.s434842] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Tremendous research efforts have been devoted to nanoparticles for applications in optoelectronics and biomedicine. Over the past decade, quantum dots (QDs) have become one of the fastest growing areas of research in nanotechnology because of outstanding photophysical properties, including narrow and symmetrical emission spectrum, broad fluorescence excitation spectrum, the tenability of the emission wavelength with the particle size and composition, anti-photobleaching ability and stable fluorescence. These characteristics are suitable for optical imaging, drug delivery and other biomedical applications. Research on QDs toxicology has demonstrated QDs affect or damage the biological system to some extent, and this situation is generally caused by the metal ions and some special properties in QDs, which hinders the further application of QDs in the biomedical field. The toxicological mechanism mainly stems from the release of heavy metal ions and generation of reactive oxygen species (ROS). At the same time, the contact reaction with QDs also cause disorders in organelles and changes in gene expression profiles. In this review, we try to present an overview of the toxicity and related toxicity mechanisms of QDs in different target organs. It is believed that the evaluation of toxicity and the synthesis of environmentally friendly QDs are the primary issues to be addressed for future widespread applications. However, considering the many different types and potential modifications, this review on the potential toxicity of QDs is still not clearly elucidated, and further research is needed on this meaningful topic.
Collapse
Affiliation(s)
- Xiaotan Lin
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
- Department of Family Planning, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, People’s Republic of China
| | - Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, People’s Republic of China
| |
Collapse
|
2
|
Correia M, Lopes J, Lopes D, Melero A, Makvandi P, Veiga F, Coelho JFJ, Fonseca AC, Paiva-Santos AC. Nanotechnology-based techniques for hair follicle regeneration. Biomaterials 2023; 302:122348. [PMID: 37866013 DOI: 10.1016/j.biomaterials.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.
Collapse
Affiliation(s)
- Mafalda Correia
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia (Campus de Burjassot), Av. Vicente A. Estelles s/n, 46100, Burjassot, Valencia, Spain
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
3
|
Hou X, Li J, Hong Y, Ruan H, Long M, Feng N, Zhang Y. Advances and Prospects for Hydrogel-Forming Microneedles in Transdermal Drug Delivery. Biomedicines 2023; 11:2119. [PMID: 37626616 PMCID: PMC10452559 DOI: 10.3390/biomedicines11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Transdermal drug delivery (TDD) is one of the key approaches for treating diseases, avoiding first-pass effects, reducing systemic adverse drug reactions and improving patient compliance. Microneedling, iontophoresis, electroporation, laser ablation and ultrasound facilitation are often used to improve the efficiency of TDD. Among them, microneedling is a relatively simple and efficient means of drug delivery. Microneedles usually consist of micron-sized needles (50-900 μm in length) in arrays that can successfully penetrate the stratum corneum and deliver drugs in a minimally invasive manner below the stratum corneum without touching the blood vessels and nerves in the dermis, improving patient compliance. Hydrogel-forming microneedles (HFMs) are safe and non-toxic, with no residual matrix material, high drug loading capacity, and controlled drug release, and they are suitable for long-term, multiple drug delivery. This work reviewed the characteristics of the skin structure and TDD, introduced TDD strategies based on HFMs, and summarized the characteristics of HFM TDD systems and the evaluation methods of HFMs as well as the application of HFM drug delivery systems in disease treatment. The HFM drug delivery system has a wide scope for development, but the translation to clinical application still has more challenges.
Collapse
Affiliation(s)
- Xiaolin Hou
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Jiaqi Li
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongyu Hong
- Xiamen Hospital of Chinese Medicine, No. 1739 Xiangyue Road, Huli District, Xiamen 361015, China;
| | - Hang Ruan
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Meng Long
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Nianping Feng
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| | - Yongtai Zhang
- Department of Pharmaceutics, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Pudong New Area, Shanghai 201203, China; (X.H.); (J.L.); (H.R.); (M.L.)
| |
Collapse
|
4
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
5
|
Saweres-Argüelles C, Ramírez-Novillo I, Vergara-Barberán M, Carrasco-Correa EJ, Lerma-García MJ, Simó-Alfonso EF. Skin absorption of inorganic nanoparticles and their toxicity: A review. Eur J Pharm Biopharm 2023; 182:128-140. [PMID: 36549398 DOI: 10.1016/j.ejpb.2022.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The role of inorganic nanoparticles in our society is increasing every day, from its use in sunscreens to their introduction in analytical laboratories, pharmacy, medicine, agricultural and other uses. Therefore, in order to establish precautions as well as correct handling of this type of material by operators, it is important to determine the ability of these compounds to travel through the different layers of the skin and to study their possible toxicological effects. In this sense, several authors have studied the ability of inorganic nanoparticles to penetrate the skin barrier by diverse methodologies in in vivo and in vitro modes. In the first case, most of the studies have been performed with animal skins that can imitate the human one (porcine, mouse and guinea pigs, among others), although human skin from surgery have been also explored. However, the use of animals is a common model that should be avoided in the following years due to ethical issues. In this sense, the use of in vitro methodologies is also usually selected to study the dermal absorption of nanoparticles through the skin. Nevertheless, most of the studies are performed with authentic animal skins, instead of the use of synthetic skins that imitate the permeability of our skin system, which has been scarcely studied. In addition, most of the literature is focused in achieving high-transdermal uptake to use nanoparticles (not only inorganic) as carriers for drugs, but little efforts have been done in the study of their inherent percutaneous absorption and toxicity. For these reasons, this review covers the current state-of-the-art of dermal absorption of inorganic nanoparticles in skin and their possible toxicity taking into account that people can be in contact with these nanomaterials in daily life, work or other places. In this sense, the observed results showed that the nanoparticles rarely reach the blood circulatory system, and no big toxicological effects were commonly found when in vivo and actual skin was used. In addition, similar results were found when synthetic skins were used, demonstrating the possibility of avoiding animals in these studies. In any case, more studies covering the dermal absorption of nanoparticles should be performed to have a better understanding of how nanoparticles can affect our health.
Collapse
Affiliation(s)
- Clara Saweres-Argüelles
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Icíar Ramírez-Novillo
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Enrique Javier Carrasco-Correa
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - María Jesús Lerma-García
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Ernesto Francisco Simó-Alfonso
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
6
|
Chen J, Ding Y, Chen H, Wu Y, Jin L. Reproductive toxicity of InP/ZnS QDs in male rare minnow (Gobiocypris rarus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109392. [PMID: 35675901 DOI: 10.1016/j.cbpc.2022.109392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
InP/ZnS quantum dots (QDs) stand out among cadmium-free alternatives for higher exciton Bohr radius and strong quantum confined effect. In this study, the reproductive toxicity and mechanism of InP/ZnS QDs at different concentrations in male Chinese rare minnows (Gobiocypris rarus) were investigated. The results showed that QDs in 800 nmol/L concentration group could enter the testes after 1 d of exposure and caused changes in the structure of the testes, including the scattered distribution of seminal vesicles, reduction in germ cells and vacuolation in some areas of interstitial cells. The expression levels of androgen receptor (Ar) and doublesex and mab-3 related transcription factor 1 (Dmrt1) and the tight junction protein-related genes β-catenin and occludin were upregulated in rare minnows. The sperm quality and ATP content of parents in the 800 nmol/L treatment group were significantly decreased. Continuous detection of the development of F1 generation embryos showed that parental exposure to InP/ZnS QDs reduced the heart rate and spontaneous movement frequency of F1 generation embryos, and the fertilization rate of the F1 generation in the 800 nmol/L treatment group was significantly reduced. In general, the sperm quality and testicular structure of adult rare minnows were not significantly affected by concentrations below 400 nmol/L. High-concentration InP/ZnS QDs exposure can damage the integrity of the blood-testis barrier (BTB) and cause reproductive damage to the parents of rare minnows, which will continue to the next generation and affect their development.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yanhong Ding
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
7
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2022; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
8
|
Costa C, Cavaco-Paulo A, Matamá T. Mapping hair follicle-targeted delivery by particle systems: What has science accomplished so far? Int J Pharm 2021; 610:121273. [PMID: 34763036 DOI: 10.1016/j.ijpharm.2021.121273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
The importance of the hair follicle in the process of cutaneous drug penetration has been established since this skin appendage was recognized as an entry point for topically applied substances. A comprehensive review on the hair follicle as a target per se is here provided, exploring the current knowledge on both targeted regions and delivery systems that take advantage of this permeation route. The follicular penetration is a complex process, whose effectiveness and efficiency strongly depends on a diversity of different factors including follicular density and size, activity status of hair follicles and physicochemical properties of the topically applied substances. Nanocarriers represent a heterogeneous assembly of molecules organized into particles and they have revolutionized drug delivery in several areas of medicine, pharmacology and cosmetics. As they possess an inherent ability to use the follicular route, they are reviewed here having in perspective the hair follicle zones that they are able to reach as reported. In this way, a follicular road map for the different delivery systems was compiled to assist as a guiding tool for those that have interest in the development and/or application of such delivery systems for hair and skin treatment or care.
Collapse
Affiliation(s)
- Cristiana Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Teresa Matamá
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
9
|
Gimeno-Benito I, Giusti A, Dekkers S, Haase A, Janer G. A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul Toxicol Pharmacol 2020; 119:104836. [PMID: 33249100 DOI: 10.1016/j.yrtph.2020.104836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022]
Abstract
Data on dermal penetration of nanoparticles (NPs) was reviewed with the goal to establish a worst-case dermal penetration value for NPs. To this aim, the main focus was on studies providing quantitative dermal penetration data (29 studies). In vivo dermal penetration studies and ex vivo studies based on skin explants were included. These studies used NPs with different compositions, dimensions, and shapes. The overall results showed that skin is an efficient barrier for NPs, indistinctly of their properties. However, some studies reported that a small percentage of the applied NP dose penetrated the skin surface and reached deeper skin layers. The integrity of the skin layer and the product formulation were more critical determinants of dermal penetration than the NP properties. Most quantitative studies were based on elemental analysis such that it cannot be concluded if detected levels are attributable to a dissolved fraction or to the penetration of particles as such. Results of qualitative imaging studies suggest that at least a fraction of the levels reported in quantitative studies could be due to particle penetration. Altogether, based on the data compiled, we propose that 1% could be used as a worst-case dermal penetration value for nanoparticles within the boundaries of the properties of those included in our analysis.
Collapse
Affiliation(s)
| | - Anna Giusti
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Susan Dekkers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Gemma Janer
- Leitat Technological Center, Innovació 2, 08225, Terrassa, Spain.
| |
Collapse
|
10
|
Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based Drug Delivery, Metabolism and Toxicity. Curr Drug Metab 2020; 20:1167-1190. [PMID: 31902350 DOI: 10.2174/1389200221666200103091753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern. OBJECTIVE The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics. METHODS Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models. RESULTS Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices. CONCLUSION The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.
Collapse
Affiliation(s)
- Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Abhay R Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India
| |
Collapse
|
11
|
Abstract
Introduction: The improvement of percutaneous absorption represents a clear dermatopharmaceutical aim. Recently, the hair follicle was recognized to be an important penetration pathway. Especially nanoparticles show an enhanced intrafollicular penetration and can be utilized to target specific cell populations within the hair follicle.Areas covered: The present review briefly summarizes the recent advances in follicular drug delivery of nanoparticles. Moreover, the particularities of the hair follicle as a penetration pathway are summarized which include its structure and specific barrier properties. Recently, the mechanism of the follicular penetration process has been clarified.In the meantime, different strategies have been developed to successfully improve follicular drug delivery of nanoparticles. One approach is to equip the nanocarriers with a triggered release system enabling them to release their drug load at the right time and place.Expert opinion: Follicular drug delivery with smart nanocarrier-based drug delivery systems represents a promising approach to increase the percutaneous absorption of topically applied substances. Although technical achievements and efficacy proofs concerning an increased penetration of substances are already available, the practical implementation into clinical application still represents an additional challenge and should be in the focus of interest in future research.
Collapse
Affiliation(s)
- Alexa Patzelt
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juergen Lademann
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Chen Y, Feng X, Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv 2019; 16:847-867. [DOI: 10.1080/17425247.2019.1645119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Palmer BC, Jatana S, Phelan-Dickinson SJ, DeLouise LA. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci Rep 2019; 9:5085. [PMID: 30911099 PMCID: PMC6434075 DOI: 10.1038/s41598-019-41493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted. While we observe only minimal effects of SiNPs on healthy mouse skin, there is an immunomodulatory effect of these NPs in a model of allergic contact dermatitis. The effect appears to be mediated partly by keratinocytes and results in decreases in epidermal hyperplasia, inflammatory cytokine release, immune cell infiltration, and a subsequent reduction in skin swelling. Additional research is required to further our mechanistic understanding and to validate the extent of this immunomodulatory effect in human subjects in order to assess the potential prophylactic use of SiNPs for treating allergic skin conditions.
Collapse
Affiliation(s)
- Brian C. Palmer
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Samreen Jatana
- 0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA
| | - Sarah J. Phelan-Dickinson
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA ,0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA ,0000 0004 1936 9166grid.412750.5Department of Dermatology, University of Rochester Medical Center, Rochester, New York USA
| |
Collapse
|
14
|
Swelm W, Al-Ghamdi A, Jilani A, Iqbal J. Facile Synthesis of Ternary Alloy of CdSe 1-xS x Quantum Dots with Tunable Absorption and Emission of Visible Light. NANOMATERIALS 2018; 8:nano8120979. [PMID: 30486405 PMCID: PMC6315846 DOI: 10.3390/nano8120979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/03/2022]
Abstract
The synthesis of alloyed semiconductor quantum dots has produced structures that have distinct properties in comparison with both their bulk counterparts and their parent binary semiconductor quantum dots. In this work, the quantum confined structures of a ternary alloy of CdSe1−xSx were synthesized by one-pot synthesis method in an aqueous medium at a low temperature and capped with 3-mercaptopropoionic acid. Structures of the synthesized quantum dots were investigated by energy dispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. The obtained quantum dots had modified cubic structures as proven by X-ray diffraction and selected area electron diffraction. The optical properties of the synthesized quantum dots were characterized by optical absorption, photoluminescence, and color analysis. Optical absorption investigation revealed a widening of the band gap of CdSe1−xSx with increasing S content. This widening increased for the samples suspended in water relative to the samples measured in powder form due to the difference in the environment of the two cases. The size determined from the optical absorption measurements was found to be compatible with the sizes obtained from the X-ray diffraction with the value of bowing parameter around 1, which indicated a graded diffusion of sulfur. It was also ascertained that the emission of different compositions covered the most visible range with a small full width at half maximum. The x and y values of the chromaticity coordinates decreased with increasing sulfur content of up to 15%, while the z value increased.
Collapse
Affiliation(s)
- Wageh Swelm
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt.
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Asim Jilani
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
16
|
Volkova EK, Yanina IY, Genina EA, Bashkatov AN, Konyukhova JG, Popov AP, Speranskaya ES, Bucharskaya AB, Navolokin NA, Goryacheva IY, Kochubey VI, Sukhorukov GB, Meglinski IV, Tuchin VV. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29405049 DOI: 10.1117/1.jbo.23.2.026001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ∼1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ∼20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues.
Collapse
Affiliation(s)
- Elena K Volkova
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
| | - Irina Yu Yanina
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
| | - Elina A Genina
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
| | - Alexey N Bashkatov
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
| | - Julia G Konyukhova
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
| | - Alexey P Popov
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
- ITMO University, Terahertz Biomedicine Laboratory, St. Petersburg, Russia
| | - Elena S Speranskaya
- Saratov State University (National Research University), General and Inorganic Chemistry Department,, Russia
| | | | | | - Irina Yu Goryacheva
- Saratov State University (National Research University), General and Inorganic Chemistry Department,, Russia
| | - Vyacheslav I Kochubey
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
| | - Gleb B Sukhorukov
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- Queen Mary University of London, School of Engineering and Materials Science, London, United Kingdom
| | - Igor V Meglinski
- University of Oulu, Optoelectronics and Measurement Techniques Research Unit, Oulu, Finland
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
- Irkutsk State University, Institute of Biology, Irkutsk, Russia
| | - Valery V Tuchin
- Saratov State University (National Research University), Optics and Biophotonics Department, Saratov, Russia
- Tomsk State University (National Research University), Interdisciplinary Laboratory of Biophotonics,, Russia
- ITMO University, Laboratory of Femtomedicine, St. Petersburg, Russia
| |
Collapse
|
17
|
Wu T, Tang M. Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 2017; 38:25-40. [DOI: 10.1002/jat.3499] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology; Southeast University; Nanjing 210009 China
- Jiangsu Key Laboratory for Biomaterials and Devices; Southeast University; Nanjing 210009 China
| |
Collapse
|
18
|
Jatana S, Palmer BC, Phelan SJ, Gelein R, DeLouise LA. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Part Fibre Toxicol 2017; 14:12. [PMID: 28410606 PMCID: PMC5391571 DOI: 10.1186/s12989-017-0191-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - Brian C. Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Sarah J. Phelan
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
- Department of Dermatology, University of Rochester Medical Center, Dermatology and Biomedical Engineering, 601 Elmwood Avenue, Box 697, Rochester, NY 14642 USA
| |
Collapse
|
19
|
Palmer BC, DeLouise LA. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016; 21:E1719. [PMID: 27983701 PMCID: PMC5639878 DOI: 10.3390/molecules21121719] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Collapse
Affiliation(s)
- Brian C Palmer
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Lisa A DeLouise
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA.
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
20
|
Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol 2015; 72:310-22. [DOI: 10.1016/j.yrtph.2015.05.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/17/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022]
|
21
|
Abstract
The study of a drug's dermal penetration profile provides important pharmaceutical data for the rational development of topical and transdermal delivery systems because the skin is a broadly used delivery route for local and systemic drugs and a potential route for gene therapy and vaccines. Monitoring drug penetration across the skin and quantifying its levels in different skin layers have been constant challenges due to the detection limitations of the available techniques, as well as the inherent interference in this tissue. This review explores and discusses several bionalytical methods that are indispensable tools to study drugs across the skin. In addressing the main topic, we structure the review highlighting the skin as an important route of drug administration and its structure, skin membrane models most used and its properties, in vitro and in vivo assays most used in the study of drug delivery to the skin, the techniques for processing the skin for subsequent analysis by bioanalytical methods that have a theoretical and practical approach showing its applicability, limitations and also including examples of its use. This review has a comprehensive approach in order to help researchers design their experiments and update the applicability and advances in this area of expertise.
Collapse
|
22
|
|
23
|
Abstract
It has been demonstrated that nanoparticles used for follicular delivery provide some advantages over conventional pathways, including improved skin bioavailability, enhanced penetration depth, prolonged residence duration, fast transport into the skin and tissue targeting. This review describes recent developments using nanotechnology approaches for drug delivery into the follicles. Different types of nanosystems may be employed for management of follicular permeation, such as polymeric nanoparticles, metallic nanocrystals, liposomes, and lipid nanoparticles. This review systematically introduces the mechanisms of follicles for nanoparticulate penetration, highlighting the therapeutic potential of drug-loaded nanoparticles for treating skin diseases. Special attention is paid to the use of nanoparticles in treating appendage-related disorders, in particular, nanomedical strategies for treating alopecia, acne, and transcutaneous immunization.
Collapse
|
24
|
Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014; 7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.capr-14-0079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherri L Patterson
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Craig D Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ernest T Hawk
- Division of Cancer Prevention & Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|