1
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Ding W, Wang C, Mei M, Li X, Zhang Y, Lin H, Li Y, Ma Z, Han J, Song X, Wu M, Zheng C, Lin J, Zhao Y. Phytohormones involved in vascular cambium activity in woods: current progress and future challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1508242. [PMID: 39741679 PMCID: PMC11685017 DOI: 10.3389/fpls.2024.1508242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
Vascular cambium is the continuation of meristem activity at the top of plants, which promotes lateral growth of plants. The vascular cambium evolved as an adaptation for secondary growth, initially in early seed plants, and became more refined in the evolution of gymnosperms and angiosperms. In angiosperms, it is crucial for plant growth and wood formation. The vascular cambium is regulated by a complex interplay of phytohormones, which are chemical messengers that coordinate various aspects of plant growth and development. This paper synthesizes the current knowledge on the regulatory effects of primary plant hormones and peptide signals on the development of the cambium in forest trees, and it outlines the current research status and future directions in this field. Understanding these regulatory mechanisms holds significant potential for enhancing our ability to manage and cultivate forest tree species in changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Ding
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Chencan Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Baoding, Hebei, China
| | - Man Mei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuqian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Hongxia Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yang Li
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Zhiqiang Ma
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Jianwei Han
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Xiaoxia Song
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Minjie Wu
- China National Tree Seed Group Corporation Limited, Beijing, China
- China Forestry (Sanming) Development Corporation Limited, Sanming, Fujian, China
| | - Caixia Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Forest Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| |
Collapse
|
3
|
Jiang R, He X, Chen W, Cai H, Su Z, Xie Z, Zhang B, Yang J, Wang Y, Huang L, Cao G, Zhong X, Xie H, Zhu H, Cao J, Lu W. lncRNA H19 facilitates vascular neointima formation by targeting miR-125a-3p/FLT1 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1437-1445. [PMID: 39238439 PMCID: PMC11532204 DOI: 10.3724/abbs.2024087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/28/2024] [Indexed: 09/07/2024] Open
Abstract
The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to the development of neointima formation in vascular restenosis. This study aims to explore the function of the long noncoding RNA H19 in neointima formation. A mouse carotid ligation model was established, and human vascular smooth muscle cells (VSMCs) were used as a cell model. lncRNA H19 overexpression promoted VSMC proliferation and migration. Moreover, miR-125a-3p potentially bound to lncRNA H19, and Fms-like tyrosine kinase-1 (FLT1) might be a direct target of miR-125a-3p in VSMCs. Upregulation of miR-125a-3p alleviated lncRNA H19-enhanced VSMC proliferation and migration. Furthermore, rescue experiments showed that enhanced expression of miR-125a-3p attenuated lncRNA H19-induced FLT1 expression in VSMCs. In addition, the overexpression of lncRNA H19 significantly exacerbated neointima formation in a mouse carotid ligation model. In summary, lncRNA H19 stimulates VSMC proliferation and migration by acting as a competing endogenous RNA (ceRNA) of miR-125a-3p. lncRNA H19 may be a therapeutic target for restenosis.
Collapse
MESH Headings
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Animals
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neointima/pathology
- Neointima/metabolism
- Neointima/genetics
- Humans
- Cell Proliferation/genetics
- Cell Movement/genetics
- Mice
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Male
- Cells, Cultured
Collapse
Affiliation(s)
- Rengui Jiang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xuyu He
- Guangdong Cardiovascular InstituteGuangdong Provincial Key Laboratory of Coronary Heart Disease PreventionGuangdong General HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Weidong Chen
- The Second Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhou510120China
| | - Huoying Cai
- Department of Vascular SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Zhaohai Su
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Zheng Xie
- Department of General PracticeGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Bilong Zhang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jiangyong Yang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Yueting Wang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Ling Huang
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Gang Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Xiutong Zhong
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hui Xie
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Hengqing Zhu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Jun Cao
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| | - Weiling Lu
- Department of CardiologyGanzhou Hospital of Guangdong Provincial People’s HospitalGanzhou Municipal Hospital (Gannan Medical University Affiliated Municipal Hospital)Ganzhou341000China
| |
Collapse
|
4
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Chen C, Ma J, Ren L, Sun B, Shi Y, Chen L, Wang D, Wei J, Sun Y, Cao X. Rosmarinic Acid Activates the Nrf2/ARE Signaling Pathway via the miR-25-3p/SIRT6 Axis to Inhibit Vascular Remodeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4008-4022. [PMID: 38373191 DOI: 10.1021/acs.jafc.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The vital pathological processes in intimal hyperplasia include aberrant vascular smooth muscle cells (VSMCs) proliferation, migration, and phenotypic switching. Rosmarinic acid (RA) is a natural phenolic acid compound. Nevertheless, the underlying mechanism of RA in neointimal hyperplasia is still unclear. Our analysis illustrated that miR-25-3p mimics significantly enhanced PDGF-BB-mediated VSMCs proliferation, migration, and phenotypic switching while RA partially weakened the effect of miR-25-3p. Mechanistically, we found that miR-25-3p directly targets sirtuin (SIRT6). The suppressive effect of the miR-25-3p inhibitor on PDGF-BB-induced VSMCs proliferation, migration, and phenotypic switch was partially eliminated by SIRT6 knockdown. The suppression of the PDGF-BB-stimulated Nrf2/ARE signaling pathway that was activated by the miR-25-3p inhibitor was exacerbated by the SIRT6 knockdown. In in vivo experiments, RA reduced the degree of intimal hyperplasia while miR-25-3p agomir partially reversed the suppressive effect of RA in vascular remodeling. Our results indicate that RA activates the Nrf2/ARE signaling pathway via the miR-25-3p/SIRT6 axis to inhibit vascular remodeling.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Jiulong Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Liang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Danqi Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Jiaxin Wei
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| | - Yuan Sun
- Changsha Medical College, 1501 Leifeng Avenue, Wangcheng District, Changsha, Hunan 410000, China
| | - Xia Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 13002, China
| |
Collapse
|
6
|
Dai R, Yang X, He W, Su Q, Deng X, Li J. LncRNA AC005332.7 Inhibited Ferroptosis to Alleviate Acute Myocardial Infarction Through Regulating miR-331-3p/CCND2 Axis. Korean Circ J 2023; 53:151-167. [PMID: 36914604 PMCID: PMC10011218 DOI: 10.4070/kcj.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/21/2022] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Acute myocardial infarction (AMI) often occurs suddenly and leads to fatal consequences. Ferroptosis is closely related to the progression of AMI. However, the specific mechanism of ferroptosis in AMI remains unclear. METHODS We constructed a cell model of AMI using AC16 cells under oxygen and glucose deprivation (OGD) conditions and a mice model of AMI using the left anterior descending (LAD) ligation. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide was employed to determine cell viability. The levels of lactate dehydrogenase, creatine kinase, reactive oxygen species (ROS), glutathione (GSH), malondialdehyde (MDA), and iron were measured using corresponding kits. Dual luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull-down were performed to validate the correlations among AC005332.7, miR-331-3p, and cyclin D2 (CCND2). Hematoxylin and eosin staining was employed to evaluate myocardial damage. RESULTS AC005332.7 and CCND2 were lowly expressed, while miR-331-3p was highly expressed in vivo and in vitro models of AMI. AC005332.7 sufficiency reduced ROS, MDA, iron, and ACSL4 while boosting the GSH and GPX4, indicating that AC005332.7 sufficiency impeded ferroptosis to improve cardiomyocyte injury in AMI. Mechanistically, AC005332.7 interacted with miR-331-3p, and miR-331-3p targeted CCND2. Additionally, miR-331-3p overexpression or CCND2 depletion abolished the suppressive impact of AC005332.7 on ferroptosis in OGD-induced AC16 cells. Moreover, AC005332.7 overexpression suppressed ferroptosis in mice models of AMI. CONCLUSIONS AC005332.7 suppressed ferroptosis in OGD-induced AC16 cells and LAD ligation-operated mice through modulating miR-331-3p/CCND2 axis, thereby mitigating the cardiomyocyte injury in AMI, which proposed novel targets for AMI treatment.
Collapse
Affiliation(s)
- Rixin Dai
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China.
| | - Xiheng Yang
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| | - Wujin He
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| | - Qiang Su
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| | - Xuexin Deng
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| | - Juanfen Li
- Department of Cardiology, The Affiliated Hospital of Guilin Medical University, Guilin, P.R. China
| |
Collapse
|
7
|
Rong Z, Li F, Zhang R, Niu S, Di X, Ni L, Liu C. Inhibition of tiRNA-Gly-GCC ameliorates neointimal formation via CBX3-mediated VSMCs phenotypic switching. Front Cardiovasc Med 2023; 10:1030635. [PMID: 36818350 PMCID: PMC9937027 DOI: 10.3389/fcvm.2023.1030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aim tRNA-derived fragments (tRFs) are a new class of non-coding RNAs involved in a variety of pathological processes, but their biological functions and mechanisms in human aortic smooth muscle cells (HASMCs) phenotype transition and vascular intimal hyperplasia are unclear. Methods/results tiRNA-Gly-GCC is upregulated in synthetic HASMCs, atherosclerotic arteries, plasma, and the balloon injured carotid artery of rats. Functionally, the inhibition of tiRNA-Gly-GCC represses HASMCs proliferation, migration, and reversed dedifferentiation, whereas the overexpression of tiRNA- Gly-GCC have contrary effects. Mechanistically, tiRNA-Gly-GCC performs these functions on HASMCs via downregulating chromobox protein homolog 3 (CBX3). Finally, the inhibition of tiRNA-Gly-GCC could ameliorate neointimal formation after vascular injury in vivo. Conclusions tiRNA-Gly-GCC is a mediator of HASMCs phenotypic switching by targeting CBX3 and inhibition of tiRNA-Gly-GCC suppresses neointimal formation.
Collapse
|
8
|
Wang Y, Yang Y, Zhang T, Jia S, Ma X, Zhang M, Wang L, Ma A. LncRNA SNHG16 accelerates atherosclerosis and promotes ox-LDL-induced VSMC growth via the miRNA-22-3p/HMGB2 axis. Eur J Pharmacol 2022; 915:174601. [PMID: 34699756 DOI: 10.1016/j.ejphar.2021.174601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Long non-coding RNAs (LncRNAs) are essential regulators in the occurrence and development of AS. Here we aim to explore the underlying molecular mechanism of LncRNA SNHG16 in regulating ox-LDL-induced VSMC proliferation, migration and invasion. After constructing AS in vivo and in vitro models, the expressions of SNHG16, miR-22-3p, HMBG2, proliferation- and metastasis-related proteins were determined by qRT-PCR and Western blot assays. Detection of serological lipids, H&E and Masson staining analysis were conducted to evaluate the AS injury in mice. The effects of ox-LDL treatment on VSMCs were examined by CCK-8, wound scratch and Transwell Chamber assays. The targeted relationship was measured by luciferase reporter and RIP assays. The results showed that SNHG16 and high-mobility group box 2 (HMGB2) expressions were increased while miRNA-22-3p expression was decreased in AS mice and ox-LDL-stimulated VSMCs. Functionally, sh-SNHG16 restrained ox-LDL-induced VSMC growth and migration. SNHG16 suppressed miRNA-22-3p expression by direct binding. Furthermore, in ox-LDL-treated VSMCs, miRNA-22-3p mimic prevented proliferation, migration, and invasion. Further explorations showed that HMGB2 was a target of miRNA-22-3p, SNHG16 upregulated HMGB2 levels by acting as a competing endogenous RNA (ceRNA) of miRNA-22-3p. More importantly, sh-HMGB2 partially reversed the effects of sh-SNHG16 together with miR-22-2p inhibitor on ox-LDL-induced VSMC proliferation, migration and invasion. Collectively, SNHG16 accelerated atherosclerotic plaque (AP) formation and enhanced ox-LDL-activated VSMCs proliferation and migration by miRNA-22-3p/HMGB2 axis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- HMGB2 Protein/genetics
- HMGB2 Protein/metabolism
- Lipoproteins, LDL/pharmacology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Yiyong Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yong Yang
- Department of Cardiovascular Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, 518100, China
| | - Tao Zhang
- Department of Cardiology, The Affiliated Xi'an Center Hospital of Xi'an Jiaotong University College, Xi'an, Shaanxi, 710003, China
| | - Shaobin Jia
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xueping Ma
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Minghao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi , 710061, China; School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Lijuan Wang
- Department of Cardiovascular Medicine, The Second People's Hospital of Yinchuan City, Yinchuan, Ningxia, 750004, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China; Shaanxi Key Laboratory of Molecular Cardiology, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
9
|
Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann Biomed Eng 2022; 50:1734-1749. [PMID: 36261668 PMCID: PMC9581451 DOI: 10.1007/s10439-022-03094-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 01/01/2023]
Abstract
Since the onset of the coronavirus pandemic in December 2019, the SARS-CoV-2 virus has accounted for over 6.3 million lives resulting in the demand to develop novel therapeutic approaches to target and treat SARS-CoV-2. Improved understanding of viral entry and infection mechanisms has led to identifying different target receptors to mitigate infection in the host. Researchers have been working on identifying and targeting potential therapeutic target receptors utilizing different candidate drugs. Angiotensin-converting enzyme-2 (ACE2) has been known to perform critical functions in maintaining healthy cardiorespiratory function. However, ACE2 also functions as the binding site for the spike protein of SARS-CoV-2, allowing the virus to enter the cells and ensue infection. Therefore, drugs targeting ACE2 receptors can be considered as therapeutic candidates. Strategies targeting the level of ACE2 expression have been investigated and compared to other potential therapeutic targets, such as TMPRSS2, RdRp, and DPP4. This mini review discusses the key therapeutic approaches that target the ACE2 receptor, which is critical to the cellular entry and propagation of the novel SARS-CoV-2. In addition, we summarize the main advantages of ACE2 targeting against alternative approaches for the treatment of COVID-19.
Collapse
|
10
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
11
|
Zhu L, Li Y, Xia F, Xue M, Wang Y, Jia D, Gao Y, Li L, Shi Y, Chen S, Xu G, Yuan C. H19: A vital long noncoding RNA in the treatment of diabetes and diabetic complications. Curr Pharm Des 2021; 28:1011-1018. [PMID: 34895118 DOI: 10.2174/1381612827666211210123959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Increasing academic efforts have been made to explore the correlation of long noncoding RNAs (lncRNAs) with human diseases, particularly metabolic diseases like diabetes mellitus. Taking lncRNA H19 as an example, this review intends to reveal the functions and mechanism of lncRNA H19 in diabetes mellitus and diabetic complications. METHODS The research results associated with lncRNA H19 and diabetes mellitus are collected and summarized on PubMed. CONCLUSION LncRNA H19 is a potential instructive marker for the treatment of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
12
|
Balandeh E, Mohammadshafie K, Mahmoudi Y, Hossein Pourhanifeh M, Rajabi A, Bahabadi ZR, Mohammadi AH, Rahimian N, Hamblin MR, Mirzaei H. Roles of Non-coding RNAs and Angiogenesis in Glioblastoma. Front Cell Dev Biol 2021; 9:716462. [PMID: 34646821 PMCID: PMC8502969 DOI: 10.3389/fcell.2021.716462] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
One of the significant hallmarks of cancer is angiogenesis. It has a crucial function in tumor development and metastasis. Thus, angiogenesis has become one of the most exciting targets for drug development in cancer treatment. Here we discuss the regulatory effects on angiogenesis in glioblastoma (GBM) of non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA). These ncRNAs may function in trans or cis forms and modify gene transcription by various mechanisms, including epigenetics. NcRNAs may also serve as crucial regulators of angiogenesis-inducing molecules. These molecules include, metalloproteinases, cytokines, several growth factors (platelet-derived growth factor, vascular endothelial growth factor, fibroblast growth factor, hypoxia-inducible factor-1, and epidermal growth factor), phosphoinositide 3-kinase, mitogen-activated protein kinase, and transforming growth factor signaling pathways.
Collapse
Affiliation(s)
- Ebrahim Balandeh
- Department of Clinical Psychology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Yaser Mahmoudi
- Department of Anatomical Sciences, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Ali Rajabi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Razaghi Bahabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
13
|
Safdar M, Khan MS, Karim AY, Omar SA, Smail SW, Saeed M, Zaheer S, Ali M, Ahmad B, Tasleem M, Junejo Y. SNPs at 3'UTR of APOL1 and miR-6741-3p target sites associated with kidney diseases more susceptible to SARS-COV-2 infection: in silco and in vitro studies. Mamm Genome 2021; 32:389-400. [PMID: 34089082 PMCID: PMC8177038 DOI: 10.1007/s00335-021-09880-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/24/2021] [Indexed: 01/04/2023]
Abstract
Acute Kidney Injury (AKI) is a common manifestation of COVID-19 and several cases have been reported in the setting of the high-risk APOL1 genotype (common genetic variants). This increases the likelihood that African American people with the high-risk genotype APOL1 are at increased risk for kidney disease in the COVID-19 environment. Single-nucleotide polymorphisms (SNPs) are found in various microRNAs (miRNAs) and target genes change the miRNA activity that leads to different diseases. Evidence has shown that SNPs increase/decrease the effectiveness of the interaction between miRNAs and disease-related target genes. The aim of this study is not only to identify miRSNPs on the APOL1 gene and SNPs in miRNA genes targeting 3′UTR but also to evaluate the effect of these gene variations in kidney patients and their association with SARS-COV-2 infection. In 3′UTR of the APOL1 gene, we detected 96 miRNA binding sites and 35 different SNPs with 10 different online software in the binding sites of the miRNA (in silico). Also we studied gene expression of patients and control samples by using qRT-PCR (in vitro). In silico study, the binding site of miR-6741-3p on APOL1 has two SNPs (rs1288875001, G > C; rs1452517383, A > C) on APOL1 3′UTR, and its genomic sequence is the same nucleotide as rs1288875001. Similarly, two other SNPs (rs1142591, T > A; rs376326225, G > A) were identified in the binding sites of miR-6741-3p at the first position. Here, the miRSNP (rs1288875001) in APOL1 3′UTR and SNP (rs376326225) in the miR-6741-3p genomic sequence are cross-matched in the same binding region. In vitro study, the relative expression levels were calculated by the 2−ΔΔCt method & Mann–Whitney U test. The expression of APOL1 gene was different in chronic kidney patients along with COVID-19. By these results, APOL1 expression was found lower in patients than healthy (p < 0.05) in kidney patients along with COVID-19. In addition, miR-6741-3p targets many APOL1-related genes (TLR7, SLC6A19, IL-6,10,18, chemokine (C–C motif) ligand 5, SWT1, NFYB, BRF1, HES2, NFYB, MED12L, MAFG, GTF2H5, TRAF3, angiotensin II receptor-associated protein, PRSS23) by evaluating online software in the binding sites of the miR-6741-3p. miR-6741-3p has not previously shown any association with kidney diseases and SARS-COV-2 infection. It assures that APOL1 can have a significant consequence in kidney-associated diseases by different pathways. Henceforth, this study represents and demonstrates an effective association between miR-6741-3p and kidney diseases, i.e., collapsing glomerulopathy, chronic kidney disease (CKD), acute kidney injury (AKI), and tubulointerstitial lesions susceptibility to SARS-COV-2 infection via in silico and in vitro exploration and recommended to have better insight.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Muhammad Sajjad Khan
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Shwan Ali Omar
- Ministry of Health, Kurdistan Regional Government, Erbil, Iraq
| | - Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Muhammad Saeed
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Sana Zaheer
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Mazhar Ali
- Consultant Urologist, Recep Tayyip Erdogan Hospital (RTEH), Muzaffargarh, Pakistan
| | | | - Muhammad Tasleem
- Senior Medical Officer, Shah Bhittaai Govt Hospital Latifabad, Hyderabad, Pakistan
| | - Yasmeen Junejo
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
14
|
Zhou W, Xi D, Shi Y, Wang L, Zhong H, Huang Z, Liu Y, Tang Y, Lu N, Wang Y, Zhang Z, Pei J, Tang N, He F. MicroRNA‑1929‑3p participates in murine cytomegalovirus‑induced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation. Int J Mol Med 2021; 47:719-731. [PMID: 33416142 PMCID: PMC7797461 DOI: 10.3892/ijmm.2020.4829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the development of vascular remodeling in essential hypertension (EH) by mediating the effects of human cytomegalovirus (HCMV) on the vascular system. Therefore, the aim of the present study was to investigate the effects of murine cytomegalovirus (MCMV) infection on blood pressure and vascular function in mice, in order to elucidate the role of miR‑1929‑3p in this process. For model development, 7‑month‑old C57BL/6J mice were infected with the Smith strain of MCMV, and MCMV DNA, IgG and IgM were detected. Subsequently, blood pressure was measured via the carotid artery, and the morphological changes of the aorta were evaluated by hematoxylin and eosin and Masson's trichrome staining. miR‑1929‑3p transfection was performed using an adeno‑associated virus packaged vector and the changes in vascular structure were then observed. The levels of nitric oxide (NO) and endothelial NO synthase were also assessed with colorimetry. Vascular remodeling and expression of NLRP3 inflammasome pathway‑related proteins were detected by immunohistochemistry and western blotting. Endothelin‑1 (ET‑1), interleukin (IL)‑1β and IL‑18 were assayed by ELISA. The results revealed that MCMV infection increased the blood pressure, promoted vascular remodeling, caused endothelial cell injury, and downregulated miR‑1929‑3p. However, these effects were alleviated by miR‑1929‑3p overexpression, which downregulated endothelin A receptor (Ednra) and NLRP3 inflammasome, as well as endothelial injury‑ and vascular remodeling‑related genes. Taken together, the findings of the present study indicated that overexpression of miR‑1929‑3p may improve MCMV‑induced vascular remodeling, possibly via the deactivation of the NLRP3 inflammasome by ET‑1/Ednra.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Dongmei Xi
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yunzhong Shi
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Lamei Wang
- Centre of Medical Functional Experiments, Medical College of Shihezi University
| | - Hua Zhong
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Zhen Huang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yongmin Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yan Tang
- Department of Geriatrics, The First Affiliated Hospital of Medical College of Shihezi University
| | - Ning Lu
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Yongjia Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Zhengyu Zhang
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jiaxin Pei
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Na Tang
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| | - Fang He
- Department of Pathophysiology, Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University
| |
Collapse
|
15
|
Du J, Han R, Li Y, Liu X, Liu S, Cai Z, Xu Z, Li Y, Yuan X, Guo X, Lu B, Sun K. LncRNA HCG11/miR-26b-5p/QKI5 feedback loop reversed high glucose-induced proliferation and angiogenesis inhibition of HUVECs. J Cell Mol Med 2020; 24:14231-14246. [PMID: 33128346 PMCID: PMC7753996 DOI: 10.1111/jcmm.16040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Acute coronary syndrome caused by the rupture of atherosclerotic plaques is one of the primary causes of cerebrovascular and cardiovascular events. Neovascularization within the plaque is closely associated with its stability. Long non-coding RNA (lncRNA) serves a crucial role in regulating vascular endothelial cells (VECs) proliferation and angiogenesis. In this study, we identified lncRNA HCG11, which is highly expressed in patients with vulnerable plaque compared with stable plaque. Then, functional experiments showed that HCG11 reversed high glucose-induced vascular endothelial injury through increased cell proliferation and tube formation. Meanwhile, vascular-related RNA-binding protein QKI5 was greatly activated. Luciferase reporter assays and RNA-binding protein immunoprecipitation (RIP) assays verified interaction between them. Interestingly, HCG11 can also positively regulated by QKI5. Bioinformatics analysis and luciferase reporter assays showed HCG11 can worked as a competing endogenous RNA by sponging miR-26b-5p, and QKI5 was speculated as the target of miR-26b-5p. Taken together, our findings revered that the feedback loop of lncRNA HCG11/miR-26b-5p/QKI-5 played a vital role in the physiological function of HUVECs, and this also provide a potential target for therapeutic strategies of As.
Collapse
Affiliation(s)
- Jiao Du
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
- Department of RadiologyBayannur HospitalBayannurChina
| | - Ruijuan Han
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Yihua Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiaolin Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Shurong Liu
- Department of RadiologyBaotou Central HospitalBaotouChina
| | - Zhenyu Cai
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Zhaolong Xu
- Institute of cardiovascular diseasethe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Ya Li
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xuchun Yuan
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| | - Xiuhai Guo
- Department of NeurologyXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Bin Lu
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Sun
- Department of RadiologyState Key Laboratory of Cardiovascular DiseaseFu Wai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of RadiologyFuwai Hospital Chinese Academy of Medical SciencesShenzhenChina
| |
Collapse
|
16
|
MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res 2020; 44:129-146. [DOI: 10.1038/s41440-020-00553-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
|
17
|
Li Y, Li H, Wang W, Yu X, Xu Q. LINC00346 regulates glycolysis by modulation of glucose transporter 1 in breast cancer cells. Mol Cell Probes 2020; 54:101667. [PMID: 32946972 DOI: 10.1016/j.mcp.2020.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/13/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
Most cancer cells preferentially metabolize glucose by glycolysis rather than oxidative phosphorylation to proliferate efficiently. LncRNAs have been proposed as crucial regulators in pathophysiological processes including cell growth, apoptosis and glucose metabolism. However, little is known regarding the specific role of LINC00346 in regulating glucose metabolism in breast cancer. LINC00346 and miR-148a/b expression in breast cancer cells was detected by qRT-PCR. The relationships between LINC00346, glucose transporter 1 (GLUT1) and miR-148a/b in breast cancer cells were explored by luciferase reporter assay. Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry analysis, respectively. Glycolysis was detected by measuring the glucose uptake and lactate production. Results showed that LINC00346 was over-expressed while miR-148a/b was low-expressed in breast cancer cells. miR-148a/b were direct targets of LINC00346 in breast cancer cells. LINC00346 knockdown inhibited cell proliferation and glycolysis, and induced apoptosis by upregulating miR-148a/b in breast cancer cells. Furthermore, we found that LINC00346 knockdown repressed GLUT1 expression in breast cancer cells by upregulating miR-148a/b. In conclusion, LINC00346 knockdown suppressed breast cancer cell glycolysis by upregulating miR-148a/b and repressing GLUT1 expression.
Collapse
Affiliation(s)
- Yaxun Li
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China.
| | - Hao Li
- Out-patient Department, Jinzhou Central Hospital, Jinzhou, Liaoning, 121000, PR China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Xiaodong Yu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| | - Qun Xu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, PR China
| |
Collapse
|
18
|
Zhang H, Ji N, Gong X, Ni S, Wang Y. NEAT1/miR-140-3p/MAPK1 mediates the viability and survival of coronary endothelial cells and affects coronary atherosclerotic heart disease. Acta Biochim Biophys Sin (Shanghai) 2020; 52:967-974. [PMID: 32844995 DOI: 10.1093/abbs/gmaa087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that long non-coding RNAs (lncRNA) play critical roles in coronary atherosclerotic heart disease (CAD). However, the function of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in CAD is unclear. In this study, we aimed to investigate the functions of lncRNA NEAT1 in CAD. RT-PCR and western blot analysis were carried out to examine the expressions of related RNAs. Colony formation assay, cell proliferation assay, apoptosis assay, and dual-luciferase reporter assay were conducted to investigate the abilities of colony migration, cell proliferation, apoptosis, and targeting. The results showed that NEAT1 was up-regulated in CAD blood samples and in human coronary endothelial cells (HCAECs). Transfection of pcNEAT1 significantly inhibited the survival rate of HCAECs and induced apoptosis of HCAECs. MiR-140-3p was down-regulated in HCAECs. NEAT1 directly targeted miR-140-3p, and the expression of miR-140-3p was inversely correlated with the expression of NEAT1 in CAD patients. In addition, co-transfection of NEAT1 with miR-140-3p mimic reversed the effect of pcNEAT1 on cell viability and apoptosis. mitogen-activated protein kinase 1 (MAPK1) was proved to be a target gene of miR-140-3p, and the miR-140-3p mimic was shown to reduce the expression of MAPK1 in HCAECs. pcNEAT1 significantly increased the expression level of MAPK1, while shNEAT1 significantly reduced the expression level of MAPK1. Our results revealed that lncRNA NEAT1 increased cell viability and inhibited CAD cell apoptosis possibly by activating the miR-140-3p/MAPK1 pathway, and lncRNA NEAT1 might serve as a potential therapeutic target for CAD.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Xinyan Gong
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Shimao Ni
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu 322000, China
| |
Collapse
|
19
|
Han Y, Liu Y, Yang C, Gao C, Guo X, Cheng J. LncRNA CASC2 inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation and migration by regulating the miR-222/ING5 axis. Cell Mol Biol Lett 2020; 25:21. [PMID: 32206065 PMCID: PMC7079380 DOI: 10.1186/s11658-020-00215-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is often characterized by cell proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). LncRNA cancer susceptibility candidate 2 (CASC2) has been revealed to be involved in PASMC injury in hypoxia-induced pulmonary hypertension. However, the exact molecular mechanisms whereby CASC2 regulates PASMC proliferation and migration are still incompletely understood. Methods The expression levels of CASC2, miR-222 and inhibitor of growth 5 (ING5) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot, respectively. Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. Wound healing assay was used to analyze cell migration ability. The relationship between miR-222 and CASC2 or ING5 was confirmed using bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation assay. Results CASC2 was down-regulated in hypoxia-induced PASMCs in a dose- and time-dependent manner. Functional experiments showed that CASC2 overexpression could reverse hypoxia-induced proliferation and migration of PASMCs. Bioinformatics analysis indicated that CASC2 acted as a competing endogenous RNA of miR-222, thereby regulating the expression of ING5, the downstream target of miR-222, in PASMCs. In addition, rescue assay suggested that the inhibition mediated by CASC2 of hypoxia-induced PASMC proliferation and migration could be attenuated by miR-222 inhibition or ING5 overexpression. Conclusion CASC2 attenuated hypoxia-induced PASMC proliferation and migration by regulating the miR-222/ING5 axis to prevent vascular remodeling and the development of PAH, providing a novel insight and therapeutic strategy for hypoxia-induced PAH.
Collapse
Affiliation(s)
- Yan Han
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| | - Yuhao Liu
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| | - Chaokuan Yang
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| | - Chuanyu Gao
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| | - Xiaoyan Guo
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| | - Jiangtao Cheng
- Department of Cardiology, Henan Province People's Hospital, Huazhongfuwai Hospital, No. 7, Weiwu Road, Jinshui area, Zhengzhou City, Henan P.R. China
| |
Collapse
|
20
|
Shen GH, Song Y, Yao Y, Sun QF, Jing B, Wu J, Li SY, Liu SQ, Li HC, Yuan C, Liu GY, Li JB, Liu XY, Wang HY. Downregulation of DLGAP1-Antisense RNA 1 Alleviates Vascular Endothelial Cell Injury Via Activation of the Phosphoinositide 3-kinase/Akt Pathway Results from an Acute Limb Ischemia Rat Model. Eur J Vasc Endovasc Surg 2019; 59:98-107. [PMID: 31744785 DOI: 10.1016/j.ejvs.2019.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of long non-coding RNA (lncRNA) DLGAP1 antisense RNA 1 (DLGAP1-AS1) on vascular endothelial cell (VEC) injury via the phosphoinositide 3-kinase (PI3K)/Akt pathway in rat models of acute lower limb ischaemia-reperfusion (I/R). METHODS Differentially expressed lncRNAs related to I/R were screened using the gene expression omnibus database. Acute lower limb I/R models were induced in male Wistar rats, in which the regulatory mechanisms of DLGAP1-AS1 silencing were analysed after the treatment of small interfering RNA (siRNA) against DLGAP1-AS1 or an inhibitor of the PI3K/Akt pathway. The relationship between DLGAP1-AS1 and the PI3K/Akt pathway was analysed. The levels of tumour necrosis factor (TNF)-α and vascular cell adhesion molecule-1 (VCAM-1), as well as malondialdehyde (MDA) concentration and creatine kinase (CK) activity, were measured. The number of circulating endothelial cells (CECs) and apoptosis of VECs were identified. RESULTS Microarray based analysis indicated that DLGAP1-AS1 was highly expressed in I/R, which was further confirmed by detection of expression in rat models of acute lower limb I/R. Notably, the treatment of siRNA against DLGAP1-AS1 led to the activation of the PI3K/Akt pathway. In response to siRNA against DLGAP1-AS1, the levels of TNF-α and VCAM-1 were decreased, and MDA concentration and CK activity was downregulated. Reduced CEC numbers and suppressed VEC apoptosis were also observed. CONCLUSION DLGAP1-AS1 silencing could further suppress the oxidative stress, exert an anti-apoptosis effect, and reduce inflammatory reaction, whereby VEC injury is alleviated by activation of the PI3K/Akt pathway in rats with acute lower limb I/R.
Collapse
Affiliation(s)
- Guang-Hui Shen
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ye Song
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ye Yao
- Department of Cardiac Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Qing-Feng Sun
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jia Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Shi-Yong Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Si-Qi Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hao-Cheng Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Chao Yuan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Gao-Yan Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jing-Bo Li
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xin-Yu Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hai-Yang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
21
|
Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic Perspective. Front Oncol 2019; 9:1091. [PMID: 31709179 PMCID: PMC6821677 DOI: 10.3389/fonc.2019.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a crucial process for organ morphogenesis and growth during development, and it is especially relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases. Lately, a growing body of evidence is indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs, play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene transcription by several mechanisms including epigenetic processes. In the following pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and neovascularization, both in normal and disease contexts, from an epigenetic perspective. Additionally, we will describe the contribution of Next-Generation Sequencing (NGS) techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| |
Collapse
|
22
|
Zhu Z, Zhao C. WITHDRAWN: LncRNA AK139128 promotes cardiomyocyte autophagy and apoptosis in myocardial hypoxia-reoxygenation injury. Life Sci 2019:116705. [PMID: 31369757 DOI: 10.1016/j.lfs.2019.116705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Zhidong Zhu
- Department of Cardiology, Hospital 903 of PLA, Hangzhou City, Zhejiang Province 310013, China
| | - Chufeng Zhao
- Department of Emergency, Zhuji People's Hospital of Zhejiang Province, Zhuji City, Zhejiang Province 311800, China.
| |
Collapse
|
23
|
Deng Y, Zhang H. WITHDRAWN: Knockdown of lncRNA AK139128 alleviates cardiomyocyte autophagy and apoptosis of induced by myocardial hypoxia-reoxygenation injury via targeting miR-499/FOXO4 axis. Gene 2019:S0378-1119(19)30479-2. [PMID: 31075407 DOI: 10.1016/j.gene.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yudong Deng
- WuXie Town Health Center, Zhuji City, Zhejiang Province 311800, China
| | - Haiyan Zhang
- Department of Cardiology, Zhuji People's Hospital of Zhejiang Province, Zhuji City, Zhejiang Province 311800, China.
| |
Collapse
|
24
|
Tan P, Guo YH, Zhan JK, Long LM, Xu ML, Ye L, Ma XY, Cui XJ, Wang HQ. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97:571-580. [PMID: 30789795 DOI: 10.1139/bcb-2018-0126] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cardiovascular disease is one of the major threats to human life and health, and vascular aging is an important cause of its occurrence. Antisense non-coding RNA in the INK4 locus (ANRIL) is a kind of long non-coding RNA (lncRNA) that plays important roles in cell senescence. However, the role and mechanism of ANRIL in senescence of vascular smooth muscle cells (VSMCs) are unclear. METHODS Cell viability and cell cycle were evaluated using an MTT assay and flow cytometry analysis, respectively. Senescence-associated (SA)-β-galactosidase (gal) staining was used to determine cell senescence. Dual luciferase reporter assays were conducted to confirm the binding of ANRIL and miR-181a, as well as miR-181a and Sirt1. The expression of ANRIL, miR-181a, and Sirt1 was determined using qRT-PCR and protein levels of SA-β-gal and p53-p21 pathway-related proteins were evaluated by Western blotting. RESULTS ANRIL and Sirt1 were down-regulated, whereas miR-181a was up-regulated in aging VSMCs. In young and aging VSMCs, over-expression of ANRIL could down-regulate miR-181a and up-regulate Sirt1. MTT and SA-β-gal staining assays showed that over-expression of ANRIL and inhibition of miR-181a promoted cell viability and inhibited VSMC senescence. The dual-luciferase reporter assay determined that miR-181a directly targets ANRIL and the 3'-UTR of Sirt1. Furthermore, over-expression of ANRIL inhibited cell cycle arrest and the p53-p21 pathway. CONCLUSION ANRIL promotes cell viability and inhibits senescence in VSMCs, possibly by regulating miR-181a/Sirt1, and alleviating cell cycle arrest by inhibiting the p53-p21 pathway. This study provides novel insights for the role of ANRIL in the development of cell senescence.
Collapse
Affiliation(s)
- Pan Tan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Yong-Hong Guo
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jun-Kun Zhan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Li-Min Long
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Mei-Li Xu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Ling Ye
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xin-Yu Ma
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xing-Jun Cui
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Hai-Qin Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| |
Collapse
|
25
|
Zhou B, Guo H, Tang J. Long Non-Coding RNA TFAP2A-AS1 Inhibits Cell Proliferation and Invasion in Breast Cancer via miR-933/SMAD2. Med Sci Monit 2019; 25:1242-1253. [PMID: 30768589 PMCID: PMC6383438 DOI: 10.12659/msm.912421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND It is well documented that long non-coding RNAs (lncRNAs) are involved in the progression of multiple human tumors by sponging microRNAs (miRNAs). However, whether lncRNA TFAP2A-AS1 plays a role in the tumorigenesis of breast cancer (BC) remains undetermined. MATERIAL AND METHODS Real-time PCR (qRT-PCR) assay was performed to detect the relative mRNA expression of TFAP2A-AS1 and miR-933. Flow cytometry analysis, CCK-8 assay, and Transwell assay were applied to detect the effects of TFAP2A-AS1 overexpression on cell cycle, apoptosis, viability, and invasion of BC cells. In vivo proliferation assay was performed to evaluate the effects of TFAP2A-AS1 overexpression on tumor growth. Bioinformatics methods, dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to predict and validate the interaction between TFAP2A-AS1 and miR-933, as well as SMAD2 and miR-933. Western blot assay was performed to examine the protein expression of SMAD2 in treated BC cells. RESULTS TFAP2A-AS1 expression was significantly lower in BC tissues and cell lines, and patients with high TFAP2A-AS1 expression exhibited a better prognosis than those with low TFAP2A-AS1 expression. Overexpression of TFAP2A-AS1 in BC cells caused cell cycle arrest, promoted cell apoptosis, suppressed cell ability, and attenuated cell invasion in vitro, and inhibited tumor growth in vivo. TFAP2A-AS1 was revealed to act as a miRNA sponge for miR-933 and then regulated the expression of Smad2. CONCLUSIONS Results from the present study suggest that TFAP2A-AS1 acts as a tumor suppressor in BC via the miR-933/SMAD2 axis.
Collapse
Affiliation(s)
- Bin Zhou
- Department of General Surgery, Jiangsu Cancer Hospital (Affiliated Cancer Hospital of Nanjing Medical University), Nanjing, Jiangsu, P.R. China
| | - Haiyan Guo
- Department of Infectious Diseases, Jiangsu Province Hospital of Traditional Chinese medicine (TCM), Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu, P.R.China
| | - Jinhai Tang
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
26
|
Huang X, Liu Z, Shen L, Jin Y, Xu G, Zhang Z, Fang C, Guan W, Liu C. Augmentation of miR-202 in varicose veins modulates phenotypic transition of vascular smooth muscle cells by targeting proliferator-activated receptor-γ coactivator-1α. J Cell Biochem 2018; 120:10031-10042. [PMID: 30556158 DOI: 10.1002/jcb.28287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 02/04/2023]
Abstract
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3'-untranslated region (3'-UTR) but not those with mutated 3'-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.
Collapse
Affiliation(s)
- Xianchen Huang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liming Shen
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yiqi Jin
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Guoxiong Xu
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Zhixuan Zhang
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Changwen Fang
- Department of Vascular Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Wenxian Guan
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Autologous blood transfusion augments impaired wound healing in diabetic mice by enhancing lncRNA H19 expression via the HIF-1α signaling pathway. Cell Commun Signal 2018; 16:84. [PMID: 30458806 PMCID: PMC6245761 DOI: 10.1186/s12964-018-0290-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Impaired wound healing frequently occurs in diabetes mellitus (DM) and is implicated in impaired angiogenesis. Long non-coding RNA (lncRNA) H19 has been reported as being reduced in DM and played a critical role in inducing angiogenesis. Thus, we hypothesized that H19 may affect impaired wound healing in streptozotocin (STZ)-induced diabetic mice transfused with autologous blood preserved in standard preservative fluid or modified preservative fluid. Methods Fibroblasts in injured skin were isolated and cultured in vitro. After location of H19 in fibroblasts using fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), Co immunoprecipitation (COIP) and dual luciferase reporter gene assay were used to verify the binding of H19 to HIF-1α. Results The modified preservative fluid preserved autologous blood increased the H19 expression in fibroblasts, and maintained better oxygen-carrying and oxygen release capacities as well as coagulation function. Furthermore, H19 promoted HIF-1α histone H3K4me3 methylation and increased HIF-1α expression by recruiting EZH2. H19 promoted fibroblast activation by activating HIF-1α signaling pathway in fibroblasts and enhanced wound healing in diabetic mice. Conclusions Taken together, H19 accelerated fibroblast activation by recruiting EZH2-mediated histone methylation and modulating the HIF-1α signaling pathway, whereby augmenting the process of modified preservative fluid preserved autologous blood enhancing the postoperative wound healing in diabetic mice.
Collapse
|
28
|
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z, Zhou M, Wang WB, Li XQ. LncRNA WTAPP1 Promotes Migration and Angiogenesis of Endothelial Progenitor Cells via MMP1 Through MicroRNA 3120 and Akt/PI3K/Autophagy Pathways. Stem Cells 2018; 36:1863-1874. [PMID: 30171660 DOI: 10.1002/stem.2904] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Wen-Dong Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Dong-Ming Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Li-Li Sun
- Department of Vascular Surgery; The Second Affiliated Hospital of Soochow University; Suzhou JiangSu People's Republic of China
| | - Lun Xiao
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Zhao Liu
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| | - Wen-Bin Wang
- Department of General Surgery; The Fourth Affiliated Hospital of Anhui Medical University; HeFei People's Republic of China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital; Nanjing University Medical School; Nanjing JiangSu People's Republic of China
| |
Collapse
|
29
|
A systems biology network analysis of nutri(epi)genomic changes in endothelial cells exposed to epicatechin metabolites. Sci Rep 2018; 8:15487. [PMID: 30341379 PMCID: PMC6195584 DOI: 10.1038/s41598-018-33959-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
Although vasculo-protective effects of flavan-3-ols are widely accepted today, their impact on endothelial cell functions and molecular mechanisms of action involved is not completely understood. The aim of this study was to characterize the potential endothelium-protective effects of circulating epicatechin metabolites and to define underlying mechanisms of action by an integrated systems biology approach. Reduced leukocyte rolling over vascular endothelium was observed following epicatechin supplementation in a mouse model of inflammation. Integrative pathway analysis of transcriptome, miRNome and epigenome profiles of endothelial cells exposed to epicatechin metabolites revealed that by acting at these different levels of regulation, metabolites affect cellular pathways involved in endothelial permeability and interaction with immune cells. In-vitro experiments on endothelial cells confirmed that epicatechin metabolites reduce monocyte adhesion and their transendothelial migration. Altogether, our in-vivo and in-vitro results support the outcome of a systems biology based network analysis which suggests that epicatechin metabolites mediate their vasculoprotective effects through dynamic regulation of endothelial cell monocyte adhesion and permeability. This study illustrates complex and multimodal mechanisms of action by which epicatechin modulate endothelial cell integrity.
Collapse
|
30
|
Xu JY, Chang NB, Rong ZH, Li T, Xiao L, Yao QP, Jiang R, Jiang J. circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration. FASEB J 2018; 33:2659-2668. [PMID: 30307766 DOI: 10.1096/fj.201800243rrr] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intimal hyperplasia is a reaction to vascular injury, which is the primary reason for vascular restenosis caused by the diagnostic or therapeutic procedure for cardiovascular diseases. Circular RNAs (circRNAs) are known to be associated with several cardiovascular conditions, but the expression of circRNAs in the neointima has not been reported in detail. In this study, we established the balloon-injured rat carotid artery model and detected the expression of circRNAs in the carotid arteries with a microarray. We found that the circRNA expression profile of the healthy carotid arteries and the injured arteries were significantly different. We investigated the role of rno-circ_005717 ( circDiaph3) in the differentiation of rat vascular smooth muscle cells (VSMCs). We found that knockdown of circDiaph3 up-regulated the level of diaphanous-related formin-3 and promoted the differentiation of VSMCs to contractile type. In addition, circDiaph3 up-regulated the transcription of Igf1r and supported the proliferation and migration of VSMCs. circDiaph3 could be a molecular target to combat intimal hyperplasia.-Xu, J.-Y., Chang, N.-B., Rong, Z.-H., Li, T., Xiao, L., Yao, Q.-P., Jiang, R., Jiang, J. circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration.
Collapse
Affiliation(s)
- Jia-Ying Xu
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Neng-Bin Chang
- Department of Anatomy, Southwest Medical University, Luzhou, China
| | - Zhi-Hua Rong
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ling Xiao
- Emergency Medical Center of Chongqing, Chongqing, China
| | - Qing-Ping Yao
- School of Life Sciences and Biotechnology, Institute of Mechanobiology and Medical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Dong B, Zhou B, Sun Z, Huang S, Han L, Nie H, Chen G, Liu S, Zhang Y, Bao N, Yang X, Feng H. LncRNA-FENDRR mediates VEGFA to promote the apoptosis of brain microvascular endothelial cells via regulating miR-126 in mice with hypertensive intracerebral hemorrhage. Microcirculation 2018; 25:e12499. [PMID: 30120860 DOI: 10.1111/micc.12499] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/11/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND LncRNA-FENDRR is a kind of endothelial genes critical for vascular development. Moreover, miR-126 and vascular endothelial growth factor A (VEGFA) are also involved in the physiological process of vascular endothelial cells. This study aimed to the underlying mechanism of FENDRR involving miR-126 and VEGFA in hypertensive intracerebral hemorrhage (HICH). METHODS C57BL/6 mice were chosen to establish HICH model. The expression of FENDRR, miR-126, and VEGFA at mRNA level was determined by qRT-PCR. The protein expression of VEGFA was assessed using Western blot. RIP assay and RNA pull-down assay were used to the relationship between FENDRR and miR-126. Flow cytometry was used to analyze cell apoptosis. RESULTS The levels of FENDRR and VEGFA were increased, and miR-126 expression was decreased in vascular endothelial cells (VECs) from the right brain of model mice and human brain microvascular endothelial cells (HBMECs) treated by thrombin. Overexpression of FENDRR promoted the apoptosis of HBMECs. FENDRR regulating VEGFA participated in HBMECs apoptosis through targeting miR-126. Downregulation of FENDRR was indicated to relieve the HICH in mice. CONCLUSIONS FENDRR could promote the apoptosis of HBMECs via miR-126 regulating VEGFA in HICH.
Collapse
Affiliation(s)
- Baizhuo Dong
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Bin Zhou
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Zhigang Sun
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Shengming Huang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Liang Han
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Honghua Nie
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Guohui Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Shibing Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Yanna Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Ning Bao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Xiaolong Yang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| | - Hongwei Feng
- Department of Neurosurgery, The Fourth Affiliated Hospital of Baotou Medical College, Baotou Eighth Hospital, Baotou, China
| |
Collapse
|
32
|
Jiang LY, Jiang YH, Qi YZ, Shao LL, Yang CH. Integrated analysis of long noncoding RNA and mRNA profiling ox-LDL-induced endothelial dysfunction after atorvastatin administration. Medicine (Baltimore) 2018; 97:e10949. [PMID: 29851839 PMCID: PMC6392538 DOI: 10.1097/md.0000000000010949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play a key role in the development of endothelial dysfunction. However, few lncRNAs associated with endothelial dysfunction after atorvastatin administration have been reported. METHODS In the present study, differentially expressed (DE) genes in ox-LDL versus control and ox-LDL + atorvastatin versus control were detected. Bioinformatics analysis and integrated analysis of mRNAs and lncRNAs were conducted to study the mechanisms of endothelial dysfunction after atorvastatin administration and to explore the regulation functions of lncRNAs. RESULTS Here, 532 DE mRNAs and 532 DE lncRNAs were identified (among them, 195 mRNAs and 298 lncRNAs were upregulated, 337 mRNAs and 234 lncRNAs were downregulated) after ox-LDL treatment for 24 hours (fold change ≥2.0, P < .05). After ox-LDL treatment following atorvastatin administration, 750 DE mRNAs and 502 DE lncRNAs were identified (among them, 149 mRNAs and 218 lncRNAs were upregulated and 601 mRNAs and 284 lncRNAs were downregulated). After atorvastatin administration, 167 lncRNAs and 262 mRNAs were still DE. Q-PCR validated the results of microarrays. CONCLUSION Chronic inflammatory response, nitric oxide biosynthetic process, microtubule cytoskeleton, cell proliferation and cell migration are regulated by lncRNAs, which also participated in the mainly molecular function and biological processes underlying endothelial dysfunction. Atorvastatin partly improved endothelial dysfunction, but the aspects beyond recovery were mainly concentrated in cell cycle, mitosis, and metabolism. Further exploration is required to explicit the mechanism by which lncRNAs participate in endothelial dysfunction.
Collapse
Affiliation(s)
- Ling-Yu Jiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Yue-Hua Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Zi Qi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Lin-Lin Shao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine
| | - Chuan-Hua Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
33
|
Zhang Y, Zheng L, Xu BM, Tang WH, Ye ZD, Huang C, Ma X, Zhao JJ, Guo FX, Kang CM, Lu JB, Xiu JC, Li P, Xu YJ, Xiao L, Wu Q, Hu YW, Wang Q. LncRNA-RP11-714G18.1 suppresses vascular cell migration via directly targeting LRP2BP. Immunol Cell Biol 2017; 96:175-189. [PMID: 29363163 DOI: 10.1111/imcb.1028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Yuan Zhang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
- Clinical laboratory department; Guangzhou Women and Children's Medical Center; Guangzhou Medical University; Guangzhou Guangdong 510623 China
| | - Lei Zheng
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Bang-Ming Xu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Wai-Ho Tang
- Clinical laboratory department; Guangzhou Women and Children's Medical Center; Guangzhou Medical University; Guangzhou Guangdong 510623 China
| | - Zhi-Dong Ye
- Department of Cardiovascular Surgery; China- Japan Friendship Hospital; Beijing 100029 China
| | - Chuan Huang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Xin Ma
- Department of Anesthesiology; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jing-Jing Zhao
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Feng-Xia Guo
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Chun-Min Kang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jing-Bo Lu
- Department of Vascular Surgery; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Jian-Cheng Xiu
- Department of Cardiology; Nanfang Hospital; Southern medical University; Guangzhou 510515 China
| | - Pan Li
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Yuan-Jun Xu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Lei Xiao
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Qian Wu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Yan-Wei Hu
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| | - Qian Wang
- Laboratory Medicine Center; Nanfang Hospital; Southern Medical University; Guangzhou Guangdong 510515 China
| |
Collapse
|
34
|
Teng W, Qiu C, He Z, Wang G, Xue Y, Hui X. Linc00152 suppresses apoptosis and promotes migration by sponging miR-4767 in vascular endothelial cells. Oncotarget 2017; 8:85014-85023. [PMID: 29156700 PMCID: PMC5689590 DOI: 10.18632/oncotarget.18777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of vascular endothelial cells (VECs), such as increased apoptosis and diminished migration, is closely connected with most cardiovascular diseases and angiogenesis-related events. LncRNAs have been involved in regulation of many pathological processes, but their roles in vascular endothelial function are hardly underreported. Here, we explore the role of a intergenic lncRNA named linc00152 in the apoptosis and migration of VECs. We found that linc00152 was downregulated in human umbilical vein VECs (HUVECs) in a dose- and time-dependent manner following treatment with oxLDL, which is a typical proinflammatory factor in the initiation and progression of vascular endothelial dysfunction. Gain- and loss-function experiments indicated that linc00152 distinctly inhibited apoptosis and improved migration in oxLDL-treated HUVECs. By sponging miR-4767, linc00152 positively regulated the expression of Bcl2L12 and EGFR proteins. Moreover, blocking miR-4767 rescued the decrease of Bcl2L12 and EGFR caused by linc00152 knockdown, as well as the changes in cell apoptosis and migration. Our findings propose a novel role of linc00152 in the improvement of vascular endothelial function and a potential target for the therapy of some cardiovascular diseases.
Collapse
Affiliation(s)
- Wei Teng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Chunguang Qiu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhaohui He
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Guoliang Wang
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yongliang Xue
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Xuezhi Hui
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
35
|
Zhou T, Chen X. Long intergenic noncoding RNA p21 mediates oxidized LDL‑induced apoptosis and expression of LOX‑1 in human coronary artery endothelial cells. Mol Med Rep 2017; 16:8513-8519. [PMID: 28983628 DOI: 10.3892/mmr.2017.7623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is the most common pathological cause of cardiovascular diseases, and endothelial dysfunction has a vital role. It has been suggested that inhibiting endothelial cell apoptosis induced by oxidized low‑density lipoprotein (ox‑LDL), an essential atherosclerotic factor, is a potential novel therapeutic strategy against atherosclerosis. Previous studies have revealed that endothelial lectin‑like ox‑LDL receptor‑1 (LOX‑1) and long intergenic noncoding RNA p21 (lincRNA‑p21) may serve as therapeutic targets for atherosclerosis and associated cardiovascular disorders. The present study investigated the role of lincRNA‑p21 in oxLDL‑induced apoptosis and expression of LOX‑1 in human coronary artery endothelial cells (HCAECs). Primary HCAECs were treated with ox‑LDL (30, 60 or 90 µg/ml) for 24 or 48 h, and the expression of lincRNA‑p21, LOX‑1 and cell apoptosis rate were measured. Ox‑LDL dose‑ and time‑dependently induced the expression of lincRNA‑p21 and LOX‑1 and apoptosis in HCAECs. Lentiviral overexpression of lincRNA‑p21 markedly increased oxLDL‑induced apoptosis and the expression of LOX‑1 in HCAECs. Additionally, the effect was largely blocked by selective protein kinase C (PKC) inhibitor, rottlerin. However, lentiviral knockdown of lincRNA‑p21 markedly decreased oxLDL‑induced apoptosis and the expression of LOX‑1. In addition, overexpression and knockdown of lincRNA‑p21 markedly increased and decreased oxLDL‑induced PKCδ activity/phosphorylation, respectively. In conclusion, to the best of our knowledge, the present study provides the first evidence indicating that lincRNA‑p21 is a major mediator of oxLDL‑induced apoptosis and expression of LOX‑1 in human vascular endothelial cells, and acts via activation of PKCδ. These results provide insights into the role of lincRNA‑p21 in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Cardiology, The Third Affiliated Hospital, South Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaofang Chen
- Nursing Department, The Third Affiliated Hospital, South Medical University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
36
|
Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 2017; 16:5434-5440. [PMID: 28849133 PMCID: PMC5647088 DOI: 10.3892/mmr.2017.7230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting endothelium, is a process that involves a series of interassociated and mutually interactive pathophysiological processes. It is accepted that microRNAs (miRNAs) regulate endothelial cell behavior, including their involvement in angiogenesis. However, it remains unclear whether miRNAs are involved in the regulation of angiogenesis following cerebral ischemia. Therefore, the present study aimed to investigate the role of miRNAs in angiogenesis and the underlying mechanism following cerebral ischemia. Expression profiles of miRNAs in rat brain samples following middle cerebral artery occlusion (MCAO) were investigated using a miRNA microarray. The expression of candidate miRNA, miR‑195 was further validated using reverse transcription‑quantitative polymerase chain reaction. Then, the effects of miR‑195 on cell migration and tube formation of human umbilical vein vascular endothelial cells (HUVECs) were investigated following miR‑195 silencing, and overexpression. The specific target genes of miR‑195 were predicted using microRNA prediction bioinformatics software (http://www.microrna.org/microrna/home.do), and then confirmed using a dual‑luciferase reporter assay and rescue experiment. It was demonstrated that miR‑195 was significantly downregulated in the brains of rats following MCAO and in hypoxia‑induced HUVECs. Furthermore, it was revealed that miR‑195 overexpression inhibited the invasion ability and tube formation of HUVECs in vitro, while miR‑195 silencing enhanced these functions. In addition, vascular endothelial growth factor A (VEGFA) was identified as a direct target of miR‑195 and was negatively correlated with miR‑195 expression. In addition, the rescue experiment revealed that overexpression of VEGFA reversed the inhibitory effects of miR‑195 overexpression on the invasion ability and tube formation of HUVECs. The present study has provided a novel insight into the promoting roles of miR‑195 downregulation on angiogenesis following cerebral infarction and suggests that the miR‑195/VEGFA signaling pathway is a putative therapeutic target in cerebral ischemia.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| | - Hai-Fang Zhang
- Handan Emergency Rescue Command Center, Handan, Hebei 056002, P.R. China
| | - Jin-Ying Su
- Department of Neurology, The Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056002, P.R. China
| |
Collapse
|
37
|
Yan YY, Wang ZH, Zhao L, Song DD, Qi C, Liu LL, Wang JN. MicroRNA-210 Plays a Critical Role in the Angiogenic Effect of Isoprenaline on Human Umbilical Vein Endothelial Cells via Regulation of Noncoding RNAs. Chin Med J (Engl) 2017; 129:2676-2682. [PMID: 27823999 PMCID: PMC5126158 DOI: 10.4103/0366-6999.193452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: β-adrenoceptors play a crucial regulatory role in blood vessel endothelial cells. Isoprenaline (ISO, a β-adrenergic agonist) has been reported to promote angiogenesis through upregulation of vascular endothelial growth factor (VEGF) expression; however, the underlying mechanism remains to be investigated. It is widely accepted that certain noncoding RNAs, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), can regulate endothelial cell behavior, including their involvement in angiogenesis. Therefore, we aimed to investigate whether noncoding RNAs participate in ISO-mediated angiogenesis using human umbilical vein endothelial cells (HUVECs). Methods: We evaluated VEGF-A messenger RNA (mRNA) and protein levels in ISO-treated HUVECs by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. To establish whether noncoding RNAs are associated with ISO-mediated angiogenesis, we measured expression of the miRNAs miR-210, miR-21, and miR-1, as well as that of the lncRNAs growth arrest-specific transcript 5 (GAS5), maternally expressed 3 (MEG3), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in HUVECs exposed to ISO. Furthermore, to ascertain its importance in ISO-mediated angiogenesis, we constructed the HUVECs with overexpressing miR-210 and detected the subsequent expression of VEGF-A and noncoding RNAs. All statistical analyses were performed using SPSS 16.0 software. Intergroup comparisons were carried out by one-way analysis of variance. Results: VEGF-A mRNA levels were elevated in the ISO group (1.57 ± 0.09) compared to those in the control group (P < 0.01). Moreover, concentrations of VEGF-A in culture supernatants significantly differed between the control (113.00 ± 19.21 pg/ml) and ISO groups (287.00 ± 20.27 pg/ml; P < 0.01). Expression of miR-1, miR-21, and miR-210 was higher (3.89 ± 0.44, 2.87 ± 087, and 3.33 ± 1.31, respectively) in ISO-treated cells than that in controls (P < 0.01), whereas that of GAS5 and MEG3 (0.22 ± 0.10 and 0.58 ± 0.16, respectively) was lower as a result of ISO administration (P < 0.05). There was no significant difference in the expression of MALAT1 between the groups. Interestingly, miR-210 overexpression heightened the levels of VEGF-A and miR-21 (5.87 ± 1.24 and 2.74 ± 1.15, respectively; P < 0.01) and reduced those of GAS5 and MEG3 (0.19 ± 0.01 and 0.09 ± 0.05, respectively; P < 0.01). Conclusions: ISO-mediated angiogenesis was associated with altered expression of miR-210, miR-21, and the lncRNAs GAS5 and MEG3. The effects of miR-210 on the expression of VEGF-A and noncoding RNAs were similar to those of ISO, indicating that it might play an important role in ISO-mediated angiogenesis.
Collapse
Affiliation(s)
- You-You Yan
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zhi-Hui Wang
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Lei Zhao
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Dan-Dan Song
- Department of Clinical Laboratory, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Chao Qi
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Lu-Lu Liu
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jun-Nan Wang
- Department of Cardiology, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
38
|
Smart N. Prospects for improving neovascularization of the ischemic heart: Lessons from development. Microcirculation 2017; 24. [DOI: 10.1111/micc.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Smart
- Department of Physiology, Anatomy & Genetics; University of Oxford; Oxford UK
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function. RECENT FINDINGS ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential. SUMMARY Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions.
Collapse
Affiliation(s)
- Lin Deng
- aBHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow bCentre for Cardiovascular Science, Queen's Medical Research Institute, BHF/University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
40
|
Boulberdaa M, Scott E, Ballantyne M, Garcia R, Descamps B, Angelini GD, Brittan M, Hunter A, McBride M, McClure J, Miano JM, Emanueli C, Mills NL, Mountford JC, Baker AH. A Role for the Long Noncoding RNA SENCR in Commitment and Function of Endothelial Cells. Mol Ther 2016; 24:978-90. [PMID: 26898221 PMCID: PMC4876031 DOI: 10.1038/mt.2016.41] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Despite the increasing importance of long noncoding RNA in physiology and disease, their role in endothelial biology remains poorly understood. Growing evidence has highlighted them to be essential regulators of human embryonic stem cell differentiation. SENCR, a vascular-enriched long noncoding RNA, overlaps the Friend Leukemia Integration virus 1 (FLI1) gene, a regulator of endothelial development. Therefore, we wanted to test the hypothesis that SENCR may contribute to mesodermal and endothelial commitment as well as in endothelial function. We thus developed new differentiation protocols allowing generation of endothelial cells from human embryonic stem cells using both directed and hemogenic routes. The expression of SENCR was markedly regulated during endothelial commitment using both protocols. SENCR did not control the pluripotency of pluripotent cells; however its overexpression significantly potentiated early mesodermal and endothelial commitment. In human umbilical endothelial cell (HUVEC), SENCR induced proliferation, migration, and angiogenesis. SENCR expression was altered in vascular tissue and cells derived from patients with critical limb ischemia and premature coronary artery disease compared to controls. Here, we showed that SENCR contributes to the regulation of endothelial differentiation from pluripotent cells and controls the angiogenic capacity of HUVEC. These data give novel insight into the regulatory processes involved in endothelial development and function.
Collapse
Affiliation(s)
- Mounia Boulberdaa
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Scott
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Margaret Ballantyne
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Raquel Garcia
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Betty Descamps
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mairi Brittan
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Amanda Hunter
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Martin McBride
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - John McClure
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, New York, New York, USA
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Joanne C Mountford
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- Research, Development & Innovation, Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, UK
| | - Andrew H Baker
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
41
|
Cheng L, Ming H, Zhu M, Wen B. Long noncoding RNAs as Organizers of Nuclear Architecture. SCIENCE CHINA-LIFE SCIENCES 2016; 59:236-44. [PMID: 26825945 DOI: 10.1007/s11427-016-5012-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/06/2015] [Indexed: 12/25/2022]
Abstract
In the eukaryotic cell nucleus, chromatin and its associated macromolecules must be organized into a higher-ordered conformation to function normally. However, mechanisms underlying the organization and dynamics of the nucleus remain unclear. Long noncoding RNAs (lncRNAs), i.e., transcripts longer than 200 nucleotides with little or no protein-coding capacity, are increasingly recognized as important regulators in diverse biological processes. Recent studies have shown that some lncRNAs are involved in various aspects of genome organization, including the facilitation of chromosomal interactions and establishment of nuclear bodies, suggesting that lncRNAs act as general organizers of the nuclear architecture. Here, we discuss recent advances in this emerging and intriguing field.
Collapse
Affiliation(s)
- Lu Cheng
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hui Ming
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Minzhe Zhu
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bo Wen
- Department of Biochemistry and Molecular Biology and Key Laboratory of Metabolism and Molecular Medicine of Ministry of Education & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Chen J, Xue Y. Emerging roles of non-coding RNAs in epigenetic regulation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:227-35. [DOI: 10.1007/s11427-016-5010-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 01/17/2023]
|
43
|
Liu J, Liang X, Gan Z. Transcriptional regulatory circuits controlling muscle fiber type switching. SCIENCE CHINA-LIFE SCIENCES 2015; 58:321-7. [DOI: 10.1007/s11427-015-4833-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/17/2014] [Indexed: 12/16/2022]
|
44
|
The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. Int J Hypertens 2015; 2015:896861. [PMID: 25815211 PMCID: PMC4359877 DOI: 10.1155/2015/896861] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/23/2015] [Indexed: 01/13/2023] Open
Abstract
The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R). The deregulation of microRNAs, a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension via the activation of the Ang II/AT1R pathway. MicroRNAs are linked with modulation of the ACE2/Apelin signaling, which exhibits beneficial effects in the cardiovascular system and hypertension. The ACE2-coupled crosstalk among the RAAS, the Apelin system, and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.
Collapse
|