1
|
Chen Y, Sun S, Lu C, Li Y, Fang B, Tang X, Li X, Yu W, Lei Y, Sun L, Zhang M, Sun J, Liu P, Luo Y, Zhao X, Zhan J, Liu L, Liu R, Huang J, Yi Z, Yu Y, Xiao W, Ding Z, Li L, Su D, Ren F, Cao C, Wang R, Shi W, Chen J. The RNA Binding Protein Bcas2 is Required for Antibody Class Switch in Activated‐B Cells. EXPLORATION 2025. [DOI: 10.1002/exp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 03/18/2025]
Abstract
ABSTRACTIn children, hyper‐IgM syndrome type 1 (HIGM1) is a type of severe antibody disorder, the pathogenesis of which remains unclear. The antibody diversity is partially determined by the alternative splicing (AS) in the germline, which is mainly regulated by RNA‐binding proteins, including Breast cancer amplified sequence 2 (Bcas2). However, the effect of Bcas2 on AS and antibody production in activated B cells, the main immune cell type in the germline, remains unknown. To fill this gap, we created a conditional knockout (cKO, B cell‐specific AID‐Cre Bcas2fl/fl) mouse model and performed integrated mechanistic analysis on alternative splicing (AS) and CSR in B cells through the RNA‐sequencing approach, cross‐linking immunoprecipitation and sequencing (CLIP‐seq) analysis, and interactome proteomics. The results demonstrate that Bcas2‐cKO significantly decreased CSR in activated B cells without inhibiting the B cell development. Mechanistically, Bcas2 interacts with SRSF7 at a conservative circular domain, forming a complex to regulate the AS of genes involved in the post‐switch transcription, thereby causing broad‐spectrum changes in antibody production. Importantly, we identified GAAGAA as the binding motif of Bcas2 to RNAs and revealed its essential role in the regulation of Bcas2‐dependent AS and CSR. In addition, we detected a mutation of at the 3’UTR of Bcas2 gene in children with HIGM1 and observed similar patterns of AS events and CSR in the patient that were discovered in the Bcas2‐cKO B cells. Combined, our study elucidates the mechanism by which Bcas2‐mediated AS affects CSR, offering potential insights into the clinical implications of Bcas2 in HIGM1.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Chenxu Lu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xiangfeng Tang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology Beijing Key Laboratory of Pediatric Organ Failure Department of Pediatrics The Seventh Medical Center of PLA General Hospital Beijing China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Liaoning China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences China Agricultural University Beijing China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ziwei Yi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Weihan Xiao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Dan Su
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| |
Collapse
|
2
|
Sheikh-Hamad D. Novel epigenetic cross-talk down-regulates kidney fibrosis after injury. Mol Ther 2025; 33:14-15. [PMID: 39724909 PMCID: PMC11764859 DOI: 10.1016/j.ymthe.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Zolfaghari Dehkharghani M, Mousavi S, Kianifard N, Fazlzadeh A, Parsa H, Tavakoli Pirzaman A, Fazlollahpour-Naghibi A. Importance of long non-coding RNAs in the pathogenesis, diagnosis, and treatment of myocardial infarction. IJC HEART & VASCULATURE 2024; 55:101529. [PMID: 39498345 PMCID: PMC11532444 DOI: 10.1016/j.ijcha.2024.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Myocardial infarction (MI), a major global cause of mortality and morbidity, continues to pose a significant burden on public health. Despite advances in understanding its pathogenesis, there remains a need to elucidate the intricate molecular mechanisms underlying MI progression. Long non-coding RNAs (lncRNAs) have emerged as key regulators in diverse biological processes, yet their specific roles in MI pathophysiology remain elusive. Conducting a thorough review of literature using PubMed and Google Scholar databases, we investigated the involvement of lncRNAs in MI, focusing on their regulatory functions and downstream signaling pathways. Our analysis revealed extensive dysregulation of lncRNAs in MI, impacting various biological processes through diverse mechanisms. Notably, lncRNAs act as crucial modulators of gene expression and signaling cascades, functioning as decoys, regulators, and scaffolds. Furthermore, studies identified the multifaceted roles of lncRNAs in modulating inflammation, apoptosis, autophagy, necrosis, fibrosis, remodeling, and ischemia-reperfusion injury during MI progression. Recent research highlights the pivotal contribution of lncRNAs to MI pathogenesis, offering novel insights into potential therapeutic interventions. Moreover, the identification of circulating lncRNA signatures holds promise for the development of non-invasive diagnostic biomarkers. In summary, findings underscore the significance of lncRNAs in MI pathophysiology, emphasizing their potential as therapeutic targets and diagnostic tools for improved patient management and outcomes.
Collapse
Affiliation(s)
| | - Safa Mousavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Kianifard
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Fazlzadeh
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Parsa
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
4
|
Łuszczki E, Wyszyńska J, Dymek A, Drożdż D, González-Ramos L, Hartgring I, García-Carbonell N, Mazur A, Erdine S, Parnarauskienė J, Alvarez-Pitti J. The Effect of Maternal Diet and Lifestyle on the Risk of Childhood Obesity. Metabolites 2024; 14:655. [PMID: 39728436 DOI: 10.3390/metabo14120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Childhood obesity is a global health problem that affects at least 41 million children under the age of five. Increased BMI in children is associated with serious long-term health consequences, such as type 2 diabetes, cardiovascular disease, and psychological problems, including depression and low self-esteem. Although the etiology of obesity is complex, research suggests that the diet and lifestyle of pregnant women play a key role in shaping metabolic and epigenetic changes that can increase the risk of obesity in their children. Excessive gestational weight gain, unhealthy dietary patterns (including the Western diet), and pregnancy complications (such as gestational diabetes) are some of the modifiable factors that contribute to childhood obesity. The purpose of this narrative review is to summarize the most important and recent information on the impact of the diet and lifestyle of pregnant women on the risk of childhood obesity. Methods: This article is a narrative review that aims to summarize the available literature on the impact of pregnant women's diet and lifestyle on the risk of obesity in their offspring, with a focus on metabolic and epigenetic mechanisms. Results/Conclusions: Current evidence suggests that a pregnant woman's lifestyle and diet can significantly contribute to lowering the risk of obesity in their offspring. However, further high-quality research is needed to understand better the metabolic and epigenetic relationships concerning maternal factors that predispose offspring to obesity.
Collapse
Affiliation(s)
- Edyta Łuszczki
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Justyna Wyszyńska
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Dymek
- Institute of Health Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Pediatric Institute, Jagiellonian University Medical College, 31-007 Krakow, Poland
| | - Laura González-Ramos
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Isa Hartgring
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
| | - Nuria García-Carbonell
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
| | - Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Serap Erdine
- Cerrahpasa Faculty of Medicine, Department of Cardiology, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| | - Justė Parnarauskienė
- Pediatric Department, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Julio Alvarez-Pitti
- Innovation in Paediatrics and Technologies-iPEDITEC- Research Group, Fundación de Investigación, Consorcio Hospital General, University of Valencia, 46010 Valencia, Spain
- Pediatric Department, Consorcio Hospital General, University of Valencia, 46014 Valencia, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
6
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
7
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
8
|
Shenoy US, Adiga D, Gadicherla S, Kabekkodu SP, Hunter KD, Radhakrishnan R. HOX cluster-embedded lncRNAs and epithelial-mesenchymal transition in cancer: Molecular mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188840. [PMID: 36403923 DOI: 10.1016/j.bbcan.2022.188840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Srikanth Gadicherla
- Deparment of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India; Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Liu S, Fan M, Ma MD, Ge JF, Chen FH. Long non-coding RNAs: Potential therapeutic targets for epilepsy. Front Neurosci 2022; 16:986874. [PMID: 36278003 PMCID: PMC9582525 DOI: 10.3389/fnins.2022.986874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common and disastrous neurological disorder characterized by abnormal firing of neurons in the brain, affecting about 70 million people worldwide. Long non-coding RNAs (LncRNAs) are a class of RNAs longer than 200 nucleotides without the capacity of protein coding, but they participate in a wide variety of pathophysiological processes. Alternated abundance and diversity of LncRNAs have been found in epilepsy patients and animal or cell models, suggesting a potential role of LncRNAs in epileptogenesis. This review will introduce the structure and function of LncRNAs, summarize the role of LncRNAs in the pathogenesis of epilepsy, especially its linkage with neuroinflammation, apoptosis, and transmitter balance, which will throw light on the molecular mechanism of epileptogenesis, and accelerate the clinical implementation of LncRNAs as a potential therapeutic target for treatment of epilepsy.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Meng-Die Ma
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- *Correspondence: Jin-Fang Ge,
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Hefei, China
- Fei-Hu Chen,
| |
Collapse
|
10
|
Yu B, Liu J, Zhang J, Mu T, Feng X, Ma R, Gu Y. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Front Cell Dev Biol 2022; 10:929183. [PMID: 35990615 PMCID: PMC9389409 DOI: 10.3389/fcell.2022.929183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 01/07/2023] Open
Abstract
Functional cells in embryonic myogenesis and postnatal muscle development undergo multiple stages of proliferation and differentiation, which are strict procedural regulation processes. N6-methyladenosine (m6A) is the most abundant RNA modification that regulates gene expression in specific cell types in eukaryotes and regulates various biological activities, such as RNA processing and metabolism. Recent studies have shown that m6A modification-mediated transcriptional and post-transcriptional regulation plays an essential role in myogenesis. This review outlines embryonic and postnatal myogenic differentiation and summarizes the important roles played by functional cells in each developmental period. Furthermore, the key roles of m6A modifications and their regulators in myogenesis were highlighted, and the synergistic regulation of m6A modifications with myogenic transcription factors was emphasized to characterize the cascade of transcriptional and post-transcriptional regulation during myogenesis. This review also discusses the crosstalk between m6A modifications and non-coding RNAs, proposing a novel mechanism for post-transcriptional regulation during skeletal muscle development. In summary, the transcriptional and post-transcriptional regulatory mechanisms mediated by m6A and their regulators may help develop new strategies to maintain muscle homeostasis, which are expected to become targets for animal muscle-specific trait breeding and treatment of muscle metabolic diseases.
Collapse
|
11
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
12
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
13
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
15
|
Yang Q, Guo J, Ren Z, Li B, Huang H, Yang Z. LncRNA NONHSAT030515 promotes the chondrogenic differentiation of human adipose-derived stem cells via regulating the miR-490-5p/BMPR2 axis. J Orthop Surg Res 2021; 16:658. [PMID: 34742321 PMCID: PMC8571896 DOI: 10.1186/s13018-021-02757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chondrogenic differentiation of human adipose-derived stem cells (hADSCs) is important for cartilage generation and degradation. LncRNAs play an essential role in stem cell differentiation. However, the role and mechanism of lncRNA in hADSCs remain unclear. Our previous study showed that miR-490-5p was downregulated during chondrogenic differentiation of hADSCs. In this study, we investigated the effect and mechanism of lncRNA NONHSAT030515 interacting with miR-490-5p on chondrogenic differentiation of hADSCs. METHODS Alcian blue staining was used to assess the deposition of chondromatrix proteins following chondrogenic differentiation of human adipose stem cells. Immunohistochemistry was used to evaluate the expression of collagenII. TargetScan, miRTarBase and miRDB database analyses were applied to find the miRNA and target genes of lncRNA NONHSAT030515. A dual luciferase experiment was conducted to identify the direct target of NONHSAT030515. pcDNA3.1- NONHSAT030515 transfection and sh- NONHSAT030515 treatment were conducted to verify the role of lncRNA NONHSAT030515 in chondrogenic differentiation. The levels of Aggrecan, SOX9 and COL2A1 were analyzed by qRT-PCR and Western blot assay. RESULTS Alcian blue staining, immunocytochemical, qRT-PCR, and Western blot have determined that lncRNA NONHSAT030515 can promote the chondrogenic differentiation of hADSCs. MiR-490- 5p was the direct target of NONHSAT030515, while BMPR2 was the target gene. This result was confirmed by luciferase reporter assay. Up-regulation of NONHSAT030515 promoted BMPR2 protein expression and promoted chondrogenic differentiation, whereas down-regulation of NONHSAT030515 caused completely opposite results. CONCLUSION LncRNA NONHSAT030515 promotes the chondrogenic differentiation of hADSCs through increasing BMPR2 expression by regulating miR-490- 5p.
Collapse
Affiliation(s)
- Qinqin Yang
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Zhijing Ren
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
16
|
Brocato E, Wolstenholme JT. Neuroepigenetic consequences of adolescent ethanol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:45-84. [PMID: 34696879 DOI: 10.1016/bs.irn.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical developmental period characterized by ongoing brain maturation processes including myelination and synaptic pruning. Adolescents experience heightened reward sensitivity, sensation seeking, impulsivity, and diminished inhibitory self-control, which contribute to increased participation in risky behaviors, including the initiation of alcohol use. Ethanol exposure in adolescence alters memory and cognition, anxiety-like behavior, and ethanol sensitivity as well as brain myelination and dendritic spine morphology, with effects lasting into adulthood. Emerging evidence suggests that epigenetic modifications may explain these lasting effects. Focusing on the amygdala, prefrontal cortex and hippocampus, we review studies investigating the epigenetic consequences of adolescent ethanol exposure. Ethanol metabolism globally increases donor substrates for histone acetylation and histone and DNA methylation, and this chapter discusses how this can further impact epigenetic programming of the adolescent brain. Elucidation of the mechanisms through which ethanol can alter the epigenetic code at specific transcripts may provide therapeutic targets for intervention.
Collapse
Affiliation(s)
- Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
17
|
Li M, Bai M, Wu Y, Shao W, Zheng L, Sun L, Wang S, Yu C, Huang Y. AGTAR: A novel approach for transcriptome assembly and abundance estimation using an adapted genetic algorithm from RNA-seq data. Comput Biol Med 2021; 135:104646. [PMID: 34274894 DOI: 10.1016/j.compbiomed.2021.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recently, the rapid development of RNA-seq technologies has accelerated transcriptomics research. The accurate identification and quantification of transcripts based on RNA-seq data will facilitate the exploration of various potential biological mechanisms. However, due to the limitations of the current data analysis tools and RNA-seq technologies, full and accurate reconstruction of the transcriptome still faces many challenges. RESULTS We developed the adapted genetic algorithm (AGTAR) program, which can reliably assemble transcriptomes and estimate abundance based on RNA-seq data with or without genome annotation files. We defined a new concept, isoform junction abundance, to help enhance the accuracy of isoform identification and quantification. Isoform abundance and isoform junction abundance are estimated by an adapted genetic algorithm. The crossover and mutation probabilities of the algorithm can be adaptively adjusted to effectively prevent premature convergence. Both simulated and real data indicated that AGTAR's comprehensive ability to assemble transcripts is significantly superior to that achievable by the currently widely used tools with similar functions. CONCLUSIONS AGTAR is a tool for identifying and quantifying transcripts from RNA-seq data. It has the advantages of higher accuracy and ease of use. The AGTAR package is freely available at https://github.com/v4yuezi/AGTAR.git.
Collapse
Affiliation(s)
- Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Wenjun Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
18
|
Global in situ profiling of RNA-RNA spatial interactions with RIC-seq. Nat Protoc 2021; 16:2916-2946. [PMID: 34021296 DOI: 10.1038/s41596-021-00524-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/18/2021] [Indexed: 02/04/2023]
Abstract
Emerging evidence has demonstrated that RNA-RNA interactions are vital in controlling diverse biological processes, including transcription, RNA splicing and protein translation. RNA in situ conformation sequencing (RIC-seq) is a technique for capturing protein-mediated RNA-RNA proximal interactions globally in living cells at single-base resolution. Cells are first treated with formaldehyde to fix all the protein-mediated RNA-RNA interactions in situ. After cell permeabilization and micrococcal nuclease digestion, the proximally interacting RNAs are 3' end-labeled with pCp-biotin and subsequently ligated using T4 RNA ligase. The chimeric RNAs are then enriched and converted into libraries for paired-end sequencing. After deep sequencing, computational analysis yields interaction strength scores for every base on proximally interacting RNAs in the starting populations. The whole experimental procedure is designed to be completed within 6 d, followed by an additional 8 d for computational analysis. RIC-seq technology can unbiasedly detect intra- and intermolecular RNA-RNA interactions, thereby rendering it useful for reconstructing RNA higher-order structures and identifying direct noncoding RNA targets.
Collapse
|
19
|
Long non-coding RNA H19: Physiological functions and involvements in central nervous system disorders. Neurochem Int 2021; 148:105072. [PMID: 34058282 DOI: 10.1016/j.neuint.2021.105072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Abstract
Central nervous system (CNS) disorders are some of the most complex and challenging diseases because of the intricate structure and functions of the CNS. Long non-coding RNA (LncRNA) H19, which had been mistaken for "transcription noise" previously, has now been found to be closely related to the development and homeostasis of the CNS. Several recent studies indicate that it plays an important role in the pathogenesis, treatment, and even prognosis of CNS disorders. LncRNA H19 is correlated with susceptibility to various CNS disorders such as intracranial aneurysms, ischemic stroke, glioma, and neuroblastoma. Moreover, it participates in the pathogenesis of CNS disorders by regulating transcription, translation, and signaling pathways, suggesting that it is a promising biomarker and therapeutic target for these disorders. This article reviews the functions and mechanisms of lncRNA H19 in various CNS disorders, including cerebral ischemia, cerebral hemorrhage, glioma, pituitary adenoma, neuroblastoma, Parkinson's disease, Alzheimer's disease, traumatic spinal cord injury, neuropathic pain, and temporal lobe epilepsy, to provide a theoretical basis for further research on the role of lncRNA H19 in CNS disorders.
Collapse
|
20
|
Okechukwu C. Targeting epigenetic alterations in the treatment of glioma. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. ACTA ACUST UNITED AC 2020; 42:536-551. [PMID: 32267339 PMCID: PMC7524405 DOI: 10.1590/1516-4446-2019-0732] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by changes in mood that alternate between mania and hypomania or between depression and mixed states, often associated with functional impairment. Although effective pharmacological and non-pharmacological treatments are available, several patients with BD remain symptomatic. The advance in the understanding of the neurobiology underlying BD could help in the identification of new therapeutic targets as well as biomarkers for early detection, prognosis, and response to treatment in BD. In this review, we discuss genetic, epigenetic, molecular, physiological and neuroimaging findings associated with the neurobiology of BD. Despite the advances in the pathophysiological knowledge of BD, the diagnosis and management of the disease are still essentially clinical. Given the complexity of the brain and the close relationship between environmental exposure and brain function, initiatives that incorporate genetic, epigenetic, molecular, physiological, clinical, environmental data, and brain imaging are necessary to produce information that can be translated into prevention and better outcomes for patients with BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandre P Diaz
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA
| | - Camila N Lima
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| |
Collapse
|
22
|
Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease. Curr Dev Nutr 2020; 4:nzaa166. [PMID: 33294766 PMCID: PMC7703391 DOI: 10.1093/cdn/nzaa166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) is one of the major debilitating birth defects resulting in significant impact on neonatal and child mortality globally. The etiology of CHD is complex and multifactorial. Many causative genes responsible for CHDs have been identified from the familial forms previously. Still, the non-Mendelian inheritance and predominant sporadic cases have stimulated research to understand the epigenetic basis and environmental impact on the incidence of CHD. The fetal epigenetic programming affecting cardiac development is susceptible to the availability of key dietary factors during the crucial periconceptional period. This article highlights the need and importance of in-depth research in the new emerging area of maternal nutritional epigenetics and CHD. It summarizes the current research and underlines the limitations in these types of studies. This review will benefit the future research on nutrition as a modifiable environmental factor to decrease the incidence of CHD.
Collapse
Affiliation(s)
- Radha O Joshi
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| | - Subramanian Chellappan
- Department of Anesthesia, Sri Sathya Sai Sanjeevani International Centre for Child Heart Care and Research, Palwal, Haryana, India
| | - Prachi Kukshal
- Department of Genomics Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India
| |
Collapse
|
23
|
Tang H, Wang Z, Shao Q, Wang Y, Yang Q. Comprehensive Analysis of Competing Endogenous RNA (ceRNA) Network Based on RNAs Differentially Expressed in Lung Adenocarcinoma Using The Cancer Genome Atlas (TCGA) Database. Med Sci Monit 2020; 26:e922676. [PMID: 32533823 PMCID: PMC7314420 DOI: 10.12659/msm.922676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to explore a comprehensive analysis of the competing endogenous (ceRNA) network of lung adenocarcinoma and predict its regulatory mechanism and prognosis correlation based on The Cancer Genome Atlas (TCGA) database. Material/Methods The genes expression data from 535 lung adenocarcinoma cases and 59 normal tissue cases were acquired and downloaded from TCGA database, and differentially expressed messenger RNA (mRNA), long noncoding RNA (lncRNA) and microRNA (miRNA) were selected primarily by “edgeR” package in R software, which further constructs lncRNA-miRNA-mRNA ceRNA network. We then proceed to carry out Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Kaplan-Meier survival analysis of the mRNAs involved in the ceRNA network. Results There are 3 mRNAs (ANLN, IGFBP1, and TFAP2A) in differentially expressed genes, 4 lncRNAs (AC015923.1, FGF12-AS2, LINC00211, and MED4-AS1), and 2 miRNAs (miR-31 and miR-490) associated with the prognostic of lung adenocarcinoma. Besides, LINC00461 and has-mir-139 as key nodes were found in the ceRNA network. Significantly, miR-31 shows the greatest prognostic value related to the adverse effect of the prognostic of lung adenocarcinoma (P<0.001). Conclusions By analyzing the expression data of lung adenocarcinoma in TCGA database, we found that 3 mRNAs, 4 lncRNAs, and 2 miRNAs were screened as potential prognostic factors for lung adenocarcinoma. In addition, LINC00461 and has-mir-139 are 2 important regulatory network nodes in lung adenocarcinoma ceRNA.
Collapse
Affiliation(s)
- Huaihui Tang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | | | - Qianqian Shao
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Yue Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Qingshan Yang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
24
|
Opposite regulation of piRNAs, rRNAs and miRNAs in the blood after subarachnoid hemorrhage. J Mol Med (Berl) 2020; 98:887-896. [PMID: 32424559 PMCID: PMC7297814 DOI: 10.1007/s00109-020-01922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 10/28/2022]
Abstract
Multiple classes of small RNAs (sRNAs) are expressed in the blood and are involved in the regulation of pivotal cellular processes. We aimed to elucidate the expression patterns and functional roles of sRNAs in the systemic response to intracranial aneurysm (IA) rupture. We used next-generation sequencing to analyze the expression of sRNAs in patients in the acute phase of IA rupture (first 72 h), in the chronic phase (3-15 months), and controls. The patterns of alterations in sRNA expression were analyzed in the context of clinically relevant information regarding the biological consequences of IA rupture. We identified 542 differentially expressed sRNAs (108 piRNAs, 99 rRNAs, 90 miRNAs, 43 scRNAs, 36 tRNAs, and 32 snoRNAs) among the studied groups with notable differences in upregulated and downregulated sRNAs between the groups and sRNAs categories. piRNAs and rRNAs showed a substantial decrease in RNA abundance that was sustained after IA rupture, whereas miRNAs were largely upregulated. Downregulated sRNA genes included piR-31080, piR-57947, 5S rRNA, LSU-rRNA, and SSU-rRNA s. Remarkable enrichment in the representation of transcription factor binding sites was revealed in genomic locations of the regulated sRNA. We found strong overrepresentation of glucocorticoid receptor, retinoid x receptor alpha, and estrogen receptor alpha binding sites at the locations of downregulated piRNAs, tRNAs, and rRNAs. This report, although preliminary and largely proof-of-concept, is the first to describe alterations in sRNAs abundance levels in response to IA rupture in humans. The obtained results indicate novel mechanisms that may constitute another level of control of the inflammatory response. KEY MESSAGES: A total of 542 sRNAs were differentially expressed after aneurysmal SAH comparing with controls piRNAs and rRNAs were upregulated and miRNAs were downregulated after IA rupture The regulated sRNA showed an enrichment in the representation of some transcription factor binding sites piRNAs, tRNAs, and rRNAs showed an overrepresentation for GR, RXRA, and ERALPHA binding sites.
Collapse
|
25
|
Xue Y, Chen R, Qu L, Cao X. Noncoding RNA: from dark matter to bright star. SCIENCE CHINA. LIFE SCIENCES 2020; 63:463-468. [PMID: 32189240 DOI: 10.1007/s11427-020-1676-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Roy S, Kumar V, Bossier P, Norouzitallab P, Vanrompay D. Phloroglucinol Treatment Induces Transgenerational Epigenetic Inherited Resistance Against Vibrio Infections and Thermal Stress in a Brine Shrimp ( Artemia franciscana) Model. Front Immunol 2019; 10:2745. [PMID: 31827471 PMCID: PMC6890837 DOI: 10.3389/fimmu.2019.02745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/08/2019] [Indexed: 01/05/2023] Open
Abstract
Emerging, infectious diseases in shrimp like acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus and mortality caused by other Vibrio species such as Vibrio harveyi are worldwide related to huge economic losses in industrial shrimp production. As a strategy to prevent disease outbreaks, a plant-based phenolic compound could be used as a biocontrol agent. Here, using the brine shrimp (Artemia franciscana) as a model system, we showed that phloroglucinol treatment of the parental animals at early life stages resulted in transgenerational inherited increased resistance in their progeny against biotic stress, i.e., bacteria (V. parahaemolyticus AHPND strain and V. harveyi) and abiotic stress, i.e., lethal heat shock. Increased resistance was recorded in three subsequent generations. Innate immune-related gene expression profiles and potential epigenetic mechanisms were studied to discover the underlying protective mechanisms. Our results showed that phloroglucinol treatment of the brine shrimp parents significantly (P < 0.05) enhanced the expression of a core set of innate immune genes (DSCAM, proPO, PXN, HSP90, HSP70, and LGBP) in subsequent generations. We also demonstrated that epigenetic mechanisms such as DNA methylation, m6A RNA methylation, and histone acetylation and methylation (active chromatin marker i.e., H3K4Me3, H3K4me1, H3K27me1, H3 hyperacetylation, H3K14ac and repression marker, i.e., H3K27me3, H4 hypoacetylation) might play a role in regulation of gene expression leading toward the observed transgenerational inheritance of the resistant brine shrimp progenies. To our knowledge, this is the first report on transgenerational inheritance of a compound-induced robust protected phenotype in brine shrimp, particularly protected against AHPND caused by V. parahaemolyticus and vibriosis caused by V. harveyi. Results showed that epigenetic reprogramming is likely to play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Suvra Roy
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Vikash Kumar
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, India
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Parisa Norouzitallab
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
28
|
Nahalka J. The role of the protein-RNA recognition code in neurodegeneration. Cell Mol Life Sci 2019; 76:2043-2058. [PMID: 30980111 PMCID: PMC11105320 DOI: 10.1007/s00018-019-03096-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small endogenous RNAs that pair and bind to sites on mRNAs to direct post-transcriptional repression. However, there is a possibility that microRNAs directly influence protein structure and activity, and this influence can be termed post-translational riboregulation. This conceptual review explores the literature on neurodegenerative disorders. Research on the association between neurodegeneration and RNA-repeat toxicity provides data that support a protein-RNA recognition code. For example, this code explains why hnRNP H and SFPQ proteins, which are involved in amyotrophic lateral sclerosis, are sequestered by the (GGGGCC)n repeat sequence. Similarly, it explains why MNBL proteins and (CTG)n repeats in RNA, which are involved in myotonic dystrophy, are sequestered into RNA foci. Using this code, proteins involved in diseases can be identified. A simple protein BLAST search of the human genome for amino acid repeats that correspond to the nucleotide repeats reveals new proteins among already known proteins that are involved in diseases. For example, the (CAG)n repeat sequence, when transcribed into possible peptide sequences, leads to the identification of PTCD3, Rem2, MESP2, SYPL2, WDR33, COL23A1, and others. After confirming this approach on RNA repeats, in the next step, the code was used in the opposite manner. Proteins that are involved in diseases were compared with microRNAs involved in those diseases. For example, a reasonable correspondence of microRNA 9 and 107 with amyloid-β-peptide (Aβ42) was identified. In the last step, a miRBase search for micro-nucleotides, obtained by transcription of a prion amino acid sequence, revealed new microRNAs and microRNAs that have previously been identified as involved in prion diseases. This concept provides a useful key for designing RNA or peptide probes.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska cesta 9, 84538, Bratislava, Slovak Republic.
- Institute of Chemistry, Centre of Excellence for White-green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, 94976, Nitra, Slovak Republic.
| |
Collapse
|
29
|
Ji X, Tong W, Ning B, Mason CE, Kreil DP, Labaj PP, Chen G, Shi T. QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm. SCIENCE CHINA-LIFE SCIENCES 2019; 62:937-946. [DOI: 10.1007/s11427-018-9433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022]
|
30
|
Deng X, Qiu Q, He K, Cao X. The seekers: how epigenetic modifying enzymes find their hidden genomic targets in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:75-81. [PMID: 29864678 DOI: 10.1016/j.pbi.2018.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 05/23/2023]
Abstract
Epigenetic regulation plays fundamental roles in modulating chromatin-based processes and shaping the epigenome in multicellular eukaryotes, including plants. How epigenetic factors recognize their target loci hiding in the vast genomic DNA sequence remains a long-standing mystery. During the past several years, a growing body of work has revealed the complex, dynamic, and diverse chromatin-targeting mechanisms of these epigenetic factors. In this review, we focus on recent advances in understanding the recruitment of epigenetic factors to specific genomic regions, based on data from Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Qiu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaixuan He
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, Hu X, Wang L, Su R, Wang D, Wang L, Yao Y, Ye R, Hou B, Yu Y, Yu S, Li J, Xue Y. The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res 2018; 28:981-995. [PMID: 30143796 PMCID: PMC6170407 DOI: 10.1038/s41422-018-0076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) mediates class switching by binding to a small fraction of single-stranded DNA (ssDNA) to diversify the antibody repertoire. The precise mechanism for highly selective AID targeting in the genome has remained elusive. Here, we report an RNA-binding protein, ROD1 (also known as PTBP3), that is both required and sufficient to define AID-binding sites genome-wide in activated B cells. ROD1 interacts with AID via an ultraconserved loop, which proves to be critical for the recruitment of AID to ssDNA using bi-directionally transcribed nascent RNAs as stepping stones. Strikingly, AID-specific mutations identified in human patients with hyper-IgM syndrome type 2 (HIGM2) completely disrupt the AID interacting surface with ROD1, thereby abolishing the recruitment of AID to immunoglobulin (Ig) loci. Together, our results suggest that bi-directionally transcribed RNA traps the RNA-binding protein ROD1, which serves as a guiding system for AID to load onto specific genomic loci to induce DNA rearrangement during immune responses.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Meizhu Bai
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Xiaohua Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xihao Hu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,College of Life Sciences, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, 464000, Xinyang, China
| | - Ruibao Su
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Rong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Yu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, 201210, Shanghai, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
32
|
Hon KW, Abu N, Ab Mutalib NS, Jamal R. miRNAs and lncRNAs as Predictive Biomarkers of Response to FOLFOX Therapy in Colorectal Cancer. Front Pharmacol 2018; 9:846. [PMID: 30127741 PMCID: PMC6088237 DOI: 10.3389/fphar.2018.00846] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is one of the options for cancer treatment. FOLFOX is one of the widely used chemotherapeutic regimens used to treat primarily colorectal cancer and other cancers as well. However, the emergence of chemo-resistance clones during cancer treatment has become a critical challenge in the clinical setting. It is crucial to identify the potential biomarkers and therapeutics targets which could lead to an improvement in the success rate of the proposed therapies. Since non-coding RNAs have been known to be important players in the cellular system, the interest in their functional roles has intensified. Non-coding RNAs (ncRNAs) as regulators at the post-transcriptional level could be very promising to provide insights in overcoming chemo-resistance to FOLFOX. Hence, this mini review attempts to summarize the potential of ncRNAs correlating with chemo-sensitivity/resistance to FOLFOX.
Collapse
Affiliation(s)
- Kha Wai Hon
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Fries GR, Carvalho AF, Quevedo J. The miRNome of bipolar disorder. J Affect Disord 2018; 233:110-116. [PMID: 28969861 DOI: 10.1016/j.jad.2017.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Epigenetic mechanisms have been suggested to play a key role in the pathophysiology of bipolar disorder (BD), among which microRNAs (miRNAs) may be of particular significance according to recent studies. We aimed to summarize miRNA studies in BD to identify consistent findings, limitations, and future directions of this emerging field. METHODS We performed a comprehensive search on PUBMED and Medline for studies investigating an association between BD and miRNAs. The included studies report miRNA alterations in postmortem brain tissues and in the periphery, cell culture and preclinical findings, genetic associations, and the effects of medications. RESULTS Several studies report changes in miRNA expression levels in postmortem brain and in the periphery of patients, although most of the results so far have not been replicated and are not concordant between different populations. Genetic studies also suggest that miRNA genes are located within susceptibility loci of BD, and also a putative role of miRNAs in modulating genes previously shown to confer risk of BD. LIMITATIONS We did not perform a systematic review of the literature, and miRNAs represent only one facet of the plethora of epigenetic mechanisms that might be involved in BD's pathophysiology. CONCLUSIONS miRNA findings in BD significantly vary between studies, but are consistent to suggest a key role for these molecules in BD's pathophysiology and treatment, particularly miR-34a and miR-137. Accordingly, miRNA might represent important biomarkers of illness to be used in the clinical settings, and potentially also for the development of novel therapeutics for BD in the near future.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, USA.
| | - Andre F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
34
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
35
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Caldwell KK, Hafez A, Solomon E, Cunningham M, Allan AM. Arsenic exposure during embryonic development alters the expression of the long noncoding RNA growth arrest specific-5 (Gas5) in a sex-dependent manner. Neurotoxicol Teratol 2017; 66:102-112. [PMID: 29132937 DOI: 10.1016/j.ntt.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
Our previous studies suggest that prenatal arsenic exposure (50ppb) modifies epigenetic control of the programming of the glucocorticoid receptor (GR) signaling system in the developing mouse brain. These deficits may lead to long-lasting consequences, including deficits in learning and memory, increased depressive-like behaviors, and an altered set-point of GR feedback throughout life. To understand the arsenic-induced changes within the GR system, we assessed the impact of in utero arsenic exposure on the levels of the GR and growth arrest-specific-5 (Gas5), a noncoding RNA, across a key gestational period for GR programming (gestational days, GD 14-18) in mice. Gas5 contains a glucocorticoid response element (GRE)-like sequence that binds the GR, thereby decreasing GR-GRE-dependent gene transcription and potentially altering GR programming. Prenatal arsenic exposure resulted in sex-dependent and age-dependent shifts in the levels of GR and Gas5 expression in fetal telencephalon. Nuclear GR levels were reduced in males, but unchanged in females, at all gestational time points tested. Total cellular Gas5 levels were lower in arsenic-exposed males with no changes seen in arsenic-exposed females at GD16 and 18. An increase in total cellular Gas-5 along with increased nuclear levels in GD14 arsenic-exposed females, suggests a differential regulation of cellular compartmentalization of Gas5. RIP assays revealed reduced Gas5 associated with the GR on GD14 in the nuclear fraction prepared from arsenic-exposed males and females. This decrease in levels of GR-Gas5 binding continued only in the females at GD18. Thus, nuclear GR signaling potential is decreased in prenatal arsenic-exposed males, while it is increased or maintained at levels approaching normal in prenatal arsenic-exposed females. These findings suggest that females, but not males, exposed to arsenic are able to regulate the levels of nuclear free GR by altering Gas5 levels, thereby keeping GR nuclear signaling closer to control (unexposed) levels.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexander Hafez
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Elizabeth Solomon
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Matthew Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
37
|
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature, especially in a variety of food commodities. It is confirmed to be the most toxic of all the aflatoxins. The toxicity of AFB1 has been well investigated, and it may result in severe health problems including carcinogenesis, mutagenesis, growth retardation, and immune suppression. Epigenetic modifications including DNA methylation, histone modifications and regulation of non-coding RNA play an important role in AFB1-induced disease and carcinogenesis. To better understand the evidence for AFB1-induced epigenetic alterations and the potential mechanisms of the toxicity of AFB1, we conducted a review of published studies of AFB1-induced epigenetic alterations.
Collapse
Affiliation(s)
- Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China.
| |
Collapse
|
38
|
Wu M, Wei W, Chen J, Cong R, Shi T, Bouvet P, Li J, Wong J, Du JX. Acidic domains differentially read histone H3 lysine 4 methylation status and are widely present in chromatin-associated proteins. SCIENCE CHINA. LIFE SCIENCES 2017; 60:138-151. [PMID: 28194553 DOI: 10.1007/s11427-016-0413-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023]
Abstract
Histone methylation is believed to provide binding sites for specific reader proteins, which translate histone code into biological function. Here we show that a family of acidic domain-containing proteins including nucleophosmin (NPM1), pp32, SET/TAF1β, nucleolin (NCL) and upstream binding factor (UBF) are novel H3K4me2-binding proteins. These proteins exhibit a unique pattern of interaction with methylated H3K4, as their binding is stimulated by H3K4me2 and inhibited by H3K4me1 and H3K4me3. These proteins contain one or more acidic domains consisting mainly of aspartic and/or glutamic residues that are necessary for preferential binding of H3K4me2. Furthermore, we demonstrate that the acidic domain with sufficient length alone is capable of binding H3K4me2 in vitro and in vivo. NPM1, NCL and UBF require their acidic domains for association with and transcriptional activation of rDNA genes. Interestingly, by defining acidic domain as a sequence with at least 20 acidic residues in 50 continuous amino acids, we identified 655 acidic domain-containing protein coding genes in the human genome and Gene Ontology (GO) analysis showed that many of the acidic domain proteins have chromatin-related functions. Our data suggest that acidic domain is a novel histone binding motif that can differentially read the status of H3K4 methylation and is broadly present in chromatin-associated proteins.
Collapse
Affiliation(s)
- Meng Wu
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Wei
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiwei Chen
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rong Cong
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, Lyon, 69364, France
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS USR 3010, Laboratoire Joliot-Curie, Lyon, 69364, France
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - James X Du
- Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
39
|
Soci UPR, Melo SFS, Gomes JLP, Silveira AC, Nóbrega C, de Oliveira EM. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.
Collapse
Affiliation(s)
| | | | | | | | - Clara Nóbrega
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
40
|
Differential transcription profiles of long non-coding RNAs in primary human brain microvascular endothelial cells in response to meningitic Escherichia coli. Sci Rep 2016; 6:38903. [PMID: 27958323 PMCID: PMC5153642 DOI: 10.1038/srep38903] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/15/2016] [Indexed: 12/29/2022] Open
Abstract
Accumulating studies have indicated the influence of long non-coding RNAs (lncRNAs) on various biological processes as well as disease development and progression. However, the lncRNAs involved in bacterial meningitis and their regulatory effects are largely unknown. By RNA-sequencing, the transcriptional profiles of host lncRNAs in primary human brain microvascular endothelial cells (hBMECs) in response to meningitic Escherichia coli were demonstrated. Here, 25,257 lncRNAs were identified, including 24,645 annotated lncRNAs and 612 newly found ones. A total of 895 lncRNAs exhibited significant differences upon infection, among which 382 were upregulated and 513 were downregulated (≥2-fold, p < 0.05). Via bioinformatic analysis, the features of these lncRNAs, their possible functions, and the potential regulatory relationships between lncRNAs and mRNAs were predicted. Moreover, we compared the transcriptional specificity of these differential lncRNAs among hBMECs, human astrocyte cell U251, and human umbilical vein endothelial cells, and demonstrated the novel regulatory effects of proinflammatory cytokines on these differential lncRNAs. To our knowledge, this is the first time the transcriptional profiles of host lncRNAs involved in E. coli-induced meningitis have been reported, which shall provide novel insight into the regulatory mechanisms behind bacterial meningitis involving lncRNAs, and contribute to better prevention and therapy of CNS infection.
Collapse
|
41
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
42
|
Evolutionary direction of processed pseudogenes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:839-49. [PMID: 27333782 DOI: 10.1007/s11427-016-5074-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 10/21/2022]
Abstract
While some pseudogenes have been reported to play important roles in gene regulation, little is known about the possible relationship between pseudogene functions and evolutionary process of pseudogenes, or about the forces responsible for the pseudogene evolution. In this study, we characterized human processed pseudogenes in terms of evolutionary dynamics. Our results show that pseudogenes tend to evolve toward: lower GC content, strong dinucleotide bias, reduced abundance of transcription factor binding motifs and short palindromes, and decreased ability to form nucleosomes. We explored possible evolutionary forces that shaped the evolution pattern of pseudogenes, and concluded that mutations in pseudogenes are likely determined, at least partially, by neighbor-dependent mutational bias and recombination-associated selection.
Collapse
|
43
|
Larriba E, del Mazo J. Role of Non-Coding RNAs in the Transgenerational Epigenetic Transmission of the Effects of Reprotoxicants. Int J Mol Sci 2016; 17:452. [PMID: 27023531 PMCID: PMC4848908 DOI: 10.3390/ijms17040452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are regulatory elements of gene expression and chromatin structure. Both long and small ncRNAs can also act as inductors and targets of epigenetic programs. Epigenetic patterns can be transmitted from one cell to the daughter cell, but, importantly, also through generations. Diversity of ncRNAs is emerging with new and surprising roles. Functional interactions among ncRNAs and between specific ncRNAs and structural elements of the chromatin are drawing a complex landscape. In this scenario, epigenetic changes induced by environmental stressors, including reprotoxicants, can explain some transgenerationally-transmitted phenotypes in non-Mendelian ways. In this review, we analyze mechanisms of action of reprotoxicants upon different types of ncRNAs and epigenetic modifications causing transgenerationally transmitted characters through germ cells but affecting germ cells and reproductive systems. A functional model of epigenetic mechanisms of transgenerational transmission ncRNAs-mediated is also proposed.
Collapse
Affiliation(s)
- Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Jesús del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|