1
|
Yang MX, Wang ZR, Zhang YL, Zhang ZN, Li YL, Wang R, Su Q, Guo JH. Albumin antagonizes Alzheimer's disease-related Tau pathology and enhances cognitive performance by inhibiting aberrant Tau aggregation. Exp Neurol 2025; 386:115155. [PMID: 39837459 DOI: 10.1016/j.expneurol.2025.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by cognitive impairment, for which effective treatments remain lacking. Albumin (ALB) is an essential carrier protein found in various body fluids, playing crucial roles in anti-inflammatory processes, antioxidation, and signal transduction. Recent research indicates that ALB may play a significant role in the development and progression of AD, though its specific function is not yet fully understood. In this study, we observed a link between serum ALB levels and cognitive performance in the elderly. Administration of ALB intranasally was shown to enhance learning and memory in MAPT/P301S transgenic mice, markedly decreasing hyperphosphorylation of Tau protein and reducing neuronal apoptosis. In a neuronal cell model overexpressing Tau, ALB administration in vitro attenuated Tau-induced toxicity and reduced the production of phosphorylated Tau. Additionally, co-incubation of Tau with ALB significantly reduced the formation of neurofibrillary tangles. These results suggest that ALB improves AD-related cognitive function by preventing the pathological aggregation of Tau and reducing its abnormal phosphorylation. Furthermore, ALB's neuroprotective effect helps prevent neuronal apoptosis in the cortex and hippocampus, providing potential targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Ming-Xuan Yang
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhuo-Ran Wang
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan-Li Zhang
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan 030001, Shanxi, China
| | - Zhi-Na Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan-Li Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Rui Wang
- First School of Clinical Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Fenyang 032200, Shanxi, China.
| | - Jun-Hong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
2
|
Ye L, Xu X, Liu L, Chen F, Xia G. A nomogram for predicting cancer-related cognitive impairment in lung cancer patients from a nursing science precision health model perspective. Support Care Cancer 2025; 33:320. [PMID: 40133674 DOI: 10.1007/s00520-025-09383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE The nursing science precision health (NSPH) model considers identifying the biological basis of symptoms in order to develop precise intervention strategies that ultimately improve the overall health of the symptomatic individual. This study sought to construct a nomogram for predicting cancer-related cognitive impairment (CRCI) in patients with lung cancer within the context of the NSPH model. METHODS A cohort of 252 patients with lung cancer was prospectively collected and randomly divided into training and validation cohorts in a 7:3 ratio. The least absolute shrinkage and selection operator (LASSO) regression method optimized variable selection, followed by multivariate logistic regression to develop a model, which subsequently formed the basis for the nomogram. The nomogram's discrimination and calibration were evaluated using a calibration plot, the Hosmer-Lemeshow test, and the receiver operating characteristic curve (ROC). Decision curve analysis (DCA) quantified the net benefits of the nomogram across various threshold probabilities. RESULTS Five pivotal variables were incorporated into the nomogram: age (≥ 65 years), treatment, education level, albumin, and platelet-to-lymphocyte ratio (PLR). The area under the ROC curve (0.970 for the training cohort and 0.973 for the validation cohort) demonstrated the nomogram's excellent discriminative ability. Calibration curves closely aligning with ideal curves indicated accurate predictive capability. Moreover, the nomogram exhibited a positive net benefit for predicted probability thresholds ranging from 1 to 98% in DCA. CONCLUSION Key risk factors, including advanced age (≥ 65 years), low education level, combined chemotherapy, low albumin, and high PLR, were significantly associated with higher CRCI incidence. This nomogram model has good performance and can help identify CRCI with high accuracy in lung cancer patients.
Collapse
Affiliation(s)
- Lei Ye
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Guangzhou Road, No.264, Nanjing, Jiangsu, 210024, China
- Department of Nursing, Nanjing Chest Hospital, Nanjing, China
| | - Xiaoyu Xu
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Guangzhou Road, No.264, Nanjing, Jiangsu, 210024, China
- Department of Critical Care Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Lijuan Liu
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Guangzhou Road, No.264, Nanjing, Jiangsu, 210024, China
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Fangmei Chen
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Guangzhou Road, No.264, Nanjing, Jiangsu, 210024, China
- Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Guanghui Xia
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Guangzhou Road, No.264, Nanjing, Jiangsu, 210024, China.
- Department of Nursing, Nanjing Chest Hospital, Nanjing, China.
| |
Collapse
|
3
|
Su C, Zhang S, Zheng Q, Miao J, Guo J. Prevalence and correlation of sarcopenia with Alzheimer's disease: A systematic review and meta-analysis. PLoS One 2025; 20:e0318920. [PMID: 40029915 PMCID: PMC11875368 DOI: 10.1371/journal.pone.0318920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Sarcopenia, which is defined by a decline in skeletal muscle mass and strength associated with aging, is common among older individuals and presents considerable health dangers. Alzheimer's disease (AD) is a prevalent degenerative brain condition linked to a decrease in cognitive function. The intersection of these conditions remains underexplored. The goal of this systematic review and meta-analysis was to establish the frequency of sarcopenia in individuals with AD and investigate the relationship between sarcopenia and AD. METHODS We performed an extensive review of literature databases, including PubMed, Embase, Web of Science, and the Cochrane Library, through April 2024. The inclusion criteria included studies that provided data on the frequency of sarcopenia in patients with AD or that examined the odds ratios (ORs) associated with these comorbidities. R Studio (4.3.1) was utilized for conducting the statistical analyses. RESULTS A total of 27 studies, comprising 3902 AD patients were included. In patients with AD, the combined occurrence of sarcopenia was 33.9%, with a confidence interval (CI) of 95%, ranging from 27.6% to 40.2%. Sarcopenia was found in 31.2% (95% CI: 0.223-0.402) and 41.9% (95% CI: 0.321-0.516) of patients with mild and moderate AD, respectively. The OR for the association between AD and sarcopenia was 2.670 (95% CI: 1.566-4.555), suggesting a robust correlation. CONCLUSION Sarcopenia is highly prevalent in AD patients, highlighting the need for integrated care approaches to address both cognitive and physical health issues. Further research is needed to elucidate the pathophysiological links between AD and sarcopenia.
Collapse
Affiliation(s)
- Chen Su
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Sen Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Qiandan Zheng
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Jie Miao
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| |
Collapse
|
4
|
Tadese DA, Mwangi J, Luo L, Zhang H, Huang X, Michira BB, Zhou S, Kamau PM, Lu Q, Lai R. The microbiome's influence on obesity: mechanisms and therapeutic potential. SCIENCE CHINA. LIFE SCIENCES 2025; 68:657-672. [PMID: 39617855 DOI: 10.1007/s11427-024-2759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 01/03/2025]
Abstract
In 2023, the World Obesity Atlas Federation concluded that more than 50% of the world's population would be overweight or obese within the next 12 years. At the heart of this epidemic lies the gut microbiota, a complex ecosystem that profoundly influences obesity-related metabolic health. Its multifaced role encompasses energy harvesting, inflammation, satiety signaling, gut barrier function, gut-brain communication, and adipose tissue homeostasis. Recognizing the complexities of the cross-talk between host physiology and gut microbiota is crucial for developing cutting-edge, microbiome-targeted therapies to address the global obesity crisis and its alarming health and economic repercussions. This narrative review analyzed the current state of knowledge, illuminating emerging research areas and their implications for leveraging gut microbial manipulations as therapeutic strategies to prevent and treat obesity and related disorders in humans. By elucidating the complex relationship between gut microflora and obesity, we aim to contribute to the growing body of knowledge underpinning this critical field, potentially paving the way for novel interventions to combat the worldwide obesity epidemic.
Collapse
Affiliation(s)
- Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Luo
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaoshan Huang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peter Muiruri Kamau
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Jiang J, Jiang T, Wang X, Zhao M, Shi H, Zhang H, Li W, Jiang S, Zhang X, Zhou J, Ren Q, Wang L, Yang S, Yao Z, Liu Y, Xu J. Malnutrition exacerbating neuropsychiatric symptoms on the Alzheimer's continuum is relevant to the cAMP signaling pathway: Human and mouse studies. Alzheimers Dement 2025; 21:e14506. [PMID: 39868480 PMCID: PMC11848410 DOI: 10.1002/alz.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear. METHODS Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice. RESULTS Poor nutritional status and increased cerebral blood flow in the midbrain and striatum were associated with severe general NPSs and subtypes, especially depression, anxiety, and apathy. APP/PS1 mice fed a malnourished diet showed poor nutritional status, depression- and anxiety-like behaviors, altered neurotransmitter levels, and downregulated c-Fos expression in the midbrain and striatum; these were associated with suppressed cyclic adenosine monophosphate (cAMP) signaling pathway. DISCUSSION Malnutrition exacerbating NPSs is relevant to suppressed cAMP pathway in the midbrain and striatum, suggesting the potential for targeted nutritional interventions to mitigate NPSs in the AD continuum. HIGHLIGHTS Poor nutritional status linked to general and specific neuropsychiatric symptom (NPS) deterioration. Malnutrition affects NPSs, usually involving the midbrain and striatum. Malnourished diet induces depression- and anxiety-like behaviors in APP/PS1 mice. Malnutrition exacerbates NPSs associated with cAMP signaling pathway in the midbrain and striatum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaohong Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hanping Shi
- Beijing Shijitan Hospital, Capital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoli Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiawei Zhou
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zeshan Yao
- Beijing Institute of Collaborative InnovationBeijingChina
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
7
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
8
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
9
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Jiang J, Wang A, Shi H, Jiang S, Li W, Jiang T, Wang L, Zhang X, Sun M, Zhao M, Zou X, Xu J. Clinical and neuroimaging association between neuropsychiatric symptoms and nutritional status across the Alzheimer's disease continuum: a longitudinal cohort study. J Nutr Health Aging 2024; 28:100182. [PMID: 38336502 DOI: 10.1016/j.jnha.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To investigate the association between neuropsychiatric symptoms (NPS) and nutritional status, and explore their shared regulatory brain regions on the Alzheimer's disease (AD) continuum. DESIGN A longitudinal, observational cohort study. SETTING Data were collected from the Chinese Imaging, Biomarkers, and Lifestyle study between June 1, 2021 and December 31, 2022. PARTICIPANTS Overall, 432 patients on the AD continuum, including amnestic mild cognitive impairment and AD dementia, were assessed at baseline, and only 165 patients completed the (10.37 ± 6.08) months' follow-up. MEASUREMENTS The Mini-Nutritional Assessment (MNA) and Neuropsychiatric Inventory (NPI) were used to evaluate nutritional status and NPS, respectively. The corrected cerebral blood flow (cCBF) measured by pseudo-continuous arterial spin labeling of the dietary nutrition-related brain regions was analyzed. The association between the NPS at baseline and subsequent change in nutritional status and the association between the changes in the severity of NPS and nutritional status were examined using generalized linear mixed models. RESULTS Increased cCBF in the left putamen was associated with malnutrition, general NPS, affective symptoms, and hyperactivity (P < 0.05). The presence of general NPS (β = -1.317, P = 0.003), affective symptoms (β = -1.887, P < 0.001), and appetite/eating disorders (β = -1.714, P < 0.001) at baseline were associated with a decline in the MNA scores during follow-up. The higher scores of general NPI (β = -0.048), affective symptoms (β = -0.181), and appetite/eating disorders (β = -0.416; all P < 0.001) were longitudinally associated with lower MNA scores after adjusting for confounding factors. CONCLUSIONS We found that baseline NPS were predictors of a decline in nutritional status on the AD continuum. The worse the severity of affective symptoms and appetite/eating disorders, the poorer the nutritional status. Furthermore, abnormal perfusion of the putamen may regulate the association between malnutrition and NPS, which suggests their potentially common neural regulatory basis.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, 100038, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Min Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
11
|
Jiang J, Liu Y, Wang A, Zhuo Z, Shi H, Zhang X, Li W, Sun M, Jiang S, Wang Y, Zou X, Zhang Y, Jia Z, Xu J. Development and validation of a nutrition-related genetic-clinical-radiological nomogram associated with behavioral and psychological symptoms in Alzheimer's disease. Chin Med J (Engl) 2023:00029330-990000000-00878. [PMID: 38031345 PMCID: PMC11407811 DOI: 10.1097/cm9.0000000000002914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Few evidence is available in the early prediction models of behavioral and psychological symptoms of dementia (BPSD) in Alzheimer's disease (AD). This study aimed to develop and validate a novel genetic-clinical-radiological nomogram for evaluating BPSD in patients with AD and explore its underlying nutritional mechanism. METHODS This retrospective study included 165 patients with AD from the Chinese Imaging, Biomarkers, and Lifestyle (CIBL) cohort between June 1, 2021, and March 31, 2022. Data on demoimagedatas, neuropsychological assessments, single-nucleotide polymorphisms of AD risk genes, and regional brain volumes were collected. A multivariate logistic regression model identified BPSD-associated factors, for subsequently constructing a diagnostic nomogram. This nomogram was internally validated through 1000-bootstrap resampling and externally validated using a time-series split based on the CIBL cohort data between June 1, 2022, and February 1, 2023. Area under receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to assess the discrimination, calibration, and clinical applicability of the nomogram. RESULTS Factors independently associated with BPSD were: CETP rs1800775 (odds ratio [OR] = 4.137, 95% confidence interval [CI]: 1.276-13.415, P = 0.018), decreased Mini Nutritional Assessment score (OR = 0.187, 95% CI: 0.086-0.405, P <0.001), increased caregiver burden inventory score (OR = 8.993, 95% CI: 3.830-21.119, P <0.001), and decreased brain stem volume (OR = 0.006, 95% CI: 0.001-0.191, P = 0.004). These variables were incorporated into the nomogram. The area under the ROC curve was 0.925 (95% CI: 0.884-0.967, P <0.001) in the internal validation and 0.791 (95% CI: 0.686-0.895, P <0.001) in the external validation. The calibration plots showed favorable consistency between the prediction of nomogram and actual observations, and the DCA showed that the model was clinically useful in both validations. CONCLUSION A novel nomogram was established and validated based on lipid metabolism-related genes, nutritional status, and brain stem volumes, which may allow patients with AD to benefit from early triage and more intensive monitoring of BPSD. REGISTRATION Chictr.org.cn, ChiCTR2100049131.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yaou Liu
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Zhizheng Zhuo
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing 100081, China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
12
|
Chen F, Wang N, Tian X, Su J, Qin Y, He R, He X. The Protective Effect of Mangiferin on Formaldehyde-Induced HT22 Cell Damage and Cognitive Impairment. Pharmaceutics 2023; 15:1568. [PMID: 37376018 PMCID: PMC10303760 DOI: 10.3390/pharmaceutics15061568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Formaldehyde (FA) has been found to induce major Alzheimer's disease (AD)-like features including cognitive impairment, Aβ deposition, and Tau hyperphosphorylation, suggesting that it may play a significant role in the initiation and progression of AD. Therefore, elucidating the mechanism underlying FA-induced neurotoxicity is crucial for exploring more comprehensive approaches to delay or prevent the development of AD. Mangiferin (MGF) is a natural C-glucosyl-xanthone with promising neuroprotective effects, and is considered to have potential in the treatment of AD. The present study was designed to characterize the effects and mechanisms by which MGF protects against FA-induced neurotoxicity. The results in murine hippocampal cells (HT22) revealed that co-treatment with MGF significantly decreased FA-induced cytotoxicity and inhibited Tau hyperphosphorylation in a dose-dependent manner. It was further found that these protective effects were achieved by attenuating FA-induced endoplasmic reticulum stress (ERS), as indicated by the inhibition of the ERS markers, GRP78 and CHOP, and downstream Tau-associated kinases (GSK-3β and CaMKII) expression. In addition, MGF markedly inhibited FA-induced oxidative damage, including Ca2+ overload, ROS generation, and mitochondrial dysfunction, all of which are associated with ERS. Further studies showed that the intragastric administration of 40 mg/kg/day MGF for 6 weeks significantly improved spatial learning ability and long-term memory in C57/BL6 mice with FA-induced cognitive impairment by reducing Tau hyperphosphorylation and the expression of GRP78, GSK-3β, and CaMKII in the brains. Taken together, these findings provide the first evidence that MGF exerts a significant neuroprotective effect against FA-induced damage and ameliorates mice cognitive impairment, the possible underlying mechanisms of which are expected to provide a novel basis for the treatment of AD and diseases caused by FA pollution.
Collapse
Affiliation(s)
- Fan Chen
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Na Wang
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Xinyan Tian
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Juan Su
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Yan Qin
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100045, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100045, China
| | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali 671003, China; (F.C.); (N.W.); (X.T.); (J.S.); (Y.Q.)
| |
Collapse
|
13
|
Jiang J, Hong Y, Li W, Wang A, Jiang S, Jiang T, Wang Y, Wang L, Yang S, Ren Q, Zou X, Xu J. Chain Mediation Analysis of the Effects of Nutrition and Cognition on the Association of Apolipoprotein E ɛ4 with Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2023; 96:669-681. [PMID: 37840496 DOI: 10.3233/jad-230577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
BACKGROUND Apolipoprotein E (APOE) is the most recognized risk gene for cognitive decline and clinical progression of late-onset Alzheimer's disease (AD); nonetheless, its association with neuropsychiatric symptoms (NPSs) remains inconclusive. OBJECTIVE To investigate the association of APOE ɛ4 with NPSs and explore nutritional status and cognition as joint mediators of this association. METHODS Between June 2021 and October 2022, patients with amnestic mild cognitive impairment (aMCI) or AD were recruited from the Chinese Imaging, Biomarkers, and Lifestyle Study. NPSs were assessed using the Neuropsychiatric Inventory, while global cognition and nutritional status were evaluated using the Mini-Mental State Examination (MMSE) and Mini-Nutritional Assessment (MNA), respectively. Simple mediation and multiple chain mediation models were developed to examine the mediating effects of the MNA and MMSE scores on the relationship between APOE ɛ4 and specific neuropsychiatric symptom. RESULTS Among 310 patients, 229 (73.87%) had NPSs, and 110 (35.48%) carried APOE ɛ4. Patients with APOE ɛ4 were more likely to have hallucinations (p = 0.014), apathy (p = 0.008), and aberrant motor activity (p = 0.018). MNA and MMSE scores mediated the association between APOE ɛ4 and hallucinations (17.97% and 37.13%, respectively), APOE ɛ4 and apathy (30.73% and 57.72%, respectively), and APOE ɛ4 and aberrant motor activity (17.82% and 34.24%), respectively. Chain-mediating effects of MNA and MMSE scores on the association of APOE ɛ4 with hallucinations, apathy, and aberrant motor activity after adjusting for confounding factors were 6.84%, 11.54%, and 6.19%, respectively. CONCLUSION Nutritional status and cognition jointly mediate the association between APOE ɛ4 and neuropsychiatric symptoms in patients with aMCI or AD.
Collapse
Affiliation(s)
- Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yin Hong
- Department of Health Management, Beijing Tian Tan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shirui Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Tianlin Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Shiyi Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Xinying Zou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- National Clinical Research Center for Neurological Diseases, Fengtai District, Beijing, China
| |
Collapse
|