1
|
Bravo-Venegas J, Prado-Acebo I, Gullón B, Lú-Chau TA, Eibes G. Avoiding acid crash: From apple pomace hydrolysate to butanol through acetone-butanol-ethanol fermentation in a zero-waste approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:47-56. [PMID: 37030028 DOI: 10.1016/j.wasman.2023.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Apple pomace (AP) is a lignocellulosic residue from the juice and cider industries that can be valorized in a multi-product biorefinery to generate multiple value-added compounds, including biofuels such as butanol. Butanol is produced biologically by acetone-butanol-ethanol (ABE) fermentation using bacteria of the genus Clostridium from sugar-based feedstocks. In this study, AP hydrolysate was used as a substrate for producing butanol by ABE fermentation. Various environmental factors influence the amount of butanol produced, but only under certain conditions the so-called 'acid crash', an undesirable phenomenon characterized by a total arrest of cell growth and solvent production, can be avoided. Operational parameters that may influence the prevention of acid crash occurrence, such as pH, CaCO3 concentration and culture temperature, were optimized in C. beijerinckii CECT 508 cultures applying a Box-Behnken experimental design. The mathematical model of the fermentation found the optimal conditions of pH 7, 6.8 g/L of CaCO3 and 30 °C, and this was validated in an independent experiment carried out at the optimal conditions, reaching 10.75 g/L of butanol. Also, the comparison of butanol production between the supernatant of the AP hydrolysate (10.57 g/L) and the full hydrolysate with solids (11.69 g/L) indicated that it is possible to eliminate the centrifugation step after hydrolysis, which may allow to reduce process costs and the full utilization of apple pomace, aiming a zero-waste approach.
Collapse
Affiliation(s)
- Javier Bravo-Venegas
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Inés Prado-Acebo
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Beatriz Gullón
- Universidade de Vigo, Departamento de Enxeñaría Química, Facultade de Ciencias, 32004 Ourense, Spain
| | - Thelmo A Lú-Chau
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - Gemma Eibes
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
2
|
Bai X, Lan J, He S, Bu T, Zhang J, Wang L, Jin X, Mao Y, Guan W, Zhang L, Lu M, Piao H, Jo I, Quan C, Nam KH, Xu Y. Structural and Biochemical Analyses of the Butanol Dehydrogenase from Fusobacterium nucleatum. Int J Mol Sci 2023; 24:ijms24032994. [PMID: 36769315 PMCID: PMC9917632 DOI: 10.3390/ijms24032994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Butanol dehydrogenase (BDH) plays a significant role in the biosynthesis of butanol in bacteria by catalyzing butanal conversion to butanol at the expense of the NAD(P)H cofactor. BDH is an attractive enzyme for industrial application in butanol production; however, its molecular function remains largely uncharacterized. In this study, we found that Fusobacterium nucleatum YqdH (FnYqdH) converts aldehyde into alcohol by utilizing NAD(P)H, with broad substrate specificity toward aldehydes but not alcohols. An in vitro metal ion substitution experiment showed that FnYqdH has higher enzyme activity in the presence of Co2+. Crystal structures of FnYqdH, in its apo and complexed forms (with NAD and Co2+), were determined at 1.98 and 2.72 Å resolution, respectively. The crystal structure of apo- and cofactor-binding states of FnYqdH showed an open conformation between the nucleotide binding and catalytic domain. Key residues involved in the catalytic and cofactor-binding sites of FnYqdH were identified by mutagenesis and microscale thermophoresis assays. The structural conformation and preferred optimal metal ion of FnYqdH differed from that of TmBDH (homolog protein of FnYqdH). Overall, we proposed an alternative model for putative proton relay in FnYqdH, thereby providing better insight into the molecular function of BDH.
Collapse
Affiliation(s)
- Xue Bai
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Shanru He
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Tingting Bu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Jie Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Yuanchao Mao
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Wanting Guan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ming Lu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Ki Hyun Nam
- Department of Life Science, Pohang University of Science and Technology, Pohang 35398, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 35398, Republic of Korea
- Correspondence: (K.H.N.); (Y.X.)
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Correspondence: (K.H.N.); (Y.X.)
| |
Collapse
|
3
|
Buranaprasopchai J, Boonvitthya N, Glinwong C, Chulalaksananukul W. Butanol production from Thai traditional beverage (Sato) factory wastewater using newly isolated Clostridium beijerinckii CUEA02. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Xia Y, Lin X. Efficient biodegradation of straw and persistent organic pollutants by a novel strategy using recombinant Trichoderma reesei. BIORESOUR BIOPROCESS 2022; 9:91. [PMID: 38647641 PMCID: PMC10992801 DOI: 10.1186/s40643-022-00581-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient biodegradation of lignocellulosic biomass needs a battery of enzymes targeting cellulose, hemicellulose, and lignin. In this study, recombinant Trichoderma reesei ZJ-09 with Pycnoporus sanguineus laccase gene was used to degrade rice straw by in situ production of laccase, xylanase, and cellulases under solid-state fermentation (SSF). Effects of parameters on key enzymes (cellulase, xylanase, and laccase) in biodegradation during SSF were investigated. Under the optimized SSF conditions, the FPA, xylanase activity, and laccase activity reached 110.47 FPU/g, 5787.59 IU/g, and 24.45 IU/g, respectively, on day 12. The obtained recombinant T. reesei SSF system achieved efficient degradation of rice straw with the final mass loss up to 51.16% which was 1.4-fold higher than the host strain. Further, bioconversion of rice straw into a novel laccase-enriched koji for persistent organic pollutants bioremediation (LKPB) was conducted by the optimized SSF system. LKPB was found to degrade persistent organic pollutants (POPs) effectively without the addition of mediators. 4-h removal rates of three POPs mediated by LKPB (87.21% for 2,4,5-trichlorophenol, 92.45% for nonylphenol, and 90.73% for oxytetracycline) were comparable to those achieved by laccase-co-mediator system. The newly established recombinant T. reesei SSF system could be potential to effectively degrade lignocellulosic wastes as well as organic pollutants.
Collapse
Affiliation(s)
- Ying Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xinda Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
5
|
Gao Y, Zhang M, Zhou X, Guo X, Lei C, Li W, Lu D. Effects of Carbon Ion Beam Irradiation on Butanol Tolerance and Production of Clostridium acetobutylicum. Front Microbiol 2020; 11:602774. [PMID: 33391222 PMCID: PMC7775398 DOI: 10.3389/fmicb.2020.602774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023] Open
Abstract
Clostridium acetobutylicum (C. acetobutylicum) has considerable potential for use in bioenergy development. Owing to the repeated use of traditional mutagenesis methods, the strains have developed a certain tolerance. The rheology of the bioprocess and the downstream processing of the product heavily depend on the ability of C. acetobutylicum mutants to produce butanol. Carbon ion beam irradiation has advantages over traditional mutation methods for fermentative production because of its dose conformity and superb biological effectiveness. However, its effects on the specific productivity of the strains have not been clearly understood. In this study, we screened five mutants through carbon ion beam irradiation; mutant Y217 achieved a butanol-production level of 13.67 g/L, exceeding that of wild-type strain ATCC 824 (i.e., 9.77 g/L). In addition, we found that the mutant maintained normal cell membrane integrity under the stimulation of 15 g/L butanol, whereas the intracellular macromolecules of wild-type strain ATCC 824 leaked significantly. Subsequently, we used the response surface methodology (RSM) to determine if the mutant cell membrane integrity improved the butanol tolerance. We verified that with the addition of butanol, the mutant could be fermented to produce 8.35 g/L butanol, and the final butanol concentration in the fermentation broth could reach 16.15 g/L. In this study, we proved that under butanol stress, mutant Y217 features excellent butanol production and tolerance and cell membrane integrity and permeability; no prior studies have attempted to do so. This will serve as an interesting and important illustration of the complexity of genetic control of the irradiation mutation of C. acetobutylicum strains. It may also prove to be useful in the bioengineering of strains of the mutant for use in the predevelopment stage.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
6
|
Ma Y, Shen Y, Liu Y. State of the art of straw treatment technology: Challenges and solutions forward. BIORESOURCE TECHNOLOGY 2020; 313:123656. [PMID: 32561106 DOI: 10.1016/j.biortech.2020.123656] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 05/28/2023]
Abstract
Straw as an agricultural byproduct has been recognized as a potential resource. However, open-field straw burning is still the main mean in many regions of the world, which causes the wasting of resource and air pollution. Recently, many technologies have been developed for energy and resource recovery from straw, of which the biological approach has attracted growing interests because of its economically viable and eco-friendly nature. However, pretreatment of straw prior to biological processes is essential, and largely determines the process feasibility, economic viability and environmental sustainability. Thus, this review attempts to offer a critical and holistic analysis of current straw pretreatment technologies and management practices. Specifically, an integrated biological processes coupled with microbial degradation and enzymatic hydrolysis was proposed, and its potential benefits, limitations and challenges associated with future large-scale straw treatment were also elaborated, together with the perspectives and directions forward.
Collapse
Affiliation(s)
- Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yanqing Shen
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
7
|
Impacts of Initial Sugar, Nitrogen and Calcium Carbonate on Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii. ENERGIES 2020. [DOI: 10.3390/en13030694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-cost nitrogen sources, i.e., dried spent yeast (DSY), rice bran (RB), soybean meal (SM), urea and ammonium sulfate were used for batch butanol fermentation from sugarcane molasses by Clostridium beijerinckii TISTR 1461 under anaerobic conditions. Among these five low-cost nitrogen sources, DSY at 1.53 g/L (nitrogen content equal to that of 1 g/L of yeast extract) was found to be the most suitable. At an initial sugar level of 60 g/L, the maximum butanol concentration (PB), productivity (QB) and yield (YB/S) were 11.19 g/L, 0.23 g/L·h and 0.31 g/g, respectively. To improve the butanol production, the concentrations of initial sugar, DSY and calcium carbonate were varied using response surface methodology (RSM) based on Box–Behnken design. It was found that the optimal conditions for high butanol production were initial sugar, 50 g/L; DSY, 6 g/L and calcium carbonate, 6.6 g/L. Under these conditions, the highest experimental PB, QB and YB/S values were 11.38 g/L, 0.32 g/L·h and 0.40 g/g, respectively with 50% sugar consumption (SC). The PB with neither DSY nor CaCO3 was only 8.53 g/L. When an in situ gas stripping system was connected to the fermenter to remove butanol produced during the fermentation, the PB was increased to 15.33 g/L, whereas the YB/S (0.39 g/g) was not changed. However, the QB was decreased to 0.21 g/L·h with 75% SC.
Collapse
|
8
|
Al-Shorgani NKN, Shukor H, Abdeshahian P, Kalil MS, Yusoff WMW, Hamid AA. Enhanced butanol production by optimization of medium parameters using Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018; 25:1308-1321. [PMID: 30505175 PMCID: PMC6251989 DOI: 10.1016/j.sjbs.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/03/2016] [Accepted: 02/11/2016] [Indexed: 11/15/2022] Open
Abstract
A new isolate of the solvent-producing Clostridium acetobutylicum YM1 was used to produce butanol in batch culture fermentation. The effects of glucose concentration, butyric acid addition and C/N ratio were studied conventionally (one-factor-at-a-time). Moreover, the interactions between glucose concentration, butyric acid addition and C/N ratio were further investigated to optimize butanol production using response surface methodology (RSM). A central composite design was applied, and a polynomial regression model with a quadratic term was used to analyze the experimental data using analysis of variance (ANOVA). ANOVA revealed that the model was highly significant (p < 0.0001) and the effects of the glucose and butyric acid concentrations on butanol production were significant. The model validation experiment showed 13.82 g/L butanol was produced under optimum conditions. Scale up fermentation in optimized medium resulted in 17 g/L of butanol and 21.71 g/L of ABE. The experimental data of scale up in 5 L bioreactor and flask scale were fitted to kinetic mathematical models published in the literature to estimate the kinetic parameters of the fermentation. The models used gave the best fit for butanol production, biomass and glucose consumption for both flask scale and bioreactor scale up.
Collapse
Affiliation(s)
- Najeeb Kaid Nasser Al-Shorgani
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, 6803 Taiz, Yemen
| | - Hafiza Shukor
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Peyman Abdeshahian
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Wan Mohtar Wan Yusoff
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Md Razali NAA, Ibrahim MF, Kamal Bahrin E, Abd-Aziz S. Optimisation of Simultaneous Saccharification and Fermentation (SSF) for Biobutanol Production Using Pretreated Oil Palm Empty Fruit Bunch. Molecules 2018; 23:molecules23081944. [PMID: 30081514 PMCID: PMC6222772 DOI: 10.3390/molecules23081944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
This study was conducted in order to optimise simultaneous saccharification and fermentation (SSF) for biobutanol production from a pretreated oil palm empty fruit bunch (OPEFB) by Clostridium acetobutylicum ATCC 824. Temperature, initial pH, cellulase loading and substrate concentration were screened using one factor at a time (OFAT) and further statistically optimised by central composite design (CCD) using the response surface methodology (RSM) approach. Approximately 2.47 g/L of biobutanol concentration and 0.10 g/g of biobutanol yield were obtained after being screened through OFAT with 29.55% increment (1.42 fold). The optimised conditions for SSF after CCD were: temperature of 35 °C, initial pH of 5.5, cellulase loading of 15 FPU/g-substrate and substrate concentration of 5% (w/v). This optimisation study resulted in 55.95% increment (2.14 fold) of biobutanol concentration equivalent to 3.97 g/L and biobutanol yield of 0.16 g/g. The model and optimisation design obtained from this study are important for further improvement of biobutanol production, especially in consolidated bioprocessing technology.
Collapse
Affiliation(s)
- Nur Atheera Aiza Md Razali
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Ezyana Kamal Bahrin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK. Recent trends in biobutanol production. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Finite availability of conventional fossil carbonaceous fuels coupled with increasing pollution due to their overexploitation has necessitated the quest for renewable fuels. Consequently, biomass-derived fuels are gaining importance due to their economic viability and environment-friendly nature. Among various liquid biofuels, biobutanol is being considered as a suitable and sustainable alternative to gasoline. This paper reviews the present state of the preprocessing of the feedstock, biobutanol production through fermentation and separation processes. Low butanol yield and its toxicity are the major bottlenecks. The use of metabolic engineering and integrated fermentation and product recovery techniques has the potential to overcome these challenges. The application of different nanocatalysts to overcome the existing challenges in the biobutanol field is gaining much interest. For the sustainable production of biobutanol, algae, a third-generation feedstock has also been evaluated.
Collapse
Affiliation(s)
- Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Ishita Mishra
- Green Brick Eco Solutions, Okha Industrial Area , New Delhi 110020 , India
| | - Siddh Nath Upadhyay
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) , Varanasi 221005 , India
| |
Collapse
|
11
|
Baral NR, Slutzky L, Shah A, Ezeji TC, Cornish K, Christy A. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use. FEMS Microbiol Lett 2016; 363:fnw033. [DOI: 10.1093/femsle/fnw033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022] Open
|
12
|
|
13
|
Perspective and prospective of pretreatment of corn straw for butanol production. Appl Biochem Biotechnol 2014; 172:840-53. [PMID: 24122704 DOI: 10.1007/s12010-013-0548-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/19/2013] [Indexed: 10/26/2022]
Abstract
Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.
Collapse
|
14
|
Shukor H, Al-Shorgani NKN, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, Kalil MS. Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model. BIORESOURCE TECHNOLOGY 2014; 170:565-573. [PMID: 25171212 DOI: 10.1016/j.biortech.2014.07.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 05/06/2023]
Abstract
Palm kernel cake (PKC) was used for biobutanol production by Clostridium saccharoperbutylacetonicum N1-4 in acetone-butanol-ethanol (ABE) fermentation. PKC was subjected to acid hydrolysis pretreatment and hydrolysates released were detoxified by XAD-4 resin. The effect of pH, temperature and inoculum size on butanol production was evaluated using an empirical model. Twenty ABE fermentations were run according to an experimental design. Experimental results revealed that XAD-4 resin removed 50% furfural and 77.42% hydroxymethyl furfural. The analysis of the empirical model showed that linear effect of inoculums size with quadratic effect of pH and inoculum size influenced butanol production at 99% probability level (P<0.01). The optimum conditions for butanol production were pH 6.28, temperature of 28°C and inoculum size of 15.9%. ABE fermentation was carried out under optimum conditions which 0.1g/L butanol was obtained. Butanol production was enhanced by diluting PKC hydrolysate up to 70% in which 3.59g/L butanol was produced.
Collapse
Affiliation(s)
- Hafiza Shukor
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia; School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia.
| | - Najeeb Kaid Nasser Al-Shorgani
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia.
| | - Peyman Abdeshahian
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia.
| | - Aidil Abdul Hamid
- School of Biosciences and Biotechnology, Faculty of Sciences and Technology, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia
| | - Nurina Anuar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia
| | - Norliza Abd Rahman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia
| | - Mohd Sahaid Kalil
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (Universiti Kebangsaan Malaysia), 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
15
|
Baral NR, Shah A. Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2014; 98:9151-72. [DOI: 10.1007/s00253-014-6106-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
|
16
|
Abstract
Abstract
Recent studies have shown that butanol is a potential gasoline replacement that can also be blended in significant quantities with conventional diesel fuel. However, biotechnological production of butanol has some challenges such as low butanol titer, high cost feedstocks and product inhibition. The present work reviewed the technical and economic feasibility of the main technologies available to produce biobutanol. The latest studies integrating continuous fermentation processes with efficient product recovery and the use of mathematical models as tools for process scale-up, optimization and control are presented.
Collapse
|
17
|
Zhai YG, Han M, Zhang WG, Qian H. CAROTENE PRODUCTION FROM AGRO-INDUSTRIAL WASTES BYArthrobacter globiformisIN SHAKE-FLASK CULTURE. Prep Biochem Biotechnol 2013; 44:355-69. [DOI: 10.1080/10826068.2013.829498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
|
19
|
Li J, Baral NR, Jha AK. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World J Microbiol Biotechnol 2013; 30:1145-57. [PMID: 24165749 DOI: 10.1007/s11274-013-1542-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China,
| | | | | |
Collapse
|
20
|
Komonkiat I, Cheirsilp B. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp. BIORESOURCE TECHNOLOGY 2013; 146:200-207. [PMID: 23933028 DOI: 10.1016/j.biortech.2013.07.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
This study aimed to convert felled oil palm trunk to biobutanol by Clostridium spp. For efficient utilization of oil palm trunk, it was separated into sap and trunk fiber. The sap was used directly while the trunk fiber was hydrolyzed to fermentable sugars before use. Among five clostridia strains screened, Clostridium acetobutylicum DSM 1731 was the most suitable strain for butanol production from the sap without any supplementation of nutrients. It produced the highest amount of butanol (14.4 g/L) from the sap (sugar concentration of 50 g/L) with butanol yield of 0.35 g/g. When hydrolysate from the trunk fiber was used as an alternative carbon source (sugar concentration of 30 g/L), of the strains tested Clostridium beijerinckii TISTR 1461 produced the highest amount of butanol (10.0 g/L) with butanol yield of 0.41 g/g. The results presented herein suggest that oil palm trunk is a promising renewable substrate for biobutanol production.
Collapse
Affiliation(s)
- Itsara Komonkiat
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
21
|
Ni Y, Xia Z, Wang Y, Sun Z. Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. BIORESOURCE TECHNOLOGY 2013; 129:680-685. [PMID: 23298765 DOI: 10.1016/j.biortech.2012.11.142] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 06/01/2023]
Abstract
Corn stover hydrolysate (CSH) and cane molasses were studied for butanol fermentation by Clostridium saccharobutylicum DSM 13864 in continuous fermentation. Using cane molasses as substrate, solvent of 13.75 g/L (butanol 8.65 g/L) and productivity of 0.439 g/L/h were achieved in a four-stage continuous fermentation at a gradient dilution mode of 0.15-0.15-0.125-0.1 h(-1). In continuous fermentation using CSH as substrate, total solvent titer of 11.43 g/L (butanol 7.81 g/L) and productivity of 0.429 g/L/h were reached at a dilution rate of 0.15 h(-1), and the steady process was continuously operated for 220 h without compromise in solvent titer.
Collapse
Affiliation(s)
- Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Rd., Wuxi 214122, China.
| | | | | | | |
Collapse
|
22
|
Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model. CHINESE SCIENCE BULLETIN 2012. [DOI: 10.1007/s11434-012-5305-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|