1
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
2
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
4
|
Haindl MT, Üçal M, Klaus B, Tögl L, Dohrmann J, Adzemovic MZ, Enzinger C, Hochmeister S. Anti-CD20 treatment effectively attenuates cortical pathology in a rat model of widespread cortical demyelination. J Neuroinflammation 2021; 18:138. [PMID: 34130726 PMCID: PMC8207776 DOI: 10.1186/s12974-021-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action of B-cells and B-cell directed therapy on cortical lesions in our rat model. Methods For this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. Results We observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction, and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. Conclusion These findings might pave the way for further research on the mode of action of B-cells and therefore help to improve therapeutic options for progressive MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02189-w.
Collapse
Affiliation(s)
| | - Muammer Üçal
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Benjamin Klaus
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Lennart Tögl
- Department of Neurosurgery, Research Unit Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Jana Dohrmann
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Milena Z Adzemovic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Lee NJ, Ha SK, Sati P, Absinta M, Nair G, Luciano NJ, Leibovitch EC, Yen CC, Rouault TA, Silva AC, Jacobson S, Reich DS. Potential role of iron in repair of inflammatory demyelinating lesions. J Clin Invest 2020; 129:4365-4376. [PMID: 31498148 DOI: 10.1172/jci126809] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Govind Nair
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecil C Yen
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
7
|
Lee NJ, Ha SK, Sati P, Absinta M, Luciano NJ, Lefeuvre JA, Schindler MK, Leibovitch EC, Ryu JK, Petersen MA, Silva AC, Jacobson S, Akassoglou K, Reich DS. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 2019; 141:1637-1649. [PMID: 29688408 DOI: 10.1093/brain/awy082] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Although it has been extensively studied, the proximate trigger of the immune response remains uncertain. Experimental autoimmune encephalomyelitis in the common marmoset recapitulates many radiological and pathological features of focal multiple sclerosis lesions in the cerebral white matter, unlike traditional experimental autoimmune encephalomyelitis in rodents. This provides an opportunity to investigate how lesions form as well as the relative timing of factors involved in lesion pathogenesis, especially during early stages of the disease. We used MRI to track experimental autoimmune encephalomyelitis lesions in vivo to determine their age, stage of development, and location, and we assessed the corresponding histopathology post-mortem. We focused on the plasma protein fibrinogen-a marker for blood-brain barrier leakage that has also been linked to a pathogenic role in inflammatory demyelinating lesion development. We show that fibrinogen has a specific spatiotemporal deposition pattern, apparently deriving from the central vein in early experimental autoimmune encephalomyelitis lesions <6 weeks old, and preceding both demyelination and visible gadolinium enhancement on MRI. Thus, fibrinogen leakage is one of the earliest detectable events in lesion pathogenesis. In slightly older lesions, fibrinogen is found inside microglia/macrophages, suggesting rapid phagocytosis. Quantification demonstrates positive correlation of fibrinogen deposition with accumulation of inflammatory cells, including microglia/macrophages and T cells. The peak of fibrinogen deposition coincides with the onset of demyelination and axonal loss. In samples from chronic multiple sclerosis cases, fibrinogen was found at the edge of chronic active lesions, which have ongoing demyelination and inflammation, but not in inactive lesions, suggesting that fibrinogen may play a role in sustained inflammation even in the chronic setting. In summary, our data support the notion that fibrinogen is a key player in the early pathogenesis, as well as sustained inflammation, of inflammatory demyelinating lesions.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC 20007, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer A Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mark A Petersen
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Lefeuvre JA, Guy JR, Luciano NJ, Ha SK, Leibovitch E, Santin MD, Silva AC, Jacobson S, Lehéricy S, Reich DS, Sati P. The spectrum of spinal cord lesions in a primate model of multiple sclerosis. Mult Scler 2019; 26:284-293. [PMID: 30730246 DOI: 10.1177/1352458518822408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a nonhuman primate model of multiple sclerosis (MS) that shares numerous clinical, radiological, and pathological features with MS. Among the clinical features are motor and sensory deficits that are highly suggestive of spinal cord (SC) damage. OBJECTIVE To characterize the extent and nature of SC damage in symptomatic marmosets with EAE using a combined magnetic resonance imaging (MRI) and histopathology approach. MATERIALS AND METHODS SC tissues from five animals were scanned using 7 T MRI to collect high-resolution ex vivo images. Lesions were segmented and classified based on shape, size, and distribution along the SC. Tissues were processed for histopathological characterization (myelin and microglia/macrophages). Statistical analysis, using linear mixed-effects models, evaluated the association between MRI and histopathology. RESULTS Marmosets with EAE displayed two types of SC lesions: focal and subpial lesions. Both lesion types were heterogeneous in size and configuration and corresponded to areas of marked demyelination with high density of inflammatory cells. Inside the lesions, the MRI signal was significantly correlated with myelin content (p < 0.001). CONCLUSIONS Our findings underscore the relevance of this nonhuman primate EAE model for better understanding mechanisms of MS lesion formation in the SC.
Collapse
Affiliation(s)
- Jennifer A Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA/Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Joseph R Guy
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emily Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mathieu D Santin
- Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Lehéricy
- Institut du Cerveau et de la Moelle-ICM, Centre de NeuroImagerie de Recherche-CENIR, Sorbonne Universités, Paris, France
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A. Animal models of multiple sclerosis: From rodents to zebrafish. Mult Scler 2018; 25:306-324. [PMID: 30319015 DOI: 10.1177/1352458518805246] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated demyelinating disease of the central nervous system. Animal models of MS have been critical for elucidating MS pathological mechanisms and how they may be targeted for therapeutic intervention. Here we review the most commonly used animal models of MS. Although these animal models cannot fully replicate the MS disease course, a number of models have been developed to recapitulate certain stages. Experimental autoimmune encephalomyelitis (EAE) has been used to explore neuroinflammatory mechanisms and toxin-induced demyelinating models to further our understanding of oligodendrocyte biology, demyelination and remyelination. Zebrafish models of MS are emerging as a useful research tool to validate potential therapeutic candidates due to their rapid development and amenability to genetic manipulation.
Collapse
Affiliation(s)
- David John Burrows
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Saurabh A Jain
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Milena De Felice
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Tennore M Ramesh
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Basil Sharrack
- Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK/Academic Department of Neuroscience, The Sheffield NIHR Translational Neuroscience Biomedical Research Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
10
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Abstract
Viruses have long been implicated as triggers of disease onset and progression in multiple sclerosis (MS) and similar neuroinflammatory disorders. Decades of epidemiological, molecular, and pathologic studies have most strongly linked the human herpesviruses Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) with MS. However, these viruses are ubiquitous in the general population and typically acquired decades before disease presentation, complicating the study of how they might contribute to disease. As experimental animal models may help elucidate mechanisms that have linked viruses with MS, we have been studying HHV-6 infections in a small nonhuman primate. We recently demonstrated that the subsequent induction of an MS-like experimental neuroinflammatory disease results in significantly accelerated disease in HHV-6 inoculated marmosets compared to controls. Ultimately, disease intervention in the form of clinical trials with an antiviral agent is the best way to concretely demonstrate a role for HHV-6 or any other virus in MS.
Collapse
Affiliation(s)
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, NINDS/NIH, Bethesda, MD
| |
Collapse
|
12
|
Immunoregulatory effect of mast cells influenced by microbes in neurodegenerative diseases. Brain Behav Immun 2017; 65:68-89. [PMID: 28676349 DOI: 10.1016/j.bbi.2017.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders. Gut dysbiosis, reduced intestinal motility and increased intestinal permeability, that allow bacterial products to circulate and pass through the blood-brain barrier, are associated with neurodegenerative disease. There are differences between the microbiota of neurologic patients and healthy controls. Distinguishing between cause and effect is a challenging task, and the molecular mechanisms whereby remote gut microbiota can alter the brain have not been fully elucidated. Nevertheless, modulation of the microbiota and MC activation have been shown to promote neuroprotection. We review this new information contributing to a greater understanding of MC-microbiota-neural cells interactions modulating the brain, behavior and neurodegenerative processes.
Collapse
|
13
|
Prins NW, Pohlmeyer EA, Debnath S, Mylavarapu R, Geng S, Sanchez JC, Rothen D, Prasad A. Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. J Neurosci Methods 2017; 284:35-46. [PMID: 28400103 DOI: 10.1016/j.jneumeth.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND The common marmoset (Callithrix jacchus) has been proposed as a suitable bridge between rodents and larger primates. They have been used in several types of research including auditory, vocal, visual, pharmacological and genetics studies. However, marmosets have not been used as much for behavioral studies. NEW METHOD Here we present data from training 12 adult marmosets for behavioral neuroscience studies. We discuss the husbandry, food preferences, handling, acclimation to laboratory environments and neurosurgical techniques. In this paper, we also present a custom built "scoop" and a monkey chair suitable for training of these animals. RESULTS The animals were trained for three tasks: 4 target center-out reaching task, reaching tasks that involved controlling robot actions, and touch screen task. All animals learned the center-out reaching task within 1-2 weeks whereas learning reaching tasks controlling robot actions task took several months of behavioral training where the monkeys learned to associate robot actions with food rewards. COMPARISON TO EXISTING METHOD We propose the marmoset as a novel model for behavioral neuroscience research as an alternate for larger primate models. This is due to the ease of handling, quick reproduction, available neuroanatomy, sensorimotor system similar to larger primates and humans, and a lissencephalic brain that can enable implantation of microelectrode arrays relatively easier at various cortical locations compared to larger primates. CONCLUSION All animals were able to learn behavioral tasks well and we present the marmosets as an alternate model for simple behavioral neuroscience tasks.
Collapse
Affiliation(s)
- Noeline W Prins
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Eric A Pohlmeyer
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Shubham Debnath
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Ramanamurthy Mylavarapu
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Shijia Geng
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Justin C Sanchez
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Daniel Rothen
- Division of Veterinary Resources, University of Miami, Coral Gables, FL 33146, United States
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, United States.
| |
Collapse
|
14
|
Maggi P, Sati P, Massacesi L. Magnetic resonance imaging of experimental autoimmune encephalomyelitis in the common marmoset. J Neuroimmunol 2016; 304:86-92. [PMID: 27743612 DOI: 10.1016/j.jneuroim.2016.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/28/2016] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) is an invaluable tool for the diagnosis and monitoring of patients with multiple sclerosis (MS) as well as for the study of the disease pathophysiology. Because of its strong clinical, radiological and histopathological similarities with the human disease, experimental autoimmune encephalomyelitis (EAE) in the common marmoset has been studied more intensively over the past several years. Here, we review the current knowledge on MRI in the marmoset EAE, and we outline the physiopathological significance and translational values of these studies with respect to MS. Accumulating evidences suggest that the application of conventional, as well as non-conventional, MRI techniques in the marmoset EAE is a promising approach to elucidate the pathological processes underlying the development of inflammatory demyelinated lesions in the central nervous system, potentially improving the identification and development of new therapeutics.
Collapse
Affiliation(s)
- Pietro Maggi
- Department of Neurology, Hôpital Erasme-Université libre de Bruxelles, Belgium
| | - Pascal Sati
- Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Luca Massacesi
- Department of Neurosciences, Drug Research, and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Jagessar SA, Dijkman K, Dunham J, 't Hart BA, Kap YS. Experimental Autoimmune Encephalomyelitis in Marmosets. Methods Mol Biol 2016; 1304:171-186. [PMID: 25208751 DOI: 10.1007/7651_2014_113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) in the common marmoset, a small-bodied Neotropical primate, is a well-known and validated animal model for multiple sclerosis (MS). This model can be used for exploratory research, i.e., investigating the pathogenic mechanisms involved in MS, and applied research, testing the efficacy of new potential drugs.In this chapter, we will describe a method to induce EAE in the marmoset. In addition, we will explain the most common immunological techniques involved in the marmoset EAE research, namely isolation of mononuclear cells (MNC) from peripheral blood and lymphoid tissue, assaying T cell proliferation by thymidine incorporation, MNC phenotyping by flow cytometry, antibody measurement by ELISA, generation of B cell lines and antigen-specific T cell lines, and assaying cytotoxic T cells.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, 3306, 2280 GH, Rijswijk, The Netherlands,
| | | | | | | | | |
Collapse
|
16
|
Stassart RM, Helms G, Garea-Rodríguez E, Nessler S, Hayardeny L, Wegner C, Schlumbohm C, Fuchs E, Brück W. A New Targeted Model of Experimental Autoimmune Encephalomyelitis in the Common Marmoset. Brain Pathol 2015. [PMID: 26207848 DOI: 10.1111/bpa.12292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is the most common cause for sustained disability in young adults, yet treatment options remain very limited. Although numerous therapeutic approaches have been effective in rodent models of experimental autoimmune encephalomyelitis (EAE), only few proved to be beneficial in patients with MS. Hence, there is a strong need for more predictive animal models. Within the past decade, EAE in the common marmoset evolved as a potent, alternative model for MS, with immunological and pathological features resembling more closely the human disease. However, an often very rapid and severe disease course hampers its implementation for systematic testing of new treatment strategies. We here developed a new focal model of EAE in the common marmoset, induced by myelin oligodendrocyte glycoprotein (MOG) immunization and stereotactic injections of proinflammatory cytokines. At the injection site of cytokines, confluent inflammatory demyelinating lesions developed that strongly resembled human MS lesions. In a proof-of-principle treatment study with the immunomodulatory compound laquinimod, we demonstrate that targeted EAE in marmosets provides a promising and valid tool for preclinical experimental treatment trials in MS research.
Collapse
Affiliation(s)
- Ruth Martha Stassart
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Gunther Helms
- Department of Cognitive Neurology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Enrique Garea-Rodríguez
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Christiane Wegner
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Schlumbohm
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.,Encepharm GmbH, Göttingen, Germany
| | - Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.,Encepharm GmbH, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Custom fit 3D-printed brain holders for comparison of histology with MRI in marmosets. J Neurosci Methods 2015; 257:55-63. [PMID: 26365332 DOI: 10.1016/j.jneumeth.2015.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND MRI has the advantage of sampling large areas of tissue and locating areas of interest in 3D space in both living and ex vivo systems, whereas histology has the ability to examine thin slices of ex vivo tissue with high detail and specificity. Although both are valuable tools, it is currently difficult to make high-precision comparisons between MRI and histology due to large differences inherent to the techniques. A method combining the advantages would be an asset to understanding the pathological correlates of MRI. NEW METHOD 3D-printed brain holders were used to maintain marmoset brains in the same orientation during acquisition of ex vivo MRI and pathologic cutting of the tissue. RESULTS The results of maintaining this same orientation show that sub-millimeter, discrete neuropathological features in marmoset brain consistently share size, shape, and location between histology and ex vivo MRI, which facilitates comparison with serial imaging acquired in vivo. COMPARISON WITH EXISTING METHODS Existing methods use computational approaches sensitive to data input in order to warp histologic images to match large-scale features on MRI, but the new method requires no warping of images, due to a preregistration accomplished in the technique, and is insensitive to data formatting and artifacts in both MRI and histology. CONCLUSIONS The simple method of using 3D-printed brain holders to match brain orientation during pathologic sectioning and MRI acquisition enables rapid and precise comparison of small features seen on MRI to their underlying histology.
Collapse
|
18
|
Ballerini C, Baldi G, Aldinucci A, Maggi P. Nanomaterial applications in multiple sclerosis inflamed brain. J Neuroimmune Pharmacol 2015; 10:1-13. [PMID: 25616566 DOI: 10.1007/s11481-015-9588-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS). Indeed, nanomedicine allows projecting new ways of drug delivery and novel techniques for CNS imaging. Despite the wide field of application in neurological diseases of nanomaterials, our topic here is to review the more recent development of nanomaterials that cross blood brain barrier (BBB) and reach specific target during CNS inflammatory diseases, a crucial strategy for CNS early diagnosis and drug delivery, indeed the main challenges of nanomedicine.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Neurofarba, University of Florence, Viale Pieraccini, 6, 50137, Florence, Italy,
| | | | | | | |
Collapse
|
19
|
Sex-Based Differences in Multiple Sclerosis (Part I): Biology of Disease Incidence. Curr Top Behav Neurosci 2015; 26:29-56. [PMID: 25690593 DOI: 10.1007/7854_2015_371] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that leads to neuron damage and progressive disability. One major feature of multiple sclerosis (MS) is that it affects women three times more often than men. In this chapter, we overview the evidence that the autoimmune component of MS, which predominates in the early stages of this disease, is more robust in women than in men and undergoes a sharp increase with the onset of puberty. In addition, we discuss the common rodent models of MS that have been used to study the sex-based differences in the development of central nervous system (CNS) autoimmunity. We then address the biological underpinnings of this enhanced MS risk in women by first reviewing the autoimmune mechanisms that are thought to lead to the initiation of this disease and then honing in on how these mechanisms differ between the sexes. Finally, we review what is known about the hormonal and genetic basis of these sex differences in CNS autoimmunity.
Collapse
|
20
|
Kramann N, Neid K, Menken L, Schlumbohm C, Stadelmann C, Fuchs E, Brück W, Wegner C. Increased Meningeal T and Plasma Cell Infiltration is Associated with Early Subpial Cortical Demyelination in Common Marmosets with Experimental Autoimmune Encephalomyelitis. Brain Pathol 2014; 25:276-86. [PMID: 25041171 DOI: 10.1111/bpa.12180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/08/2014] [Indexed: 02/03/2023] Open
Abstract
Subpial cortical demyelination (SCD) accounts for the greatest proportion of demyelinated cortex in multiple sclerosis (MS). SCD is already found in biopsy cases with early MS and in marmosets with experimental autoimmune encephalomyelitis (EAE), but the pathogenesis of SCD is not well understood. The objective of this study was to investigate whether and, if so, which meningeal inflammatory cells were associated with early SCD in marmosets with EAE. Immunohistochemistry was performed to analyze brain samples from eight control animals and eight marmosets immunized with myelin oligodendrocyte glycoprotein. Meningeal T, B and plasma cells were quantified adjacent to SCD, normal-appearing EAE cortex (NAC) and control marmoset cortex. SCD areas appeared mostly hypocellular with low-grade microglial activation. In marmosets with EAE, meninges adjacent to SCD showed significantly increased T cells paralleled by elevated plasma cells, but unaltered B cell numbers compared with NAC. The elevation of meningeal T and plasma cells was a specific finding topographically associated with SCD, as the meninges overlying NAC displayed similarly low T, B and plasma cell numbers as control cortex. These findings suggest that local meningeal T and plasma cell infiltration contributes to the pathogenesis of SCD in marmosets with EAE.
Collapse
Affiliation(s)
- Nadine Kramann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Anthony DC, Dickens AM, Seneca N, Couch Y, Campbell S, Checa B, Kersemans V, Warren EA, Tredwell M, Sibson NR, Gouverneur V, Leppert D. Anti-CD20 inhibits T cell-mediated pathology and microgliosis in the rat brain. Ann Clin Transl Neurol 2014; 1:659-69. [PMID: 25493280 PMCID: PMC4241793 DOI: 10.1002/acn3.94] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/07/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The mechanism of action of anti-B cell therapy in multiple sclerosis (MS) is not fully understood. Here, we compared the effect of anti-CD20 therapy on microglial activation in two distinct focal rat models of MS. METHODS The effect of anti-CD20 therapy on lesion formation and extralesional microglial activation was evaluated in the fDTH-EAE (experimental allergic encephalomyelitis) model, which is a focal demyelinating type-IV delayed-type hypersensitivity lesion. For comparison, effects were also assessed in the focal humoral MOG model induced by intracerebral injection of cytokine in myelin oligodendrocyte glycoprotein immunized rats. Microglial activation was assessed in situ and in vivo using the TSPO SPECT ligand [(125)I]DPA-713, and by immunostaining for MHCII. The effect of treatment on demyelination and lymphocyte recruitment to the brain were evaluated. RESULTS Anti-CD20 therapy reduced microglial activation, and lesion formation in the humoral model, but it was most effective in the antibody-independent fDTH-EAE. Immunohistochemistry for MHCII also demonstrated a reduced volume of microglial activation in the brains of anti-CD20-treated fDTH-EAE animals, which was accompanied by a reduction in T-cell recruitment and demyelination. The effect anti-CD20 therapy in the latter model was similarly strong as compared to the T-cell targeting MS compound FTY720. INTERPRETATION The suppression of lesion development by anti-CD20 treatment in an antibody-independent model suggests that B-cells play an important role in lesion development, independent of auto-antibody production. Thus, CD20-positive B-cell depletion has the potential to be effective in a wider population of individuals with MS than might have been predicted from our knowledge of the underlying histopathology.
Collapse
Affiliation(s)
- Daniel C Anthony
- Department of Pharmacology, University of OxfordMansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Alex M Dickens
- Department of Pharmacology, University of OxfordMansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Nicholas Seneca
- F. Hoffmann-La Roche Ltd.Building 74/3W.306A, Grenzacherstrasse 183, CH-4070, Basel, Switzerland
| | - Yvonne Couch
- Department of Pharmacology, University of OxfordMansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Sandra Campbell
- Department of Pharmacology, University of OxfordMansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Begona Checa
- Department of Chemistry, University of OxfordMansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Veerle Kersemans
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
| | - Edward A Warren
- Department of Pharmacology, University of OxfordMansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Matthew Tredwell
- Department of Chemistry, University of OxfordMansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Nicola R Sibson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
| | - Veronique Gouverneur
- Department of Chemistry, University of OxfordMansfield Road, Oxford, OX1 3TA, United Kingdom
| | - David Leppert
- F. Hoffmann-La Roche Ltd.Building 74/3W.306A, Grenzacherstrasse 183, CH-4070, Basel, Switzerland
| |
Collapse
|
22
|
‘t Hart BA, Jagessar SA, Kap YS, Haanstra KG, Philippens IH, Serguera C, Langermans J, Vierboom M. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies. Drug Discov Today 2014; 19:1394-401. [DOI: 10.1016/j.drudis.2014.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/10/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
|
23
|
Kap YS, van Driel N, Laman JD, Tak PP, 't Hart BA. CD20+ B cell depletion alters T cell homing. THE JOURNAL OF IMMUNOLOGY 2014; 192:4242-53. [PMID: 24696233 DOI: 10.4049/jimmunol.1303125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Depleting mAbs against the pan B cell marker CD20 are remarkably effective in the treatment of autoimmune-mediated inflammatory disorders, but the underlying mechanisms are poorly defined. The primary objective of this study was to find a mechanistic explanation for the remarkable clinical effect of the anti-CD20 mAbs in a representative nonhuman primate autoimmune-mediated inflammatory disorder model, experimental autoimmune encephalomyelitis (EAE) in common marmosets, allowing detailed analysis of secondary lymphoid organs (SLO). We observed that the depletion of CD20(+) B cells creates a less immunostimulatory environment in the SLO reflected by reduced expression of MHC class II, CD40, CD83, and CD80/CD86. APCs isolated from SLO of B cell-depleted EAE monkeys were also less responsive to mitogenic stimulation. The depleted B cell areas were replenished by T cells, of which the majority expressed CD127 (IL-7R) and CCR7. Such effects were not detected in EAE marmosets treated with mAb against BLyS or APRIL, where B cell depletion via withdrawal of essential survival cytokines was not associated with a marked clinical effect. We propose that at least part of the efficacy of anti-CD20 mAb therapy is attributable to the sustained CCR7 expression on T cells within SLO, limiting their release into the circulation.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Kono A, Brameier M, Roos C, Suzuki S, Shigenari A, Kametani Y, Kitaura K, Matsutani T, Suzuki R, Inoko H, Walter L, Shiina T. Genomic sequence analysis of the MHC class I G/F segment in common marmoset (Callithrix jacchus). THE JOURNAL OF IMMUNOLOGY 2014; 192:3239-46. [PMID: 24600031 DOI: 10.4049/jimmunol.1302745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.
Collapse
Affiliation(s)
- Azumi Kono
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jagessar SA, Vierboom M, Blezer ELA, Bauer J, Hart BA', Kap YS. Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Exp Anim 2014; 62:159-71. [PMID: 23903050 PMCID: PMC4160941 DOI: 10.1538/expanim.62.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied Neotropical
primate and a useful preclinical animal model for translational research into
autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and
multiple sclerosis (MS). The animal model for MS established in marmosets has proven their
value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of
new therapies that cannot be tested in lower species because of their specificity for
humans. Effective usage of the marmoset in preclinical immunological research has been
hampered by the limited availability of blood for immunological studies and of reagents
for profiling of cellular and humoral immune reactions. In this paper, we give a concise
overview of the procedures and reagents that were developed over the years in our
laboratory in marmoset models of the above-mentioned diseases.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathologic conditions. Recent evidence implicates endothelin-1 (ET-1) in the induction of placental ER stress in pregnancy disorders. ER stress has previously also been implicated in various other disease states, including neurodegenerative disorders, diabetes, and cardiovascular diseases, as has ET-1 in the pathophysiology of these conditions. However, to date, there has been no investigation of the link between ET-1 and the induction of ER stress in these disease states. Based on recent evidence and mechanistic insight into the role of ET-1 in the induction of placental ER stress, the following review attempts to outline the broader implications of ET-1-induced ER stress, as well as strategies for therapeutic intervention based around ET-1.
Collapse
Affiliation(s)
- Arjun Jain
- Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland.
| |
Collapse
|
27
|
Hong GU, Kim NG, Jeoung D, Ro JY. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells. J Neuroimmunol 2013; 260:60-73. [PMID: 23622820 DOI: 10.1016/j.jneuroim.2013.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/08/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development.
Collapse
Affiliation(s)
- Gwan Ui Hong
- Department of Pharmacology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | |
Collapse
|
28
|
Delimitreva S, Wedi E, Bakker J, Tkachenko OY, Nikolova V, Nayudu PL. Numerical chromosome disorders in the common marmoset (Callithrix jacchus)--comparison between two captive colonies. J Med Primatol 2013; 42:177-85. [PMID: 23600894 DOI: 10.1111/jmp.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chromosomal analyses were performed for marmosets from two colonies - Deutsches Primatenzentrum (DPZ) and Biomedical Primate Research Centre (BPRC). Chlorine-based disinfectants are used in DPZ; no chemical disinfection is applied in BPRC. METHODS The rates of chromosomal non-disjunction, polyploidy and endoreduplication were investigated after G-banding. RESULTS For DPZ monkeys, the mean rates of non-disjunction were 7.6% for bone marrow and 11.3% for lymphocytes. The polyploidy level was 2.5% in bone marrow and 0.8% in blood. Frequency of endoreduplication in bone marrow and in leucocytes was 0.5% and 0.8%, respectively. For BPRC, the rate of non-disjunction in leucocytes (1.3%) was significantly lower than that for DPZ; the polyploidy rate (0.2%) in blood was lower than that in DPZ; endoreduplication was not observed. CONCLUSION The levels of chromosomal disorders are elevated for DPZ colony. We suggest that the increased rate of chromosomal disorders in DPZ marmosets can be related to the chemical disinfection of their environment.
Collapse
Affiliation(s)
- S Delimitreva
- Laboratory of Reproductive Biomedicine, German Primate Center, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Diekmann U, Naujok O, Blasczyk R, Müller T. Embryonic stem cells of the non-human primate Callithrix jacchus can be differentiated into definitive endoderm by Activin-A but not IDE-1/2. J Tissue Eng Regen Med 2013; 9:473-9. [PMID: 23418163 DOI: 10.1002/term.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 11/01/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Abstract
Pluripotent stem cells hold great promise for regenerative medicine, due to their unlimited self-renewal potential and the ability to differentiate into all somatic cell types. Differences between the rodent disease models and the situation in humans can be narrowed down with non-human primate models. The common marmoset monkey (Callithrix jacchus) is an interesting model for biomedical research because these animals are easy to breed, get relatively old (≤ 13 years), are small in size, are relatively cost-effective and have a high genetic proximity to the human. In particular, diseases of the liver and pancreas are interesting for cell replacement therapies but the in vitro differentiation of ESCs into the definitive endoderm germ layer is still a demanding task. Membrane-permeable, chemically defined small molecules can possibly replace recombinant growth factors used in most directed differentiation protocols. However, the potent small molecules IDE-1 and IDE-2 were not able to induce definitive endoderm-like cells when ESCs from the common marmoset were treated with these compounds, whereas the recombinant growth factor Activin A could force the differentiation into this lineage. Our results indicate that ESCs from the common marmoset are less sensitive or even insensitive to these small molecules. Thus, differences between the species of human ESCs and ESCs of this non-human primate might be a useful model to further evaluate the exact mode of action of these compounds.
Collapse
Affiliation(s)
- Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
30
|
't Hart BA, Chalan P, Koopman G, Boots AMH. Chronic autoimmune-mediated inflammation: a senescent immune response to injury. Drug Discov Today 2012. [PMID: 23195330 DOI: 10.1016/j.drudis.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing prevalence of chronic autoimmune-mediated inflammatory diseases (AIMIDs) in ageing western societies is a major challenge for the drug development industry. The current high medical need for more-effective treatments is at least in part caused by our limited understanding of the mechanisms that drive chronic inflammation. Here, we postulate a role for immunosenescence in the progression of acute to chronic inflammation via a dysregulated response to primary injury at the level of the damaged target organ. A corollary to this notion is that treatment of acute versus chronic phases of disease might require differential targeting strategies.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
31
|
Seehase S, Lauenstein HD, Schlumbohm C, Switalla S, Neuhaus V, Förster C, Fieguth HG, Pfennig O, Fuchs E, Kaup FJ, Bleyer M, Hohlfeld JM, Braun A, Sewald K, Knauf S. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing. PLoS One 2012; 7:e43709. [PMID: 22952743 PMCID: PMC3429492 DOI: 10.1371/journal.pone.0043709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/25/2012] [Indexed: 01/18/2023] Open
Abstract
Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS)-induced inflammation model was established in marmoset monkeys (Callithrix jacchus) to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS) were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4) inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-1 beta (MIP-1β) were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL) was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50)). LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sophie Seehase
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Hans-Dieter Lauenstein
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | | | - Simone Switalla
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Vanessa Neuhaus
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Christine Förster
- Institute of Pathology, Klinikum Region Hannover Klinikum Nordstadt, Hannover, Germany
| | - Hans-Gerd Fieguth
- Division of Thoracic Surgery, Klinikum Region Hannover Klinikum Oststadt-Heidehaus, Hannover, Germany
| | - Olaf Pfennig
- Institute of Pathology, Klinikum Region Hannover Klinikum Nordstadt, Hannover, Germany
| | | | - Franz-Josef Kaup
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Martina Bleyer
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Jens M. Hohlfeld
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Sascha Knauf
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
32
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1085] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
33
|
B-cell depletion attenuates white and gray matter pathology in marmoset experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2011; 70:992-1005. [PMID: 22002426 DOI: 10.1097/nen.0b013e318234d421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein in complete Freund adjuvant. At 21 days after immunization, B-cell depletion was achieved by weekly intravenous injections of HuMab 7D8, a human-anti-human CD20 antibody that cross-reacts with marmoset CD20. In vivo magnetic resonance imaging showed widespread brain white matter demyelination in control marmosets that was absent in CD20 antibody-treated marmosets. High-contrast postmortem magnetic resonance imaging showed white matter lesions in 4of the 7 antibody-treated marmosets, but these were significantly smaller than those in controls. The same technique revealed gray matter lesions in 5 control marmosets, but none in antibody-treated marmosets. Histologic analysis confirmed that inflammation, demyelination, and axonal damage were substantially reduced in brain, spinal cord, and optic nerves of CD20 antibody-treated marmosets. In conclusion, CD20-postive B-cell depletion by HuMab 7D8 profoundly reduced the development of both white and gray matter lesions in the marmoset CNS. These data underline the central role of B cells in CNS inflammatory-demyelinating disease.
Collapse
|
34
|
BATOULIS HELENA, RECKS MASCHAS, ADDICKS KLAUS, KUERTEN STEFANIE. Experimental autoimmune encephalomyelitis - achievements and prospective advances. APMIS 2011; 119:819-30. [DOI: 10.1111/j.1600-0463.2011.02794.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Shohreh R, Pardo CA, Guaraldi F, Schally AV, Salvatori R. GH, but not GHRH, plays a role in the development of experimental autoimmune encephalomyelitis. Endocrinology 2011; 152:3803-10. [PMID: 21846799 DOI: 10.1210/en.2011-1317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GH has been suggested to influence the function of the immune system in several species. Experimental autoimmune encephalomyelitis (EAE) (an animal model for multiple sclerosis) has been reported not to occur in GH-deficient (GHD) mice. The aim of this study was to elucidate the effects of GH and GHRH replacement on development of EAE in a mouse model of isolated GHD due to removal of the GHRH gene [GHRH knockout (GHRHKO)]. We studied two groups of adult female mice: 12 GH-sufficient animals (control) and 36 GHRHKO animals. All mice were immunized with myelin oligodendrocyte glycoprotein peptide, a peptide known to induce EAE. GHRHKO mice were left untreated or were treated for 4 wk with daily sc injections of recombinant GH or of a GHRH super agonist JI-38 (JI38-GHD). Evaluation of EAE symptoms was carried out daily, and T-proliferative assay and histopathological analysis of the spinal cord were performed. GHRHKO mice were less prone to develop EAE when compared with control mice. GH (but not JI-38) restored the original susceptibility of mice to the disease, despite lack of complete serum IGF-I normalization. GH treatment was also associated with a markedly increase in spleen size and T-cell proliferation specific to myelin oligodendrocyte glycoprotein peptide. GH (but not GHRH) plays an important role in the development of EAE.
Collapse
Affiliation(s)
- Rugia Shohreh
- Division of Endocrinology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
36
|
Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. THE JOURNAL OF IMMUNOLOGY 2011; 187:4788-99. [PMID: 21964030 DOI: 10.4049/jimmunol.1004111] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress is a homeostatic mechanism, which is used by cells to adapt to intercellular and intracellular changes. Moreover, ER stress is closely linked to inflammatory pathways. We hypothesized that ER stress is an integral component of neuroinflammation and contributes to the development of neurological diseases. In autopsied brain specimens from multiple sclerosis (MS) and non-MS patients, XBP-1 spliced variant (XBP-1/s) was increased in MS brains (p < 0.05) and was correlated with the expression of the human endogenous retrovirus-W envelope transcript, which encodes the glycoprotein, Syncytin-1 (p < 0.05). In primary human fetal astrocytes transfected with a Syncytin-1-expressing plasmid, XBP-1/s, BiP, and NOS2 were induced, which was suppressed by crocin treatment (p < 0.05). Crocin also protected oligodendrocytes exposed to cytotoxic supernatants derived from Syncytin-1-expressing astrocytes (p < 0.05) and NO-mediated oligodendrocytotoxicity (p < 0.05). During experimental autoimmune encephalomyelitis (EAE), the transcript levels of the ER stress genes XBP-1/s, BiP, PERK, and CHOP were increased in diseased spinal cords compared with healthy littermates (p < 0.05), although CHOP expression was not involved in the EAE disease phenotype. Daily treatment with crocin starting on day 7 post-EAE induction suppressed ER stress and inflammatory gene expression in spinal cords (p < 0.05), which was accompanied by preserved myelination and axonal density, together with reduced T cell infiltration and macrophage activation. EAE-associated neurobehavioral deficits were also ameliorated by crocin treatment (p < 0.05). These findings underscored the convergent roles of pathogenic ER stress and immune pathways in neuroinflammatory disease and point to potential therapeutic applications for crocin.
Collapse
Affiliation(s)
- André M Deslauriers
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
D'Intino G, Lorenzini L, Fernandez M, Taglioni A, Perretta G, Del Vecchio G, Villoslada P, Giardino L, Calzà L. Triiodothyronine administration ameliorates the demyelination/remyelination ratio in a non-human primate model of multiple sclerosis by correcting tissue hypothyroidism. J Neuroendocrinol 2011; 23:778-90. [PMID: 21707794 DOI: 10.1111/j.1365-2826.2011.02181.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Remyelination failure is a key landmark in chronic progression of multiple sclerosis (MS), the most diffuse demyelinating disease in human, but the reasons for this are still unknown. It has been shown that thyroid hormone administration in the rodent models of acute and chronic demyelinating diseases improved their clinical course, pathology and remyelination. In the present study, we translated this therapeutic attempt to experimental allergic encephalomyelitis (EAE) in the non-human primate Callithrix Jacchus (marmoset). We report that short protocols of triiodothyronine treatment shifts the demyelination/remyelination balance toward remyelination, as assessed by morphology, immunohistochemistry and molecular biology, and improves the clinical course of the disease. We also found that severely ill animals display hypothyroidism and severe alteration of deiodinase and thyroid hormone receptor mRNAs expression in the spinal cord, which was completely corrected by thyroid hormone treatment. We therefore suggest that thyroid hormone treatment improves myelin sheath morphology in marmoset EAE, by correcting the dysfunction of thyroid hormone cellular effectors.
Collapse
Affiliation(s)
- G D'Intino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
In vivo quantification of T₂ anisotropy in white matter fibers in marmoset monkeys. Neuroimage 2011; 59:979-85. [PMID: 21906687 DOI: 10.1016/j.neuroimage.2011.08.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/10/2011] [Accepted: 08/21/2011] [Indexed: 12/11/2022] Open
Abstract
T₂-weighted MRI at high field is a promising approach for studying noninvasively the tissue structure and composition of the brain. However, the biophysical origin of T₂ contrast, especially in white matter, remains poorly understood. Recent work has shown that R₂ (=1/T₂) may depend on the tissue's orientation relative to the static magnetic field (B(0)) and suggested that this dependence could be attributed to local anisotropy in the magnetic properties of brain tissue. In the present work, we analyzed high-resolution, multi-gradient-echo images of in vivo marmoset brains at 7T, and compared them with ex vivo diffusion tensor images, to show that R₂ relaxation in white matter is highly sensitive to the fiber orientation relative to the main field. We directly demonstrate this orientation dependence by performing in vivo multi-gradient-echo experiments in two orthogonal brain positions, uncovering a nearly 50% change in the R₂ relaxation rate constant of the optic radiations. We attribute this substantial R₂ anisotropy to local subvoxel susceptibility effects arising from the highly ordered and anisotropic structure of the myelin sheath.
Collapse
|
39
|
Kim DY, Hong GU, Ro JY. Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation 2011; 8:25. [PMID: 21410936 PMCID: PMC3068960 DOI: 10.1186/1742-2094-8-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background Astrocytes, which play an active role in chronic inflammatory diseases like multiple sclerosis, exist close to mast cells with which they share perivascular localization. We previously demonstrated the possibility that astrocytes and mast cells interact in vitro and in vivo. This study aimed to investigate the signaling pathways and the role for astrocytes in the interaction of astrocytes and mast cells. Methods We co-cultured human U87 glioblastoma (U87) and human mast cell-1 (HMC-1) cell lines, and mouse cerebral cortices-derived astrocytes and mouse bone marrow-derived mast cells (BMMCs). Intracellular Ca2+ ([Ca2+]i) was measured by confocal microscopy; CD40 siRNA by Silencer Express Kit; small GTPases by GTP-pull down assay; PKCs, MAPKs, CD40, CD40L, Jak1/2, STAT1, TNF receptor 1 (TNFR1) by Western blot; NF-κB and AP-1 by EMSA; cytokines by RT-PCR. An experimental allergic encephalomyelitis (EAE) model was induced using myelin oligodendrocyte glycoprotein (MOG) peptide and pertussis toxin in mice. Co-localization of TNFR1 and astrocytes in EAE brain tissues was determined by immunohistochemistry. Results Each astrocyte co-culture had increases in [Ca2+]i levels, release of cytokines and chemokines; activities of Rho-family GTPases, NF-κB/AP-1/STAT1727, and Jack1/2, STAT1701. These effects were inhibited by anti-CD40 antibody or CD40 siRNA, and signaling pathways for Jak1/2 were inhibited by anti-TNFR1 antibody. EAE score, expression of TNFR1, and co-localization of TNFR1 and astrocytes were enhanced in brain of the EAE model. Anti-CD40 antibody or 8-oxo-dG pretreatment reduced these effects in EAE model. Conclusions These data suggest that astrocytes activated by the CD40-CD40L interaction in co-culture induce inflammatory cytokine production via small GTPases, and the secreted cytokines re-activate astrocytes via Jak/STAT1701 pathways, and then release more cytokines that contribute to exacerbating the development of EAE. These findings imply that the pro-inflammatory mediators produced by cell-to-cell cross-talk via interaction of CD40-CD40L may be as a promising therapeutic target for neurodegenerative diseases like MS.
Collapse
Affiliation(s)
- Dae Yong Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | |
Collapse
|
40
|
Baker D, Gerritsen W, Rundle J, Amor S. Critical appraisal of animal models of multiple sclerosis. Mult Scler 2011; 17:647-57. [PMID: 21372117 DOI: 10.1177/1352458511398885] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a spectrum of neurological disorders in laboratory animals that is used to model multiple sclerosis (MS). However, few agents have translated from efficacy in EAE to the treatment of human disease. Although this may reflect species differences in pathological disease mechanisms, importantly it may also relate to the practice of how drugs and models are currently used. This often bears very little resemblance to the clinical scenarios where treatments are investigated, such that lack of appreciation of the biology of disease may doom drugs to failure. The use of EAE is critically appraised with the aim of provoking thought, improving laboratory practise and aiding researchers and reviewers to address quality issues when undertaking, reporting and interpreting animal studies related to MS research. This is important as many researchers using EAE could and should do more to improve the quality of the studies.
Collapse
Affiliation(s)
- David Baker
- Neuroscience and Trauma Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK.
| | | | | | | |
Collapse
|
41
|
Rajaiah R, Puttabyatappa M, Polumuri SK, Moudgil KD. Interleukin-27 and interferon-gamma are involved in regulation of autoimmune arthritis. J Biol Chem 2010; 286:2817-25. [PMID: 21123181 DOI: 10.1074/jbc.m110.187013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inflammation underlying immune pathology and tissue damage involves an intricate interplay between multiple immunological and biochemical mediators. Cytokines represent the key immune mediators that trigger a cascade of reactions that drive processes such as angiogenesis and proteolytic damage to tissues. IL-17 has now been shown to be a pivotal cytokine in many autoimmune diseases, supplanting the traditional Th1-Th2 paradigm. Also, the dual role of proinflammatory IFN-γ has unraveled new complexities in the cytokine biology of such disorders. A major hurdle in fully understanding the effector pathways in these disorders is the lack of information regarding the temporal kinetics of the cytokines during the course of the disease, as well as the interplay among the key cytokines. Using an experimental model of arthritic inflammation, we demonstrate that the temporal expression of cytokines during the incubation phase is a critical determinant of disease susceptibility. The susceptible rats raised a vigorous IL-17 response early, followed by IFN-γ and IL-27 response in that sequence, whereas the resistant rats displayed an early and concurrent response to these three cytokines. Accordingly, treatment with exogenous IFN-γ/IL-27 successfully controlled arthritic inflammation and inhibited the defined mediators of inflammation, angiogenesis, cell survival, apoptosis, and tissue damage. Furthermore, IFN-γ enhanced IL-27 secretion, revealing a cooperative interplay between the two cytokines. Our results offer a novel immunobiochemical perspective on the pathogenesis of autoimmune arthritis and its therapeutic control.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
42
|
Vierboom MPM, Breedveld E, Kondova I, 't Hart BA. Collagen-induced arthritis in common marmosets: a new nonhuman primate model for chronic arthritis. Arthritis Res Ther 2010; 12:R200. [PMID: 20977720 PMCID: PMC2991037 DOI: 10.1186/ar3172] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION There is an ever-increasing need for animal models to evaluate efficacy and safety of new therapeutics in the field of rheumatoid arthritis (RA). Particularly for the early preclinical evaluation of human-specific biologicals targeting the progressive phase of the disease, there is a need for relevant animal models. In response to this requirement we set out to develop a model of collagen-induced arthritis (CIA) in a small-sized nonhuman primate species (300 to 400 g at adult age); that is, the common marmoset (Callithrix jacchus). METHODS Twenty-two animals divided into three experiments were immunized with collagen type II (CII) of either bovine or chicken origin with different immunization strategies. The animals were analyzed for clinical manifestation of arthritis, hematology and clinical chemistry, immunological responses against CII and histopathological features of the arthritis. RESULTS Clinically manifest arthritis was observed in almost 100% (21 out of 22) of the animals. Fifty percent of the animals developed semi-acute CIA while the other 50% displayed a more chronic disease. Both cellular (CD3/CD4 and CD3/CD8) and humoral responses (IgM and IgG) against CII were involved in the development of the disease. Besides mild histopathological changes in bone and cartilage, severe inflammation in extraarticular tissues like periosteum and subcutaneous tissues was observed. CONCLUSIONS This new model in marmosets more closely resembles chronic RA with respect to the chronic disease course and pathomorphological presentation than the more acute monophasic and destructive CIA model in macaques. This model can therefore fill a niche in preclinical testing of new human specific therapeutics.
Collapse
Affiliation(s)
- Michel P M Vierboom
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 2010; 115:829-44. [DOI: 10.1111/j.1471-4159.2010.06982.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Kap YS, van Driel N, Blezer E, Parren PWHI, Bleeker WK, Laman JD, Craigen JL, 't Hart BA. Late B cell depletion with a human anti-human CD20 IgG1κ monoclonal antibody halts the development of experimental autoimmune encephalomyelitis in marmosets. THE JOURNAL OF IMMUNOLOGY 2010; 185:3990-4003. [PMID: 20739677 DOI: 10.4049/jimmunol.1001393] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Depletion of CD20(+) B cells has been related to reduced clinical activity in relapsing-remitting multiple sclerosis. The underlying mechanism is not understood, because serum IgG levels were unaltered by the treatment. We report the effect of late B cell depletion on cellular and humoral immune mechanisms in a preclinical multiple sclerosis model (i.e., experimental autoimmune encephalomyelitis [EAE] in the common marmoset). We used a novel human anti-human CD20 IgG1κ mAb (HuMab 7D8) that cross-reacts with marmoset CD20. EAE was induced in 14 marmosets by immunization with recombinant human myelin oligodendrocyte glycoprotein (MOG) in CFA. After 21 d, B cells were depleted in seven monkeys by HuMab 7D8, and seven control monkeys received PBS. The Ab induced profound and long-lasting B cell depletion from PBMCs and lymphoid organs throughout the observation period of 106 d. Whereas all of the control monkeys developed clinically evident EAE, overt neurologic deficits were reduced substantially in three HuMab 7D8-treated monkeys, and four HuMab 7D8-treated monkeys remained completely asymptomatic. The effect of HuMab 7D8 was confirmed on magnetic resonance images, detecting only small lesions in HuMab 7D8-treated monkeys. The infusion of HuMab 7D8 arrested the progressive increase of anti-MOG IgG Abs. Although CD3(+) T cell numbers in lymphoid organs were increased, their proliferation and cytokine production were impaired significantly. Most notable were the substantially reduced mRNA levels of IL-7 and proinflammatory cytokines (IL-6, IL-17A, IFN-γ, and TNF-α). In conclusion, B cell depletion prevents the development of clinical and pathological signs of EAE, which is associated with impaired activation of MOG-reactive T cells in lymphoid organs.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Effects of early IL-17A neutralization on disease induction in a primate model of experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010; 6:341-53. [PMID: 20700661 PMCID: PMC3128270 DOI: 10.1007/s11481-010-9238-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/28/2010] [Indexed: 11/24/2022]
Abstract
We report on the effect of antibody-mediated neutralization of interleukin (IL)-17A in a non-human primate experimental autoimmune encephalomyelitis (EAE) model induced with recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We tested a human-anti-human IL-17A-antibody in two doses (3 and 30 mg/kg) against placebo (PBS). The treatment was started 1 day before EAE induction and continued throughout the experiment. Although all monkeys developed clinically evident EAE, the onset of neurological signs was delayed in some monkeys from both treatment groups. Total CNS lesion volumes, demyelination, or inflammation did not differ between the different groups. Immune profiling revealed an altered distribution of IL-17A producing cells in the lymphoid organs of antibody-treated monkeys. Comparable numbers of IL-17A producing cells were observed in the brain. RhMOG-induced T cell proliferation in the lymph nodes was slightly reduced after anti-IL-17A antibody treatment. To summarize, we found that anti-IL-17A antibody as a single treatment from disease induction effects a trend towards delayed neurological disease progression in the marmoset EAE model, although the effect did not reach statistical significance. This suggests a role of IL-17A in late stage disease in the marmoset EAE model, but IL-17A may not be the dominant pathogenic cytokine.
Collapse
|
46
|
Pahan K. Neuroimmune pharmacological control of EAE. J Neuroimmune Pharmacol 2010; 5:165-7. [PMID: 20414732 DOI: 10.1007/s11481-010-9219-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Kalipada Pahan
- Department of Neurological sciences, Rush University Medical Center, Cohn Research Building, Suite 320, 1735 West Harrison St, Chicago, IL 60612, USA.
| |
Collapse
|