1
|
Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 2019; 30:9-30. [PMID: 29804103 DOI: 10.1515/revneuro-2018-0008] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/22/2018] [Indexed: 01/06/2023]
Abstract
A myriad of environmental and genetic factors, as well as the physiologic process of aging, contribute to Alzheimer's disease (AD) pathology. Neuroinflammation is and has been a focus of interest, as a common gateway for initiation of many of the underlying pathologies of AD. Amyloid beta (Aβ) toxicity, increasing RAGE expression, tau hyperphosphorylation, induction of apoptosis, and deregulated autophagy are among other mechanisms, partly entangled and being explained by activation of mitogen-activated protein kinase (MAPK) and MAPK signaling. p38 MAPK is the most essential regulator of Aβ induced toxicity from this family. p38 induces NF-κB activation, glutamate excitotoxicity, and disruption of synaptic plasticity, which are other implications of all justifying the p38 MAPK as a potential target to break the vicious Aβ toxicity cycle. Until recently, many in vivo and in vitro studies have investigated the effects of p38 MAPK inhibitors in AD. The pyridinyl imidazole compounds SB202190 and SB203580 have shown promising anti-apoptotic results in vivo. MW108 inhibits activation of p38 and is able to postpone cognitive decline in animal models. The PD169316, with anti-inflammatory, anti-oxidative, and anti-apoptotic features, has improved spatial memory in vivo. Natural compounds from Camellia sinensis (green tea), polyphenols from olive oil, pinocembrin from propolis, and the puerarine extract isoflavones, have shown strong anti-apoptotic features, mediated by p38 MAPK inhibition. Use of these drug targets is limited due to central nervous system side effects or cross-reactivity with other kinases, predicting the low efficacy of these drugs in clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Kheiri
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Mahsa Dolatshahi
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Farzaneh Rahmani
- Student's Scientific Research Center (SSRC), Tehran University of Medical Sciences, 1416753955 Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran
| | - Nima Rezaei
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), 19166 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| |
Collapse
|
2
|
Roy SM, Minasov G, Arancio O, Chico LW, Van Eldik LJ, Anderson WF, Pelletier JC, Watterson DM. A Selective and Brain Penetrant p38αMAPK Inhibitor Candidate for Neurologic and Neuropsychiatric Disorders That Attenuates Neuroinflammation and Cognitive Dysfunction. J Med Chem 2019; 62:5298-5311. [PMID: 30978288 PMCID: PMC6580366 DOI: 10.1021/acs.jmedchem.9b00058] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The p38αMAPK
is a serine/threonine protein kinase and a key
node in the intracellular signaling networks that transduce and amplify
stress signals into physiological changes. A preponderance of preclinical
data and clinical observations established p38αMAPK as a brain
drug discovery target involved in neuroinflammatory responses and
synaptic dysfunction in multiple degenerative and neuropsychiatric
brain disorders. We summarize the discovery of highly selective, brain-penetrant,
small molecule p38αMAPK inhibitors that are efficacious in diverse
animal models of neurologic disorders. A crystallography and pharmacoinformatic
approach to fragment expansion enabled the discovery of an efficacious
hit. The addition of secondary pharmacology screens to refinement
delivered lead compounds with improved selectivity, appropriate pharmacodynamics,
and efficacy. Safety considerations and additional secondary pharmacology
screens drove optimization that delivered the drug candidate MW01-18-150SRM
(MW150), currently in early stage clinical trials.
Collapse
Affiliation(s)
- Saktimayee M Roy
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - George Minasov
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - Ottavio Arancio
- Columbia University , New York , New York 10032 , United States
| | - Laura W Chico
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | | | - Wayne F Anderson
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - Jeffrey C Pelletier
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| | - D Martin Watterson
- Northwestern University , 320 East Superior Street , Chicago , Illinois 60611 , United States
| |
Collapse
|
3
|
p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 2018; 115:E10245-E10254. [PMID: 30297392 PMCID: PMC6205438 DOI: 10.1073/pnas.1809137115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.
Collapse
|
4
|
Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 2018; 310:14-21. [PMID: 30138606 DOI: 10.1016/j.expneurol.2018.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023]
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by the aggregation of Tau protein. Activated microglia and elevated levels of pro-inflammatory molecules are also pathological hallmarks of tauopathies. In these diseases, intracellular Tau is secreted to the extracellular space, where it interacts with other cells, such as neurons and glia, promoting inflammation. However, the mechanism through which extracellular Tau triggers pro-inflammatory responses in microglia remains unknown. Primary microglia cultures were treated with extracellular Tau in its hyperphosphorylated, dephosphorylated or non-phosphorylated form. Protein cytokine arrays, real-time PCR, inhibition of the p38 MAPK pathway, phosphatase assays, and quantification of proteins through immunoblotting were used to analyze the effect of extracellular Tau on the pro-inflammatory response of microglia. The main finding of this work is that extracellular non-phosphorylated and dephosphorylated forms of Tau, rather than hyperphosphorylated Tau, activate the p38 MAPK pathway in microglia, thus triggering a pro-inflammatory response in these cells.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Maphis N, Jiang S, Xu G, Kokiko-Cochran ON, Roy SM, Van Eldik LJ, Watterson DM, Lamb BT, Bhaskar K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:54. [PMID: 27974048 PMCID: PMC5157054 DOI: 10.1186/s13195-016-0221-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer's disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1. METHOD We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice. RESULTS First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 (pS199/pS202) site tau phosphorylation, with the maximum effect peaking at 60-90 min after stimulation. Second, treatment of old (~20 months of age) hTau mice with MW181 (1 mg/kg body weight; 14 days via oral gavage) significantly reduced p38α MAPK activation compared with vehicle-administered hTau mice. This also resulted in a significant reduction in AT180 (pT231) site tau phosphorylation and Sarkosyl-insoluble tau aggregates. Third, MW181 treatment significantly increased synaptophysin protein expression and resulted in improved working memory. Fourth, MW181 administration reduced phosphorylated MAPK-activated protein kinase 2 (pMK2) and phosphorylated activating transcription factor 2 (pATF2), which are known substrates of p38α MAPK. Finally, MW181 reduced the expression of interferon-γ and interleukin-1β. CONCLUSIONS Taken together, these studies support p38α MAPK as a valid therapeutic target for the treatment of tauopathies.
Collapse
Affiliation(s)
- Nicole Maphis
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, The Ohio State University, 4198 Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800S. Limestone Street, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Alam JJ. Selective Brain-Targeted Antagonism of p38 MAPKα Reduces Hippocampal IL-1β Levels and Improves Morris Water Maze Performance in Aged Rats. J Alzheimers Dis 2016; 48:219-27. [PMID: 26401942 PMCID: PMC4923728 DOI: 10.3233/jad-150277] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: P38 mitogen activated protein kinase (MAPK) α modulates microglia-mediated inflammatory responses and a number of neuronal physiological processes. Objective: To evaluate pre-clinically the pharmacological effects in the brain of p38 MAPKα inhibition with a brain-penetrant specific chemical antagonist. Methods: VX-745, a blood-brain barrier penetrant, highly selective p38 MAPKα inhibitor, and clinical stage investigational drug, was utilized. Initially, a pilot study in 26-month-old Tg2576 mice was conducted. Subsequently, a definitive dose-response study was conducted in aged (20–22 months) rats with identified cognitive deficits; n = 15 per group: vehicle, 0.5, 1.5, and 4.5 mg/kg VX-745 by oral gavage twice daily for 3 weeks. Assessments in aged rats included IL-1β, PSD-95, TNFα protein levels in hippocampus; and Morris water maze (MWM) test for cognitive performance. Results: Drug effect could not be assessed in Tg2576 mice, as little inflammation was evident. In cognitively-impaired aged rats, VX-745 led to significantly improved performance in the MWM and significant reduction in hippocampal IL-1β protein levels, though the effects were dissociated as the MWM effect was evident at a lower dose level than that required to lower IL-1β. Drug concentration-effect relationships and predicted human doses were determined. Conclusions: Selective inhibition of p38 MAPKα with VX-745 in aged rats reduces hippocampal IL-1β levels and improves performance in the MWM. As the two effects occur at different dose levels, the behavioral effect appears to be via a mechanism that is independent of reducing cytokine production. The predicted human doses should minimize risks of systemic toxicity.
Collapse
Affiliation(s)
- John J. Alam
- Correspondence to: John J. Alam, MD, EIP Pharma, LLC, 11 Channing Street, Cambridge, MA 02138, USA. Tel.: +1 617 909 5737;
| |
Collapse
|
7
|
Thompson MG, Larson M, Vidrine A, Barrios K, Navarro F, Meyers K, Simms P, Prajapati K, Chitsike L, Hellman LM, Baker BM, Watkins SK. FOXO3-NF-κB RelA Protein Complexes Reduce Proinflammatory Cell Signaling and Function. THE JOURNAL OF IMMUNOLOGY 2015; 195:5637-47. [PMID: 26561547 DOI: 10.4049/jimmunol.1501758] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
Abstract
Tumor-associated myeloid cells, including dendritic cells (DCs) and macrophages, are immune suppressive. This study demonstrates a novel mechanism involving FOXO3 and NF-κB RelA that controls myeloid cell signaling and impacts their immune-suppressive nature. We find that FOXO3 binds NF-κB RelA in the cytosol, impacting both proteins by preventing FOXO3 degradation and preventing NF-κB RelA nuclear translocation. The location of protein-protein interaction was determined to be near the FOXO3 transactivation domain. In turn, NF-κB RelA activation was restored upon deletion of the same sequence in FOXO3 containing the DNA binding domain. We have identified for the first time, to our knowledge, a direct protein-protein interaction between FOXO3 and NF-κB RelA in tumor-associated DCs. These detailed biochemical interactions provide the foundation for future studies to use the FOXO3-NF-κB RelA interaction as a target to enhance tumor-associated DC function to support or enhance antitumor immunity.
Collapse
Affiliation(s)
- Matthew G Thompson
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Michelle Larson
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Amy Vidrine
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Kelly Barrios
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Flor Navarro
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Kaitlyn Meyers
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Patricia Simms
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Kushal Prajapati
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Lennox Chitsike
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| | - Lance M Hellman
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Brian M Baker
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556
| | - Stephanie K Watkins
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL 60153; and
| |
Collapse
|
8
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
9
|
Roy SM, Grum-Tokars VL, Schavocky JP, Saeed F, Staniszewski A, Teich AF, Arancio O, Bachstetter AD, Webster SJ, Van Eldik LJ, Minasov G, Anderson WF, Pelletier JC, Watterson DM. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer's disease mouse models. ACS Chem Neurosci 2015; 6:666-80. [PMID: 25676389 PMCID: PMC4404319 DOI: 10.1021/acschemneuro.5b00002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
![]()
The
first kinase inhibitor drug approval in 2001 initiated a remarkable
decade of tyrosine kinase inhibitor drugs for oncology indications,
but a void exists for serine/threonine protein kinase inhibitor drugs
and central nervous system indications. Stress kinases are of special
interest in neurological and neuropsychiatric disorders due to their
involvement in synaptic dysfunction and complex disease susceptibility.
Clinical and preclinical evidence implicates the stress related kinase
p38αMAPK as a potential neurotherapeutic target, but isoform
selective p38αMAPK inhibitor candidates are lacking and the
mixed kinase inhibitor drugs that are promising in peripheral tissue
disease indications have limitations for neurologic indications. Therefore,
pursuit of the neurotherapeutic hypothesis requires kinase isoform
selective inhibitors with appropriate neuropharmacology features.
Synaptic dysfunction disorders offer a potential for enhanced pharmacological
efficacy due to stress-induced activation of p38αMAPK in both
neurons and glia, the interacting cellular components of the synaptic
pathophysiological axis, to be modulated. We report a novel isoform
selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that
is efficacious in suppression of hippocampal-dependent associative
and spatial memory deficits in two distinct synaptic dysfunction mouse
models. A synthetic scheme for biocompatible product and positive
outcomes from pharmacological screens are presented. The high-resolution
crystallographic structure of the p38αMAPK/MW150 complex documents
active site binding, reveals a potential low energy conformation of
the bound inhibitor, and suggests a structural explanation for MW150’s
exquisite target selectivity. As far as we are aware, MW150 is without
precedent as an isoform selective p38MAPK inhibitor or as a kinase
inhibitor capable of modulating in vivo stress related behavior.
Collapse
Affiliation(s)
| | | | | | - Faisal Saeed
- Columbia University, New York, New York 10032, United States
| | | | - Andrew F. Teich
- Columbia University, New York, New York 10032, United States
| | - Ottavio Arancio
- Columbia University, New York, New York 10032, United States
| | | | - Scott J. Webster
- University of Kentucky, Lexington, Kentucky 40536, United States
| | | | - George Minasov
- Northwestern University, Chicago, Illinois 60611, United States
| | | | | | | |
Collapse
|
10
|
Bachstetter AD, Xing B, Van Eldik LJ. The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. J Neuroinflammation 2014; 11:175. [PMID: 25297465 PMCID: PMC4193976 DOI: 10.1186/s12974-014-0175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS. METHODS To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models of neuroinflammation in a mouse where p38α is deficient in cells of the myeloid lineage. RESULTS We found that p38α in myeloid cells has an important role in limiting amplitude of the acute proinflammatory cytokine response to a systemic inflammatory challenge. Moreover, we identified IL-10 as a potential negative feedback mechanism regulated by p38α. CONCLUSIONS Our data suggest that p38α regulates a proper balance between the pro- and anti-inflammatory cytokine responses to systemic inflammation, and that if circulating IL-10 levels are not elevated to counter-balance the increased systemic proinflammatory responses, the spread of the inflammatory response from the periphery to the CNS is exaggerated.
Collapse
Affiliation(s)
| | | | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S, Limestone Street, Lexington 40536, KY, USA.
| |
Collapse
|
11
|
Tai LM, Koster KP, Luo J, Lee SH, Wang YT, Collins NC, Ben Aissa M, Thatcher GRJ, LaDu MJ. Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J Biol Chem 2014; 289:30538-30555. [PMID: 25217640 DOI: 10.1074/jbc.m114.600833] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous data demonstrate that bexarotene (Bex), retinoid X receptor (RXR) agonist, reduces soluble and insoluble amyloid-β (Aβ) in Alzheimer disease (AD)-transgenic mice either by increasing the levels of mouse apolipoprotein E (apoE) or increasing ABCA1/ABCG1-induced apoE lipoprotein association/lipidation. However, although the mechanism of action of RXR agonists remains unclear, a major concern for their use is human (h)-APOE4, the greatest AD genetic risk factor. If APOE4 imparts a toxic gain-of-function, then increasing apoE4 may increase soluble Aβ, likely the proximal AD neurotoxin. If the APOE4 loss-of-function is lipidation of apoE4, then induction of ABCA1/ABCG1 may be beneficial. In novel EFAD-Tg mice (overexpressing h-Aβ42 with h-APOE), levels of soluble Aβ (Aβ42 and oligomeric Aβ) are highest in E4FAD hippocampus (HP) > E3FAD-HP > E4FAD cortex (CX) > E3FAD-CX, whereas levels of lipoprotein-associated/lipidated apoE have the opposite pattern (6 months). In E4FAD-HP, short-term RXR agonist treatment (Bex or LG100268; 5.75-6 months) increased ABCA1, apoE4 lipoprotein-association/lipidation, and apoE4/Aβ complex, decreased soluble Aβ, and increased PSD95. In addition, hydrogel delivery, which mimics low sustained release, was equally effective as gavage for Bex and LG100268. RXR agonists induced no beneficial effects in the E4FAD-HP in a prevention protocol (5-6 months) and actually increased soluble Aβ levels in E3FAD-CX and E4FAD-CX with the short-term protocol, possibly the result of systemic hepatomegaly. Thus, RXR agonists address the loss-of-function associated with APOE4 and exacerbated by Aβ pathology, i.e. low levels of apoE4 lipoprotein association/lipidation. Further studies are vital to address whether RXR agonists are an APOE4-specific AD therapeutic and the systemic side effects that limit translational application.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and University of Illinois at Chicago, Chicago, Illinois 60612
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and University of Illinois at Chicago, Chicago, Illinois 60612
| | - Yue-Ting Wang
- UICentre (Drug Discovery at UIC), University of Illinois at Chicago, Chicago, Illinois 60612
| | - Nicole C Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Manel Ben Aissa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and University of Illinois at Chicago, Chicago, Illinois 60612
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|