1
|
Zheng MY, Luo LZ. The Role of IL-17A in Mediating Inflammatory Responses and Progression of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2505. [PMID: 40141149 PMCID: PMC11941770 DOI: 10.3390/ijms26062505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
IL-17A has been implicated as a critical pro-inflammatory cytokine in the pathogenesis of autoimmune and neurodegenerative disorders. Emerging evidence indicates its capacity to activate microglial cells and astrocytes, subsequently inducing the production of inflammatory mediators that exacerbate neuronal injury and functional impairment. Clinical observations have revealed a demonstrated association between IL-17A concentrations and blood-brain barrier (BBB) dysfunction, creating a pathological feedback loop that amplifies neuro-inflammatory responses. Recent advances highlight the cytokine's critical involvement in neurodegenerative disorders through multiple molecular pathways. Therapeutic interventions utilizing monoclonal antibodies (mAbs) against IL-17A or its cognate receptor (IL-17R) have shown promising clinical potential. This review systematically examines the IL-17A-mediated neuro-inflammatory cascades; the mechanistic contributions to neurodegenerative pathology in the established disease models including multiple sclerosis, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis; and current therapeutic strategies targeting the IL-17A signaling pathways. The analysis provides novel perspectives on optimizing cytokine-directed therapies while identifying the key challenges and research priorities for translational applications in neurodegeneration.
Collapse
Affiliation(s)
- Miao-Yan Zheng
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
| | - Lian-Zhong Luo
- School of Pharmacy, Fujian Medical University, Xuefu North Road 1, University Town, Fuzhou 350122, China;
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 1999 Guankouzhong Road, Xiamen 361023, China
| |
Collapse
|
2
|
Wang J, Wu T, Zhao Y, Mao L, Ding J, Wang X. IL-17A Aggravated Blood-Brain Barrier Disruption via Activating Src Signaling in Epilepsy Mice. Mol Neurobiol 2024; 61:11012-11025. [PMID: 38819634 DOI: 10.1007/s12035-024-04203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Inflammation is an important pathogenic driving force in the genesis and development of epilepsy. The latest researches demonstrated that IL-17A mediated blood-brain barrier (BBB) dysfunction through disruption of tight junction protein expression. To investigate whether IL-17A is involved in BBB disruption after acute seizure attack, the pilocarpine model was established with C57BL/6 J (wild type, WT) and IL-17R-deficient mice in vivo and with primary cultured rat brain microvascular endothelial cells in vitro. The mortality rate and brain water content were evaluated at 24 h after status epilepticus, and IL-17A concentration, endothelial tight junction, adherens junction proteins, and albumin leakage were assessed at 0 h, 4 h, 12 h, and 24 h after status epilepticus (SE). IL-17R-deficient mice showed lessen severity of epilepsy than WT mice, accompanied by less albumin leakage, reduced brain water content, decreased IL-17A, and upregulated expression of target proteins (ZO-1, Occludin and VE-cadherin). IL-17R knockout abrogated abnormal upregulation of Src kinase and phosphorylated Src kinase in the setting of SE, and Src kinase inhibitor PP1 abrogated IL-17A-induced SE related endothelial injury in vitro. In conclusion, IL-17A inhibition might be a promising therapeutic option to attenuate endothelial cell injury and further BBB disruption by reducing Src kinase activation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Tingting Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yanan Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| |
Collapse
|
3
|
Wang H, Han S, Xie J, Zhao R, Li S, Li J. IL-17A exacerbates caspase-12-dependent neuronal apoptosis following ischemia through the Src-PLCγ-calpain pathway. Exp Neurol 2024; 379:114863. [PMID: 38871070 DOI: 10.1016/j.expneurol.2024.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Interleukin-17 A (IL-17 A) contributes to inflammation and causes secondary injury in post-stroke patients. However, little is known regarding the mechanisms that IL-17 A is implicated in the processes of neuronal death during ischemia. In this study, the mouse models of middle cerebral artery occlusion/reperfusion (MCAO/R)-induced ischemic stroke and oxygen-glucose deprivation/reoxygenation (OGD/R)-simulated in vitro ischemia in neurons were employed to explore the role of IL-17 A in promoting neuronal apoptosis. Mechanistically, endoplasmic reticulum stress (ERS)-induced neuronal apoptosis was accelerated by IL-17 A activation through the caspase-12-dependent pathway. Blocking calpain or phospholipase Cγ (PLCγ) inhibited IL-17 A-mediated neuronal apoptosis under ERS by inhibiting caspase-12 cleavage. Src and IL-17 A are linked, and PLCγ directly binds to activated Src. This binding causes intracellular Ca2+ flux and activates the calpain-caspase-12 cascade in neurons. The neurological scores showed that intracerebroventricular (ICV) injection of an IL-17 A neutralizing mAb decreased the severity of I/R-induced brain injury and suppressed apoptosis in MCAO mice. Our findings reveal that IL-17 A increases caspase-12-mediated neuronal apoptosis, and IL-17 A suppression may have therapeutic potential for ischemic stroke.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Jinjin Xie
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Ruixue Zhao
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China
| | - Shujuan Li
- The Neurological Department, Fu Wai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100037, PR China.
| | - Junfa Li
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
4
|
Yeh YA, Liao HY, Hsiao IH, Hsu HC, Lin YW. Electroacupuncture Reduced Fibromyalgia-Pain-like Behavior through Inactivating Transient Receptor Potential V1 and Interleukin-17 in Intermittent Cold Stress Mice Model. Brain Sci 2024; 14:869. [PMID: 39335365 PMCID: PMC11430684 DOI: 10.3390/brainsci14090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a widespread musculoskeletal pain associated with psychological disturbances, the etiopathogenesis of which is still not clear. One hypothesis implicates inflammatory cytokines in increasing central and peripheral sensitization along with neuroinflammation, leading to an elevation in pro-inflammatory cytokines, e.g., interleukin-17A (IL-17A), enhanced in FM patients and animal models. The intermittent cold stress (ICS)-induced FM-like model in C57BL/6 mice has been developed since 2008 and proved to have features which mimic the clinical pattern in FM patients such as mechanical allodynia, hyperalgesia, and female predominance of pain. Electroacupuncture (EA) is an effective treatment for relieving pain in FM patients, but its mechanism is not totally clear. It was reported as attenuating pain-like behaviors in the ICS mice model through the transient receptor potential vanilloid 1 (TRPV1) pathway. Limited information indicates that TRPV1-positive neurons trigger IL-17A-mediated inflammation. Therefore, we hypothesized that the IL-17A would be inactivated by EA and TRPV1 deletion in the ICS-induced FM-like model in mice. We distributed mice into a control (CON) group, ICS-induced FM model (FM) group, FM model with EA treatment (EA) group, FM model with sham EA treatment (Sham) group, and TRPV1 gene deletion (Trpv1-/-) group. In the result, ICS-induced mechanical and thermal hyperalgesia increased pro-inflammatory cytokines including IL-6, IL-17, TNFα, and IFNγ in the plasma, as well as TRPV1, IL-17RA, pPI3K, pAkt, pERK, pp38, pJNK, and NF-κB in the somatosensory cortex (SSC) and cerebellum (CB) lobes V, VI, and VII. Moreover, EA and Trpv1-/- but not sham EA countered these effects significantly. The molecular mechanism may involve the pro-inflammatory cytokines, including IL-6, IL-17, TNFα, and IFNγ. IL-17A-IL-17RA play a crucial role in peripheral and central sensitization as well as neuroinflammation and cannot be activated without TRPV1 in the ICS mice model. EA alleviated FM-pain-like behaviors, possibly by abolishing the TRPV1- and IL-17A-related pathways. It suggests that EA is an effective and potential therapeutic strategy in FM.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Chinese Traumatology Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Hsien-Yin Liao
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; (H.-Y.L.)
| | - I-Han Hsiao
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
5
|
Li Y, Lai J, Ran M, Yi T, Zhou L, Luo J, Liu X, Tang X, Huang M, Xie X, Li H, Yang Y, Zou W, Wu J. Alnustone promotes megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway. Eur J Pharmacol 2024; 971:176548. [PMID: 38570080 DOI: 10.1016/j.ejphar.2024.176548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Thrombocytopenia is a disease in which the number of platelets in the peripheral blood decreases. It can be caused by multiple genetic factors, and numerous challenges are associated with its treatment. In this study, the effects of alnustone on megakaryocytes and platelets were investigated, with the aim of developing a new therapeutic approach for thrombocytopenia. METHODS Random forest algorithm was used to establish a drug screening model, and alnustone was identified as a natural active compound that could promote megakaryocyte differentiation. The effect of alnustone on megakaryocyte activity was determined using cell counting kit-8. The effect of alnustone on megakaryocyte differentiation was determined using flow cytometry, Giemsa staining, and phalloidin staining. A mouse model of thrombocytopenia was established by exposing mice to X-rays at 4 Gy and was used to test the bioactivity of alnustone in vivo. The effect of alnustone on platelet production was determined using zebrafish. Network pharmacology was used to predict targets and signaling pathways. Western blotting and immunofluorescence staining determined the expression levels of proteins. RESULTS Alnustone promoted the differentiation and maturation of megakaryocytes in vitro and restored platelet production in thrombocytopenic mice and zebrafish. Network pharmacology and western blotting showed that alnustone promoted the expression of interleukin-17A and enhanced its interaction with its receptor, and thereby regulated downstream MEK/ERK signaling and promoted megakaryocyte differentiation. CONCLUSIONS Alnustone can promote megakaryocyte differentiation and platelet production via the interleukin-17A/interleukin-17A receptor/Src/RAC1/MEK/ERK signaling pathway and thus provides a new therapeutic strategy for the treatment of thrombocytopenia.
Collapse
Affiliation(s)
- Yueyue Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Lai
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Mei Ran
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Taian Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ling Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| | - Xiaoxi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xiaoqin Tang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Miao Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiang Xie
- School of Basic Medical Sciences, Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Hong Li
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Yan Yang
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China; Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Zhang C, Xu S, Hu R, Liu X, Yue S, Li X, Dai B, Liang C, Zhan C. Unraveling CCL20's role by regulating Th17 cell chemotaxis in experimental autoimmune prostatitis. J Cell Mol Med 2024; 28:e18445. [PMID: 38801403 PMCID: PMC11129727 DOI: 10.1111/jcmm.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shun Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Rui‐Jie Hu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xian‐Hong Liu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shao‐Yu Yue
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Ling Li
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Bang‐Shun Dai
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chao‐Zhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chang‐Sheng Zhan
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
7
|
Puthenparampil M, Marin A, Zanotelli G, Mauceri VA, De Napoli F, Gaggiola M, Miscioscia A, Ponzano M, Bovis F, Perini P, Rinaldi F, Molon B, Gallo P. Blood-brain barrier damage associates with glia-related cytokines in the cerebrospinal fluid of patients with Multiple Sclerosis. Mult Scler Relat Disord 2024; 82:105403. [PMID: 38184910 DOI: 10.1016/j.msard.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The presence of Blood-Brain Barrier (BBB) dysfunction is defined by albumin quotient (QALB) and characterize a group of Multiple Sclerosis (MS) patients at clinical onset. We evaluated the concentration in cerebrospinal fluid (CSF) of 87 cytokines, to better characterize the CSF inflammatory pattern in presence of BBB damage. MATERIALS AND METHOD In an exploratory cohort, CSF cytokines were evaluated by means of Multiplex technology (Bio-Plex Pro-Human Cytokine, GF and Diabetes 27-Plex Panel, Bio-Plex Pro-Human Chemokines 40-Plex Panel, Bio-Plex Pro-Human Inflammation Assays 37-Plex Panel) in a cohort of Other Not Inflammatory Neurological Disorders (ONIND) and in cohort of patients with MS, stratified according to BBB damage into QALB+ and QALB- MS patients. In the validation cohort, we evaluated the relevant molecules in a cohort of MS patients, stratified again into QALB+ and QALB-, including also Neurofilament Light (NfL) and Chitinase 3-like 1 (CHI3L1) CSF concentration. RESULTS While MIP-1α, CXCL-13, and CCL-22 CSF concentrations were higher in both MS groups compared to ONIND, in QALB+ MS CSF concentrations of CXCL-9 (17.85 ± 4.69 pg/mL), CXCL-10 (476.5 ± 324.3 pg/mL), and IL-16 (96.08 ± 86.17 pg/mL) were higher than in QALB- MS (8.98 ± 5368 pg/mL, p < 0.005, 281.0 ± 180.9 pg/mL, p < 0.05, and 47.35 ± 36.87 pg/mL, p < 0.005, respectively) and ONIND (8.98 ± 5368 pg/mlL, p < 0.005, 281.0 ± 180.9 pg/mL, p < 0.005, and 47.35 ± 36.87 pg/mL, p < 0.001, respectively). A strong correlation was observed between CXCL-9 and CXCL-10 in all MS groups (all r>0.75, all p < 0.001). In the validation cohort again CXCL-10 CSF concentration were higher in QALB+ MS than in QALB- MS (94.25 ± 64.75 vs 153.8 ± 99.52, p < 0.05), while no difference was observed in serum. CSF NfL (1642 ± 1963 vs 3231 ± 3492 pg/mL, p < 0.05) and CHI3L1 (183.9 ± 86.62 vs 262 ± 137.5 ng/mL, p < 0.05) were increased in QALB+ MS. CONCLUSIONS BBB damage in MS is linked to a specific CSF cytokines pattern (CXCL-9, CXCL-10, IL-16), that are also involved in astrocyte-microglia interaction. To what extent their continuous production in the CNS may mark a more severe disease course merits to be investigated.
Collapse
Affiliation(s)
- M Puthenparampil
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy.
| | - A Marin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - G Zanotelli
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - V A Mauceri
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - F De Napoli
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - M Gaggiola
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - A Miscioscia
- Department of Neurosciences, University of Padua, Padua, Italy
| | - M Ponzano
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova, Italy
| | - F Bovis
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genova, Italy
| | - P Perini
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - F Rinaldi
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - P Gallo
- Department of Neurosciences, University of Padua, Padua, Italy; Multiple Sclerosis Centre, Azienda Ospedaliera di Padova, Padua, Italy
| |
Collapse
|
8
|
Ye Y, Gao M, Shi W, Gao Y, Li Y, Yang W, Zheng X, Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer's disease. Front Immunol 2024; 14:1325530. [PMID: 38259476 PMCID: PMC10800421 DOI: 10.3389/fimmu.2023.1325530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroinflammation has been identified as another significant pathogenic factor in Alzheimer's disease following Aβ amyloid deposition and tau protein hyperphosphorylation, activated in the central nervous system by glial cells in response to injury-related and pathogen-related molecular patterns. Moderate glial cell activity can be neuroprotective; however, excessive glial cell activation advances the pathology of Alzheimer's disease and is accompanied by structural changes in the brain interface, with peripheral immune cells entering the brain through the blood-brain barrier, creating a vicious circle. The immunomodulatory properties of mesenchymal stem cells (MSCs) are primarily conveyed through extracellular vesicles (EVs). MSC-EVs participate in chronic inflammatory and immune processes by transferring nucleic acids, proteins and lipids from the parent cell to the recipient cell, thus MSC-EVs retain their immunomodulatory capacity while avoiding the safety issues associated with living cell therapy, making them a promising focus for immunomodulatory therapy. In this review, we discuss the modulatory effects of MSC-EVs on Alzheimer's disease-associated immune cells and the mechanisms involved in their treatment of the condition. We have found a clinical trial of MSC-EVs in Alzheimer's disease treatment and outlined the challenges of this approach. Overall, MSC-EVs have the potential to provide a safe and effective treatment option for Alzheimer's disease by targeting neuroinflammation.
Collapse
Affiliation(s)
- Yang Ye
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingzhu Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| | - Wentao Shi
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yan Gao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaomin Zheng
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Central Hospital of Jiangnan University, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
9
|
Milicevic KD, Bataveljic DB, Bogdanovic Pristov JJ, Andjus PR, Nikolic LM. Astroglial Cell-to-Cell Interaction with Autoreactive Immune Cells in Experimental Autoimmune Encephalomyelitis Involves P2X7 Receptor, β 3-Integrin, and Connexin-43. Cells 2023; 12:1786. [PMID: 37443820 PMCID: PMC10340259 DOI: 10.3390/cells12131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In multiple sclerosis (MS), glial cells astrocytes interact with the autoreactive immune cells that attack the central nervous system (CNS), which causes and sustains neuroinflammation. However, little is known about the direct interaction between these cells when they are in close proximity in the inflamed CNS. By using an experimental autoimmune encephalomyelitis (EAE) model of MS, we previously found that in the proximity of autoreactive CNS-infiltrated immune cells (CNS-IICs), astrocytes respond with a rapid calcium increase that is mediated by the autocrine P2X7 receptor (P2X7R) activation. We now reveal that the mechanisms regulating this direct interaction of astrocytes and CNS-IICs involve the coupling between P2X7R, connexin-43, and β3-integrin. We found that P2X7R and astroglial connexin-43 interact and concentrate in the immediate proximity of the CNS-IICs in EAE. P2X7R also interacts with β3-integrin, and the block of astroglial αvβ3-integrin reduces the P2X7R-dependent calcium response of astrocytes upon encountering CNS-IICs. This interaction was dependent on astroglial mitochondrial activity, which regulated the ATP-driven P2X7R activation and facilitated the termination of the astrocytic calcium response evoked by CNS-IICs. By further defining the interactions between the CNS and the immune system, our findings provide a novel perspective toward expanding integrin-targeting therapeutic approaches for MS treatment by controlling the cell-cell interactions between astrocytes and CNS-IICs.
Collapse
Affiliation(s)
- Katarina D. Milicevic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela B. Bataveljic
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena J. Bogdanovic Pristov
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Pavle R. Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljiljana M. Nikolic
- Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Singh Gautam A, Kumar Singh R. Therapeutic potential of targeting IL-17 and its receptor signaling in neuroinflammation. Drug Discov Today 2023; 28:103517. [PMID: 36736763 DOI: 10.1016/j.drudis.2023.103517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/26/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
T helper 17 cells are thought to significantly contribute to the neuroinflammation process during neurogenerative diseases via their signature cytokine, interleukin (IL)-17. Recently, an emerging key role of IL-17 and its receptors has been documented in inflammatory and autoimmune diseases. The clinical studies conducted on patients with neurodegenerative disease have also shown an increase in IL-17 levels in serum as well as cerebrospinal fluid samples. Therapeutic targeting of either IL-17 receptors or direct IL-17 neutralizing antibodies has shown a promising preclinical and clinical proof of concept for treating chronic autoimmune neurodegenerative diseases such as multiple sclerosis. Thus, IL-17 and its receptors have a central role in regulation of neuroinflammation and can be considered as one of the major therapeutic targets in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
11
|
Liu X, Zhang L, Cao Y, Jia H, Li X, Li F, Zhang S, Zhang J. Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Front Immunol 2023; 13:1088827. [PMID: 36741357 PMCID: PMC9889855 DOI: 10.3389/fimmu.2022.1088827] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder or death, with a heavy burden on individuals and families. While sustained primary insult leads to damage, subsequent secondary events are considered key pathophysiological characteristics post-TBI, and the inflammatory response is a prominent contributor to the secondary cascade. Neuroinflammation is a multifaceted physiological response and exerts both positive and negative effects on TBI. Extracellular vesicles (EVs), as messengers for intercellular communication, are involved in biological and pathological processes in central nervous system (CNS) diseases and injuries. The number and characteristics of EVs and their cargo in the CNS and peripheral circulation undergo tremendous changes in response to TBI, and these EVs regulate neuroinflammatory reactions by activating prominent receptors on receptor cells or delivering pro- or anti-inflammatory cargo to receptor cells. The purpose of this review is to discuss the possible neuroinflammatory mechanisms of EVs and loading in the context of TBI. Furthermore, we summarize the potential role of diverse types of cell-derived EVs in inflammation following TBI.
Collapse
Affiliation(s)
- Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiyao Cao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Haoran Jia
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Xiaotian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Fanjian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| |
Collapse
|
12
|
Thomas AM, Yang E, Smith MD, Chu C, Calabresi PA, Glunde K, van Zijl PCM, Bulte JWM. CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice. J Neuroinflammation 2022; 19:130. [PMID: 35659311 PMCID: PMC9164344 DOI: 10.1186/s12974-022-02493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a neurodegenerative disease, wherein aberrant immune cells target myelin-ensheathed nerves. Conventional magnetic resonance imaging (MRI) can be performed to monitor damage to the central nervous system that results from previous inflammation; however, these imaging biomarkers are not necessarily indicative of active, progressive stages of the disease. The immune cells responsible for MS are first activated and sensitized to myelin in lymph nodes (LNs). Here, we present a new strategy for monitoring active disease activity in MS, chemical exchange saturation transfer (CEST) MRI of LNs. METHODS AND RESULTS We studied the potential utility of conventional (T2-weighted) and CEST MRI to monitor changes in these LNs during disease progression in an experimental autoimmune encephalomyelitis (EAE) model. We found CEST signal changes corresponded temporally with disease activity. CEST signals at the 3.2 ppm frequency during the active stage of EAE correlated significantly with the cellular (flow cytometry) and metabolic (mass spectrometry imaging) composition of the LNs, as well as immune cell infiltration into brain and spinal cord tissue. Correlating primary metabolites as identified by matrix-assisted laser desorption/ionization (MALDI) imaging included alanine, lactate, leucine, malate, and phenylalanine. CONCLUSIONS Taken together, we demonstrate the utility of CEST MRI signal changes in superficial cervical LNs as a complementary imaging biomarker for monitoring disease activity in MS. CEST MRI biomarkers corresponded to disease activity, correlated with immune activation (surface markers, antigen-stimulated proliferation), and correlated with LN metabolite levels.
Collapse
Affiliation(s)
- Aline M Thomas
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chengyan Chu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, MD, 21205, Baltimore, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Krishnarajah S, Becher B. T H Cells and Cytokines in Encephalitogenic Disorders. Front Immunol 2022; 13:822919. [PMID: 35320935 PMCID: PMC8934849 DOI: 10.3389/fimmu.2022.822919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The invasion of immune cells into the central nervous system (CNS) is a hallmark of the process we call neuroinflammation. Diseases such as encephalitides or multiple sclerosis (MS) are characterised by the dramatic influx of T lymphocytes and monocytes. The communication between inflammatory infiltrates and CNS resident cells is primarily mediated through cytokines. Over the years, numerous cytokine networks have been assessed to better understand the development of immunopathology in neuroinflammation. In MS for instance, many studies have shown that CD4+ T cells infiltrate the CNS and subsequently lead to immunopathology. Inflammatory CD4+ T cells, such as TH1, TH17, GM-CSF-producing helper T cells are big players in chronic neuroinflammation. Conversely, encephalitogenic or meningeal regulatory T cells (TREGs) and TH2 cells have been shown to drive a decrease in inflammatory functions in microglial cells and thus promote a neuroprotective microenvironment. Recent studies report overlapping as well as differential roles of these cells in tissue inflammation. Taken together, this suggests a more complex relationship between effector T cell subsets in neuroinflammation than has hitherto been established. In this overview, we review the interplay between helper T cell subsets infiltrating the CNS and how they actively contribute to neuroinflammation and degeneration. Importantly, in this context, we will especially focus on the current knowledge regarding the contribution of various helper cell subsets to neuroinflammation by referring to their helper T cell profile in the context of their target cell.
Collapse
|
15
|
Qin J, Wuniqiemu T, Wei Y, Teng F, Cui J, Sun J, Yi L, Tang W, Zhu X, Xu W, Dong J. Proteomics analysis reveals suppression of IL-17 signaling pathways contributed to the therapeutic effects of Jia-Wei Bu-Shen-Yi-Qi formula in a murine asthma model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153803. [PMID: 34785105 DOI: 10.1016/j.phymed.2021.153803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Jia-Wei Bu-Shen-Yi-Qi formula (JWBSYQF), a Chinese herbal formula, is a commonly used prescription for treating asthma patients. However, the targeted proteins associated with JWBSYQF treatment remain unknown. PURPOSE Present study aims to evaluate the therapeutic efficacy of JWBSYQF and identify the targeted proteins in addition to functional pathways. STUDY DESIGN The ovalbumin (OVA)-induced murine asthma model was established to explore the therapeutic effect of JWBSYQF treatment. Proteomic profiling and quantifications were performed using data-independent acquisition (DIA) methods. Differentially expressed proteins (DEPs) were validated via western blot (WB) and immunohistochemistry (IHC). METHODS A murine asthma model was made by OVA sensitization and challenge, and JWBSYQF (2.25, 4.50, 9,00 g/kg body weight) or dexamethasone (1 mg/ kg body weight) were administered orally. Airway hyperresponsiveness (AHR) to methacholine (Mch), inflammatory cell counts and classification in bronchoalveolar lavage fluid (BALF), lung histopathology, and cytokine levels were measured. Furthermore, DIA proteomic analyses were performed to explore the DEPs targeted by JWBSYQF and were further validated by WB and IHC. RESULTS Our results exhibited that JWBSYQF attenuated AHR which was mirrored by decreased airway resistance and increased lung compliance. In addition, JWBSYQF-treated mice showed reduced inflammatory score, mucus hypersecretion, as well as reduced the number of BALF leukocytes along with decreased content of BALF Th2 inflammatory cytokines (IL-4, IL-5, IL-13) and serum IgE. Proteomics analysis identified 704 DEPs between the asthmatic mice and control group (MOD vs CON), and 120 DEPs between the JWBSYQF-treatment and the asthmatic mice (JWB-M vs MOD). A total of 33 overlapped DEPs were identified among the three groups. Pathway enrichment analysis showed that DEPs were significantly enriched in IL-17 signaling pathway, in which DEPs, Lcn2, TGF-β1, Gngt2, and Ppp2r5e were common DEPs between three experimental groups. WB and IHC results further validated expressional levels and tendency of these proteins. Our results also showed that JWBSYQF affects mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, that are activated by IL-17 signaling. CONCLUSION The present study suggested that JWBSYQF could attenuate AHR and airway inflammation in OVA-induced asthmatic mice. In addition, proteomics analysis revealed that suppression of IL-17 signaling pathways contributes to the therapeutic effects of JWBSYQF.
Collapse
Affiliation(s)
- Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Guangdong, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Dai L, Shen Y. Insights into T-cell dysfunction in Alzheimer's disease. Aging Cell 2021; 20:e13511. [PMID: 34725916 PMCID: PMC8672785 DOI: 10.1111/acel.13511] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022] Open
Abstract
T cells, the critical immune cells of the adaptive immune system, are often dysfunctional in Alzheimer's disease (AD) and are involved in AD pathology. Reports highlight neuroinflammation as a crucial modulator of AD pathogenesis, and aberrant T cells indirectly contribute to neuroinflammation by secreting proinflammatory mediators via direct crosstalk with glial cells infiltrating the brain. However, the mechanisms underlying T‐cell abnormalities in AD appear multifactorial. Risk factors for AD and pathological hallmarks of AD have been tightly linked with immune responses, implying the potential regulatory effects of these factors on T cells. In this review, we discuss how the risk factors for AD, particularly Apolipoprotein E (ApoE), Aβ, α‐secretase, β‐secretase, γ‐secretase, Tau, and neuroinflammation, modulate T‐cell activation and the association between T cells and pathological AD hallmarks. Understanding these associations is critical to provide a comprehensive view of appropriate therapeutic strategies for AD.
Collapse
Affiliation(s)
- Linbin Dai
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| | - Yong Shen
- Institute on Aging and Brain Disorders The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Sciences and Technology of China Hefei China
- Neurodegenerative Disease Research Center University of Science and Technology of China Hefei China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
17
|
Taheri M, Barth DA, Kargl J, Rezaei O, Ghafouri-Fard S, Pichler M. Emerging Role of Non-Coding RNAs in Regulation of T-Lymphocyte Function. Front Immunol 2021; 12:756042. [PMID: 34804042 PMCID: PMC8599985 DOI: 10.3389/fimmu.2021.756042] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
T-lymphocytes (T cells) play a major role in adaptive immunity and current immune checkpoint inhibitor-based cancer treatments. The regulation of their function is complex, and in addition to cytokines, receptors and transcription factors, several non-coding RNAs (ncRNAs) have been shown to affect differentiation and function of T cells. Among these non-coding RNAs, certain small microRNAs (miRNAs) including miR-15a/16-1, miR-125b-5p, miR-99a-5p, miR-128-3p, let-7 family, miR-210, miR-182-5p, miR-181, miR-155 and miR-10a have been well recognized. Meanwhile, IFNG-AS1, lnc-ITSN1-2, lncRNA-CD160, NEAT1, MEG3, GAS5, NKILA, lnc-EGFR and PVT1 are among long non-coding RNAs (lncRNAs) that efficiently influence the function of T cells. Recent studies have underscored the effects of a number of circular RNAs, namely circ_0001806, hsa_circ_0045272, hsa_circ_0012919, hsa_circ_0005519 and circHIPK3 in the modulation of T-cell apoptosis, differentiation and secretion of cytokines. This review summarizes the latest news and regulatory roles of these ncRNAs on the function of T cells, with widespread implications on the pathophysiology of autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dominik A Barth
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, Graz, Austria.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Tohyama M, Matsumoto A, Tsuda T, Dai X, Shiraishi K, Sayama K. Suppression of IL-17A-induced CCL20 production by cytokine inducible SH2-containing protein 1 in epidermal keratinocytes. J Dermatol Sci 2021; 101:202-209. [PMID: 33509657 DOI: 10.1016/j.jdermsci.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lesions of atopic dermatitis have fewer Th17 cells than those of psoriasis, resulting in frequent skin infections. Expression of CCL20, a chemokine that is important for recruiting Th17 cells, is suppressed in the lesions of atopic dermatitis. We previously reported that IL-4 induces the expression of cytokine-inducible SH2-containing protein 1 (CIS1), a member of the CIS/SOCS family, in epidermal keratinocytes. OBJECTIVE To investigate whether CIS1 influences CCL20 production in epidermal keratinocytes. METHODS Expression of CIS1 was examined in atopic dermatitis skin and in cultured keratinocytes. The effects of overexpression of CIS1 on CCL20 production by IL-17A, and on signaling pathways inhibited by CIS1, were assessed in vitro. RESULTS Expression of CIS1 was enhanced in the basal layer of the lesional epidermis of skin with atopic dermatitis. When CIS1 was expressed in keratinocytes using adenoviral vectors, IL-17A-induced CCL20 expression, but not HBD2 or S100A7 expression, was significantly suppressed. TNF-α/IL-1-induced CCL20 production was not altered by CIS1. Overexpression of CIS1 attenuated IL-17A-induced ERK phosphorylation. ERK phosphorylation was mediated by the Act1 and Src family kinase pathways. CIS1 overexpression suppressed Src phosphorylation. Among the Src family kinases, the Yes kinase may have an important role because knockdown of Yes in epidermal keratinocytes resulted in suppression of ERK phosphorylation and CCL20 mRNA expression by IL-17A. CONCLUSION CIS1 induced by Th2 cytokines has the ability to change the response of epidermal keratinocytes to IL-17A by suppression of Src family kinases.
Collapse
Affiliation(s)
- Mikiko Tohyama
- Department of Dermatology, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan; Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Teruko Tsuda
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Xiuju Dai
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Ken Shiraishi
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Koji Sayama
- Department of Dermatology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
20
|
Modulation of the HMGB1/TLR4/NF-κB signaling pathway in the CNS by matrine in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 352:577480. [PMID: 33493985 DOI: 10.1016/j.jneuroim.2021.577480] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022]
Abstract
The inflammatory mediator high-mobility group box 1 (HMGB1)-induced signaling pathway has been shown to play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophorae flavescens, has the capacity to effectively suppress EAE. However, the impact of MAT treatment on HMGB1-induced signaling is not known. In the present study, we show that MAT treatment alleviated disease severity of ongoing EAE, reduced inflammatory infiltration and demyelination, and reduced the production of inflammatory factors including TNF-α, IL-6, and IL-1β in the CNS. Moreover, MAT administration significantly reduced the protein and RNA expression of HMGB1 and TLR4 in the spinal cord, particularly in astrocytes and microglia/infiltrating macrophages. The expression of MyD88 and TRAF6, and the phosphorylation of NF-κB p65, was also down-regulated after MAT treatment. In contrast, the level of IκB-α, an inhibitory molecule for NF-κB activation, was significantly increased. Furthermore, the direct inhibitory effect of MAT on HMGB1/TLR4/NF-κB signaling in macrophages was further confirmed in vitro. Taken together, these findings demonstrate that MAT treatment alleviated CNS inflammatory demyelination and activation of astrocytes and microglia/macrophages in EAE rats, and that the mechanism underlying these effects may be closely related to modulation of HMGB1/TLR4/NF-κB signaling pathway.
Collapse
|
21
|
Glasnović A, O'Mara N, Kovačić N, Grčević D, Gajović S. RANK/RANKL/OPG Signaling in the Brain: A Systematic Review of the Literature. Front Neurol 2020; 11:590480. [PMID: 33329338 PMCID: PMC7710989 DOI: 10.3389/fneur.2020.590480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Together with its dominant immunological and bone remodeling involvement, RRO axis, comprising of receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) signaling, is as well-implicated in CNS functioning and corresponding pathologies. The CNS aspects of RANKL/RANK/OPG (RRO) axis were systematically reviewed. With search 10 databases, and 7 additional resources from first article publication to July 2019, resulted in total 2,222 hits, from which 33 relevant articles were selected. The elements of RRO axis in CNS include cells involved in neuroinflammation, predominantly in microglia, but as well in resident macrophages and inflammatory cells migrating across the blood-brain barrier. The expression in neurons and oligodendrocytes is mainly confined to processes of differentiation and cell death. RRO axis tunes the neuroinflammatory response, depending on the molecular, cellular and pathological context. RANK/RANKL signaling is neuroprotective in TLR-mediated inflammation, while OPG seems detrimental in stroke, but beneficial in multiple sclerosis. The levels of RRO axis elements can serve as biomarkers in the blood and cerebrospinal fluid. They act as neuroprotectant after brain damage even being implicated in body weight- and thermo-regulation. As derivatives of RRO axis already exist as therapeutic agents in bone remodeling, it would be intriquing to see if these or new RRO-based pharmaceuticals would appear effective in CNS therapies.
Collapse
Affiliation(s)
- Anton Glasnović
- Department of Histology and Embryology, Zagreb University School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, Zagreb University School of Medicine, Zagreb, Croatia
| | - Niall O'Mara
- Department of Medicine, Cork University Hospital, Cork, Ireland
| | - Nataša Kovačić
- Croatian Institute for Brain Research, Zagreb University School of Medicine, Zagreb, Croatia.,Department of Anatomy, Zagreb University School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Croatian Institute for Brain Research, Zagreb University School of Medicine, Zagreb, Croatia.,Department of Physiology and Immunology, Zagreb University School of Medicine, Zagreb, Croatia
| | - Srećko Gajović
- Department of Histology and Embryology, Zagreb University School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research, Zagreb University School of Medicine, Zagreb, Croatia
| |
Collapse
|
22
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020; 108:608-622. [PMID: 32898475 DOI: 10.1016/j.neuron.2020.08.012] [Citation(s) in RCA: 577] [Impact Index Per Article: 115.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
Astrocytes control multiple processes in the nervous system in health and disease. It is now clear that specific astrocyte subsets or activation states are associated with specific genomic programs and functions. The advent of novel genomic technologies has enabled rapid progress in the characterization of astrocyte heterogeneity and its control by astrocyte interactions with other cells in the central nervous system (CNS). In this review, we provide an overview of the multifaceted roles of astrocytes in the context of CNS inflammation, highlighting recent discoveries on astrocyte subsets and their regulation. We explore mechanisms of crosstalk between astrocytes and other cells in the CNS in the context of neuroinflammation and neurodegeneration and discuss how these interactions shape pathological outcomes.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
24
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
25
|
Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020; 9:cells9030600. [PMID: 32138223 PMCID: PMC7140446 DOI: 10.3390/cells9030600] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last decade knowledge of the role of astrocytes in central nervous system (CNS) neuroinflammatory diseases has changed dramatically. Rather than playing a merely passive role in response to damage it is clear that astrocytes actively maintain CNS homeostasis by influencing pH, ion and water balance, the plasticity of neurotransmitters and synapses, cerebral blood flow, and are important immune cells. During disease astrocytes become reactive and hypertrophic, a response that was long considered to be pathogenic. However, recent studies reveal that astrocytes also have a strong tissue regenerative role. Whilst most astrocyte research focuses on modulating neuronal function and synaptic transmission little is known about the cross-talk between astrocytes and oligodendrocytes, the myelinating cells of the CNS. This communication occurs via direct cell-cell contact as well as via secreted cytokines, chemokines, exosomes, and signalling molecules. Additionally, this cross-talk is important for glial development, triggering disease onset and progression, as well as stimulating regeneration and repair. Its critical role in homeostasis is most evident when this communication fails. Here, we review emerging evidence of astrocyte-oligodendrocyte communication in health and disease. Understanding the pathways involved in this cross-talk will reveal important insights into the pathogenesis and treatment of CNS diseases.
Collapse
|
26
|
Thomas AM, Xu J, Calabresi PA, van Zijl PCM, Bulte JWM. Monitoring diffuse injury during disease progression in experimental autoimmune encephalomyelitis with on resonance variable delay multiple pulse (onVDMP) CEST MRI. Neuroimage 2019; 204:116245. [PMID: 31605825 DOI: 10.1016/j.neuroimage.2019.116245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder that targets myelin proteins and results in extensive damage in the central nervous system in the form of focal lesions as well as diffuse molecular changes. Lesions are currently detected using T1-weighted, T2-weighted, and gadolinium-enhanced magnetic resonance imaging (MRI); however, monitoring such lesions has been shown to be a poor predictor of disease progression. Chemical exchange saturation transfer (CEST) MRI is sensitive to many of the biomolecules in the central nervous system altered in MS that cannot be detected using conventional MRI. We monitored disease progression in an experimental autoimmune encephalomyelitis (EAE) model of MS using on resonance variable delay multiple pulse (onVDMP) CEST MRI. Alterations in onVDMP signal were observed in regions responsible for hindlimb function throughout the central nervous system. Histological analysis revealed glial activation in areas highlighted in onVDMP CEST MRI. onVDMP signal changes in the 3rd ventricle preceded paralysis onset that could not be observed with conventional MRI techniques. Hence, the onVDMP CEST MRI signal has potential as a novel imaging biomarker and predictor of disease progression in MS.
Collapse
Affiliation(s)
- Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
El-Deeb OS, Ghanem HB, El-Esawy RO, Sadek MT. The modulatory effects of luteolin on cyclic AMP/Ciliary neurotrophic factor signaling pathway in experimentally induced autoimmune encephalomyelitis. IUBMB Life 2019; 71:1401-1408. [PMID: 31185137 DOI: 10.1002/iub.2099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is considered to be an autoimmune disorder of the central nervous system (CNS) manifested by chronic inflammation. Although its etiology is not completely understood, inflammation and apoptosis are known to be major players involved in its pathogenesis. Luteolin, the naturally occurring flavonoid, is known by strong antioxidant and anti-inflammatory properties, yet research studies about its therapeutic role in MS are still lacking. The study aimed to provide insight into effects of luteolin in experimental autoimmune encephalomyelitis (EAE) by monitoring inflammatory, apoptotic, and antioxidant biochemical parameters in addition to histological examination findings. The study included 45 adult female Wistar rats allocated to three equal groups: (a) group I: control group, (b) group II: EAE group, EAE was induced by single intradermal injection of 0.2 mL inoculum comprising 20-μg recombinant rat myelin oligodendrocyte glycoprotein (MOG), and (c) group III: luteolin-treated EAE group, luteolin was given in a dose of 10 mg/kg/day, i.p. All groups were subjected to assessment of brain ciliary neurotropic factor (CNTF) mRNA gene expression and measurement of cleaved caspase 3, nuclear factor kappa B (NF-κB), cyclic AMP (cAMP), and macrophage inflammatory protein 1 alpha (MIP-1α) by the ELISA technique, total antioxidant capacity (TAC) level is assessed spectrophotometrically. Compared with the EAE group, luteolin-treated EAE group showed upregulation of CNTF expression and significant increase in cAMP and TAC levels, while it showed significant decrease in cleaved caspase 3, NF-κB, and MIP-1α levels. Based on our data herein, luteolin may provide a promising preclinical therapeutic line in MS being anti-inflammatory, antiapoptotic, and neurotrophic agent. © 2019 IUBMB Life, 71(9):1401-1408, 2019.
Collapse
Affiliation(s)
- Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Bassiony Ghanem
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Mona Tayssir Sadek
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
28
|
Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis 2019; 10:664-675. [PMID: 31165009 PMCID: PMC6538217 DOI: 10.14336/ad.2018.0720] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Astrocytes, the largest and most numerous glial cells in the central nervous system (CNS), play a variety of important roles in regulating homeostasis, increasing synaptic plasticity and providing neuroprotection, thus helping to maintain normal brain function. At the same time, astrocytes can participate in the inflammatory response and play a key role in the progression of neurodegenerative diseases. Reactive astrocytes are strongly induced by numerous pathological conditions in the CNS. Astrocyte reactivity is initially characterized by hypertrophy of soma and processes, triggered by different molecules. Recent studies have demonstrated that neuroinflammation and ischemia can elicit two different types of reactive astrocytes, termed A1s and A2s. However, in the case of astrocyte reactivity in different neurodegenerative diseases, the recently published research issues remain a high level of conflict and controversy. So far, we still know very little about whether and how the function or reactivity of astrocytes changes in the progression of different neurodegenerative diseases. In this review, we aimed to briefly discuss recent studies highlighting the complex contribution of astrocytes in the process of various neurodegenerative diseases, which may provide us with new prospects for the development of an excellent therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kunyu Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiatong Li
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jialin Zheng
- 2Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Song Qin
- 1Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Han Z, Xue W, Tao L, Lou Y, Qiu Y, Zhu F. Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data. Brief Bioinform 2019; 21:1023-1037. [PMID: 31323688 DOI: 10.1093/bib/bbz036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022] Open
Abstract
Abstract
The pathogenesis of multiple sclerosis (MS) is significantly regulated by long noncoding RNAs (lncRNAs), the expression of which is substantially influenced by a number of MS-associated risk single nucleotide polymorphisms (SNPs). It is thus hypothesized that the dysregulation of lncRNA induced by genomic variants may be one of the key molecular mechanisms for the pathology of MS. However, due to the lack of sufficient data on lncRNA expression and SNP genotypes of the same MS patients, such molecular mechanisms underlying the pathology of MS remain elusive. In this study, a bioinformatics strategy was applied to obtain lncRNA expression and SNP genotype data simultaneously from 142 samples (51 MS patients and 91 controls) based on RNA-seq data, and an expression quantitative trait loci (eQTL) analysis was conducted. In total, 2383 differentially expressed lncRNAs were identified as specifically expressing in brain-related tissues, and 517 of them were affected by SNPs. Then, the functional characterization, secondary structure changes and tissue and disease specificity of the cis-eQTL SNPs and lncRNA were assessed. The cis-eQTL SNPs were substantially and specifically enriched in neurological disease and intergenic region, and the secondary structure was altered in 17.6% of all lncRNAs in MS. Finally, the weighted gene coexpression network and gene set enrichment analyses were used to investigate how the influence of SNPs on lncRNAs contributed to the pathogenesis of MS. As a result, the regulation of lncRNAs by SNPs was found to mainly influence the antigen processing/presentation and mitogen-activated protein kinases (MAPK) signaling pathway in MS. These results revealed the effectiveness of the strategy proposed in this study and give insight into the mechanism (SNP-mediated modulation of lncRNAs) underlying the pathology of MS.
Collapse
Affiliation(s)
- Zhijie Han
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Pan YJ, Ren X, Zhang YY, Lv J, Zeng QL, Zhang HY, Yu ZJ. IL-17A-mediated ERK1/2/p65 signaling pathway is associated with cell apoptosis after non-alcoholic steatohepatitis. IUBMB Life 2019; 71:302-309. [PMID: 30481403 DOI: 10.1002/iub.1960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-17A is pro-inflammatory cytokine which has been identified as a noninvasive marker of the pathogenesis of non-alcoholic steatohepatitis (NASH). However, the underlying role of IL-17A in NASH progression remains unclear. This study was designed to investigate the biological function and molecular mechanism of IL-17A in the induction of NASH. The results showed that IL-17A was highly expressed in high-fat diet (HFD)-induced NASH mouse model. Intravenous injection of IL-17A exacerbated steatohepatitis process via promoting hepatocyte apoptosis. Furthermore, IL-17A-induced apoptosis was mediated by ERK1/2/p65 signaling pathway. In conclusion, we demonstrated that IL-17A-mediated ERK1/2/p65 signaling pathway was a promising target for the treatment of NASH. © 2018 IUBMB Life, 71(3):302-309, 2019.
Collapse
Affiliation(s)
- Ya-Jie Pan
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xing Ren
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ying-Ying Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jun Lv
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qing-Lei Zeng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong-Yu Zhang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
31
|
Therapeutic Potential of Pien Tze Huang on Experimental Autoimmune Encephalomyelitis Rat. J Immunol Res 2018; 2018:2952471. [PMID: 29682587 PMCID: PMC5848133 DOI: 10.1155/2018/2952471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/31/2017] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). There is still lack of commercially viable treatment currently. Pien Tze Huang (PZH), a traditional Chinese medicine, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. This study investigated the possible therapeutic effects of PZH on experimental autoimmune encephalomyelitis (EAE) rats, a classic animal model of MS. Male Lewis rats were immunized with myelin basic protein (MBP) peptide to establish an EAE model and then treated with three doses of PZH. Clinical symptoms, organ coefficient, histopathological features, levels of proinflammatory cytokines, and chemokines as well as MBP and Olig2 were analyzed. The results indicated that PZH ameliorated the clinical severity of EAE rats. It also remarkably reduced inflammatory cell infiltration in the CNS of EAE rats. Furthermore, the levels of IL-17A, IL-23, CCL3, and CCL5 in serum and the CNS were significantly decreased; the p-P65 and p-STAT3 levels were also downregulated in the CNS, while MBP and Olig2 in the CNS of EAE rats had a distinct improvement after PZH treatment. In addition, PZH has no obvious toxicity at the concentration of 0.486 g/kg/d. This study demonstrated that PZH could be used to treat MS.
Collapse
|
32
|
Gęgotek A, Domingues P, Skrzydlewska E. Proteins involved in the antioxidant and inflammatory response in rutin-treated human skin fibroblasts exposed to UVA or UVB irradiation. J Dermatol Sci 2018; 90:241-252. [PMID: 29455850 DOI: 10.1016/j.jdermsci.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rutin, due to its polyphenolic structure, has antioxidant properties and can be used as a cytoprotective compound against UV-induced effects on skin cells. OBJECTIVE The aim of this study was to examine the effect of rutin on proteomic profile in human skin fibroblasts irradiated with UV dose that induces apoptosis. METHODS Proteome analysis based on the results obtained by the QExactive OrbiTrap mass spectrometer. RESULTS Results show that rutin treatment more strongly protects against UVA-induced rather than UVB-induced increases in the total expression of proteins involved in antioxidant (such as SOD, TrxR, and Prxs 1/2) and inflammatory response (e.g., IL-17F, PAK2, and YWHAZ). However, in the case of UVB-irradiated cells, rutin additionally enhances the levels of disulfide-isomerase - an enzyme that is responsible for the formation and breakage of disulfide bonds. Moreover, UVB radiation promotes rutin-Keap1 adduct formation, which leads to the activation of Nrf2, a factor that is responsible for the synthesis of cytoprotective proteins. Furthermore, rutin partially prevents UV-induced apoptosis by restoring the physiological levels of p53, cytochrome c, and cell cycle and apoptosis regulator protein 2 that were increased following irradiation. CONCLUSION In conclusion, our results show that rutin effectively prevents UV-induced damages associated with proinflammatory and prooxidative activity and protects cells against apoptosis.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | - Pedro Domingues
- Mass Spectrometry Center, QOPNA, Department of Chemistry, University of Aveiro, Portugal
| | | |
Collapse
|
33
|
Prajeeth CK, Kronisch J, Khorooshi R, Knier B, Toft-Hansen H, Gudi V, Floess S, Huehn J, Owens T, Korn T, Stangel M. Effectors of Th1 and Th17 cells act on astrocytes and augment their neuroinflammatory properties. J Neuroinflammation 2017; 14:204. [PMID: 29037246 PMCID: PMC5644084 DOI: 10.1186/s12974-017-0978-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Background Autoreactive Th1 and Th17 cells are believed to mediate the pathology of multiple sclerosis in the central nervous system (CNS). Their interaction with microglia and astrocytes in the CNS is crucial for the regulation of the neuroinflammation. Previously, we have shown that only Th1 but not Th17 effectors activate microglia. However, it is not clear which cells are targets of Th17 effectors in the CNS. Methods To understand the effects driven by Th17 cells in the CNS, we induced experimental autoimmune encephalomyelitis in wild-type mice and CD4+ T cell-specific integrin α4-deficient mice where trafficking of Th1 cells into the CNS was affected. We compared microglial and astrocyte response in the brain and spinal cord of these mice. We further treated astrocytes with supernatants from highly pure Th1 and Th17 cultures and assessed the messenger RNA expression of neurotrophic factors, cytokines and chemokines, using real-time PCR. Data obtained was analyzed using the Kruskal-Wallis test. Results We observed in α4-deficient mice weak microglial activation but comparable astrogliosis to that of wild-type mice in the regions of the brain populated with Th17 infiltrates, suggesting that Th17 cells target astrocytes and not microglia. In vitro, in response to supernatants from Th1 and Th17 cultures, astrocytes showed altered expression of neurotrophic factors, pro-inflammatory cytokines and chemokines. Furthermore, increased expression of chemokines in Th1- and Th17-treated astrocytes enhanced recruitment of microglia and transendothelial migration of Th17 cells in vitro. Conclusion Our results demonstrate the delicate interaction between T cell subsets and glial cells and how they communicate to mediate their effects. Effectors of Th1 act on both microglia and astrocytes whereas Th17 effectors preferentially target astrocytes to promote neuroinflammation. Electronic supplementary material The online version of this article (10.1186/s12974-017-0978-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julius Kronisch
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Henrik Toft-Hansen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Center of Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
34
|
Song Y, Yang JM. Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. Biochem Biophys Res Commun 2017; 493:1-8. [PMID: 28859982 DOI: 10.1016/j.bbrc.2017.08.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/18/2022]
Abstract
Interleukin-17 (IL-17), a pleiotropic proinflammatory cytokine, is reported to be significantly generated by a distinct subset of CD4+ T-cells, upgrading cancer-elicited inflammation and preventing cancer cells from immune surveillance. T-helper (Th)17 cells produced from naive CD4+ T cells have recently been renowned and generally accepted, gaining eminence in cancer studies and playing the effective role in context of cancer. Th17 cells are the main source of IL-17-secreting cells, It was found that other cell types produced this cytokine as well, including Group 3 innate lymphoid cells (ILC3), δγT cells, invariant natural killer T (iNKT) cells, lymphoid-tissue inducer (LTi)-like cells and Natural killer (NK) cells. Th17-associated cytokines give impetus to tumor progression, or inducing angiogenesis and metastasis. This review demonstrates an understanding on how the pro- or antitumor function of Th17 cells and IL-17 may change cancer progression, leading to the appearance of complex and pivotal biologic activities in tumor.
Collapse
Affiliation(s)
- Yang Song
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China.
| | - Jian Ming Yang
- Department of Otorhinolaryngology, The Second Hospital of Anhui Medical University, Hefei, 230601, PR China
| |
Collapse
|
35
|
Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017; 54:185-204. [PMID: 28393582 DOI: 10.1080/10408363.2017.1299682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.
Collapse
Affiliation(s)
- Paulo Bastos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal.,b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal
| | - Rita Ferreira
- c QOPNA, Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Bruno Manadas
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,e Laboratory of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rui Vitorino
- b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal.,f Departmento de Cirurgia e Fisiologia, Faculdade de Medicina , Unidade de Investigação Cardiovascular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
36
|
Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I, Colic M. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult Scler Relat Disord 2016; 11:12-17. [PMID: 28104249 DOI: 10.1016/j.msard.2016.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 11/13/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Th-17 cells have been exclusively referred to inflammatory events in multiple sclerosis (MS), while their importance in the development of glutamate excitotoxicity and the consequent neurodegeneration has been a completely unexplored concept. Accordingly, the objective of our study was to assess IL-17A effect on astrocyte ability to metabolize and release glutamate, considering that astrocytes had the central role in glutamate homeostasis. METHODS By using primary rat astrocyte cultures, astrocyte ability to uptake glutamate was estimated by the alterations of glutamate transporters (GLAST and GLT-1) expression, whereas changes in glutamine synthetase expression were used to estimate the ability to metabolize glutamate. Gene expression was determined by real time polymerase chain reaction (rtPCR). IL-17A effect on astrocyte ability to produce glutamate was investigated directly, by measuring the level of released glutamate using high performance liquid chromatography (HPLC). RESULTS Lower concentrations of IL-17A reduced the expressions of both glutamate transporters and glutamine synthetase; however, this effect was lost when IL-17A was applied in a higher dose. IL-17A did not significantly modify glutamate release from astrocyte in basal conditions, but following Ca2+ stimulation, as well as Ca2+ removal from the culture medium, IL-17A stimulated glutamate release in dose-dependent manner. CONCLUSION Together, these results support that IL-17A could promote glutamate excitotoxicity by decreasing astrocyte ability to uptake and convert glutamate to non-toxic glutamine, but also by stimulating Ca2+ dependent glutamate release. Such interactions between IL-17A and glutamate excitotoxicity implicate the potential link between inflammation and neurodegeneration during MS pathogenesis, and identify astrocytes as a potential target in achieving neuroprotective effects in MS.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. dr Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty, University of Nis, Blvd. dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ana Cvetanovic
- Clinic of Oncology, Clinical Center Nis, Blvd. dr Zorana Djindjica 48, 18000 Nis, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty, University of Nis, Blvd. dr Zorana Djindjica 81, 18000 Nis, Serbia
| | - Miodrag Colic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. dr Zorana Djindjica 81, 18000 Nis, Serbia
| |
Collapse
|
37
|
Yang X, Gao L, Wu X, Zhang Y, Zang D. Increased levels of MIP-1α in CSF and serum of ALS. Acta Neurol Scand 2016; 134:94-100. [PMID: 26427609 DOI: 10.1111/ane.12513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with complicated pathogenesis. No effective diagnostic test and cure exists for the disease at present. We detected the levels of MIP-1α in cerebrospinal fluid (CSF) and serum and then further evaluated whether MIP-1α levels correlate with the severity and progression of ALS. METHODS We used ELISAs to detect MIP-1α levels from 58 patients with ALS and 45 age- and gender-matched controls. The patients with ALS were also clinically evaluated with the revised ALS functional rating scale (ALSFRS-r). Moreover, we followed up with 40 cases of ALS by way of call or clinic visit 4 years after enrollment in this study. Finally, we assessed the correlations between MIP-1α levels and various clinical parameters. RESULTS We found that the levels of MIP-1α in patients with ALS significantly increased compared to controls and they were positively correlated with duration. MIP-1α showed negative correlations with disease progression rate and the decrease in ALSFRS-r. Furthermore, the cumulative survival of patients with ALS with high levels of MIP-1α exceeded patients with low MIP-1α levels. CONCLUSIONS MIP-1α levels increased in both CSF and serum of patients with ALS, and it may be a potential neuroprotective biomarker in ALS.
Collapse
Affiliation(s)
- X. Yang
- Department of Neurology; Tianjin First Center Hospital of Tianjin Medical University; Tianjin China
| | - L. Gao
- Department of Neurology; Tianjin First Center Hospital of Tianjin Medical University; Tianjin China
| | - X. Wu
- Department of Neurology; Tianjin First Center Hospital; Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Y. Zhang
- Department of Neurology; Tianjin First Center Hospital; Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - D. Zang
- Department of Neurology; Tianjin First Center Hospital; Tianjin Medical University; Tianjin China
| |
Collapse
|
38
|
Colombo E, Farina C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol 2016; 37:608-620. [PMID: 27443914 DOI: 10.1016/j.it.2016.06.006] [Citation(s) in RCA: 667] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/09/2023]
Abstract
Astrocytes are crucial regulators of innate and adaptive immune responses in the injured central nervous system. Depending on timing and context, astrocyte activity may exacerbate inflammatory reactions and tissue damage, or promote immunosuppression and tissue repair. Recent literature has unveiled key factors and intracellular signaling pathways that govern astrocyte behavior during neuroinflammation. Here we have re-visited in vivo studies on astrocyte signaling in neuroinflammatory models focusing on evidences obtained from the analysis of transgenic mice where distinct genes involved in ligand binding, transcriptional regulation and cell communication have been manipulated in astrocytes. The integration of in vivo observations with in vitro data clarifies precise signaling steps, highlights the crosstalk among pathways and identifies shared effector mechanisms in neuroinflammation.
Collapse
Affiliation(s)
- Emanuela Colombo
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
39
|
Zhang Y, Huang R, Zhang Y, Yi H, Bai Y, Chao J, Yao H. IL-17 induces MIP-1α expression in primary mouse astrocytes via TRPC channel. Inflammopharmacology 2016; 24:33-42. [PMID: 26782821 DOI: 10.1007/s10787-015-0256-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Our previous study demonstrated IL-17-mediated induction of MIP-1α through its binding to the cognate IL-17RA and MIP-1α was involved in astrocyte activation. Transient receptor potential canonical (TRPC) channel was involved in astrocyte activation, however, whether TRPC channel regulates MIP-1α expression in the context of multiple sclerosis (MS) remains largely unknown. In this study we identify the essential role of TRPC channel in IL-17-mediated MIP-1α expression and astrocyte activation. Moreover, treatment of astrocytes with IL-17 activated MAPKs and PI3K/Akt signaling pathways with downstream NF-κB pathways. Interestingly, the TRPC blocker-SKF96365 (10 μM) and Norgestimate (10 μM) significantly inhibited the increased expression of MIP-1α via suppression of IL-17-mediated ERK, p38 and JNK MAPKs and PI3K/Akt pathway activation, thereby underscoring the role of TRPC channel in this process. Together these data underpin the role of TRPC channel as a novel target that regulates MIP-1α expression and cell activation-mediated by IL-17 with implications for therapeutic intervention for reversal of neuroinflammation inflicted by IL-17. Understanding the regulation of MIP-1α expression may provide insights into the development of potential therapeutic targets for neuroinflammation associated with MS.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yanhong Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Hongwei Yi
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China. .,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
40
|
Abstract
Multiple sclerosis is a neurologic disease caused by immune cell infiltration into the central nervous system, resulting in gray and white matter inflammation, progressive demyelination, and neuronal loss. Astrocytes, the most abundant cell population in the central nervous system (CNS), have been considered inert scaffold or housekeeping cells for many years. However, recently, it has become clear that this cell population actively modulates the immune response in the CNS at multiple levels. While being exposed to a plethora of cytokines during ongoing autoimmune inflammation, astrocytes modulate local CNS inflammation by secreting cytokines and chemokines, among other factors. This review article gives an overview of the most recent understanding about cytokine networks operational in astrocytes during autoimmune neuroinflammation and highlights potential targets for immunomodulatory therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
The role of IL-17 in CNS diseases. Acta Neuropathol 2015; 129:625-37. [PMID: 25716179 DOI: 10.1007/s00401-015-1402-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on pathogenic conditions in the CNS.
Collapse
|
42
|
Lee SM, Suk K, Lee WH. Myristoylated alanine-rich C kinase substrate (MARCKS) regulates the expression of proinflammatory cytokines in macrophages through activation of p38/JNK MAPK and NF-κB. Cell Immunol 2015; 296:115-21. [PMID: 25929183 DOI: 10.1016/j.cellimm.2015.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022]
Abstract
MARCKS, a substrate of protein kinase C, is involved in various processes associated with cytoskeletal movement. Although the expression of MARCKS is highly induced in macrophages, its role in macrophage function has not been studied in detail. Notably, the suppression of MARCKS expression in macrophage cell lines blocked LPS-induced expression of TNF-α at the transcriptional level. Treatment of macrophages with MARCKS N-terminus sequence (MANS) and effector domain (ED) peptides, which mimic functional domains and block the phosphorylation of MARCKS, suppressed the LPS-induced expression of TNF-α through suppression of p38 and JNK MAPKs and NF-κB. Treatment of mice with MANS peptide reduced serum TNF-α and IL-6 levels and resulted in 40% survival of mice after the administration of a lethal dose of LPS. These data demonstrate that MARCKS is involved in the regulation of proinflammatory cytokine expression in macrophages and that MARCKS-derived peptides can be used to suppress inflammatory responses.
Collapse
Affiliation(s)
- Sang-Min Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
43
|
Pericytes contribute to the disruption of the cerebral endothelial barrier via increasing VEGF expression: implications for stroke. PLoS One 2015; 10:e0124362. [PMID: 25884837 PMCID: PMC4401453 DOI: 10.1371/journal.pone.0124362] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) integrity occurring during the early onset of stroke is not only a consequence of, but also contributes to the further progression of stroke. Although it has been well documented that brain microvascular endothelial cells and astrocytes play a critical role in the maintenance of BBB integrity, pericytes, sandwiched between endothelial cells and astrocytes, remain poorly studied in the pathogenesis of stroke. Our findings demonstrated that treatment of human brain microvascular pericytes with sodium cyanide (NaCN) and glucose deprivation resulted in increased expression of vascular endothelial growth factor (VEGF) via the activation of tyrosine kinase Src, with downstream activation of mitogen activated protein kinase and PI3K/Akt pathways and subsequent translocation of NF-κB into the nucleus. Conditioned medium from NaCN-treated pericytes led to increased permeability of endothelial cells, and this effect was significantly inhibited by VEGF-neutralizing antibody. The in vivo relevance of these findings was further corroborated in the stroke model of mice wherein the mice, demonstrated disruption of the BBB integrity and concomitant increase in the expression of VEGF in the brain tissue as well as in the isolated microvessel. These findings thus suggest the role of pericyte-derived VEGF in modulating increased permeability of BBB during stroke. Understanding the regulation of VEGF expression could open new avenues for the development of potential therapeutic targets for stroke and other neurological disease.
Collapse
|
44
|
Jang SW, Lim SG, Suk K, Lee WH. Activation of lymphotoxin-beta receptor enhances the LPS-induced expression of IL-8 through NF-κB and IRF-1. Immunol Lett 2015; 165:63-9. [PMID: 25887375 DOI: 10.1016/j.imlet.2015.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/19/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Lymphotoxin-beta receptor (LTβR), a receptor for LIGHT and LTα1β2, is expressed on the epithelial, stromal, and myeloid cells. LTβR is known to affect the lymphoid organ development and immune homeostasis. However, its role in macrophage function has not been sufficiently elucidated. The effect of LTβR stimulation in the inflammatory activation of macrophages was investigated by treating the human macrophage-like cell line THP-1 with LTβR-specific monoclonal antibody. Interestingly, combined treatment with anti-LTβR antibody and LPS caused the synergistic induction of IL-8 expression at the transcriptional level. Analysis indicated that nuclear factor (NF)-κB activity was enhanced via the mitogen-activated protein kinase (MAPK) and glycogen synthase kinase (GSK)-3β/cAMP response element binding protein (CREB) pathways. In addition, LTβR stimulation induced the expression of interferon regulatory factor (IRF)-1, one of the major transcription factors of IL-8 gene. Down-regulation of IRF-1 expression reduced the enhancing effect caused by LTβR stimulation. This indicates that the LTβR stimulation enhances the LPS-induced expression of IL-8 via the combined action of NF-κB and IRF-1.
Collapse
Affiliation(s)
- Seok-Won Jang
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
45
|
Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res 2015; 1623:63-73. [PMID: 25813828 DOI: 10.1016/j.brainres.2015.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) has long been recognized as a site of 'immune privilege' because of the existence of the blood brain barrier (BBB) which presumably isolates CNS from the peripheral immunosurveillance. Different from the peripheral organs, CNS is unique in response to all forms of CNS injury and disease which is mainly mediated by resident microglia and astrocyte. There is increasing evidence that immune cells are not only involved in neuroinflammation process but also the maintenance of CNS homeostasis. T cells, an important immune cell population, are involved in the pathogenesis of some neurological diseases by inducing either innate or adaptive immune responses. Astrocytes, which are the most abundant cell type in the CNS, maintain the integrity of BBB and actively participate in the initiation and progression of neurological diseases. Surprisingly, how astrocytes and T cells interact and the consequences of their interaction are not clear. In this review we briefly summarized T cells diversity and astrocyte function. Then, we examined the evidence for the astrocytes and T cells interaction under physiological and pathological conditions including ischemic stroke, multiple sclerosis, viral infection, and Alzheimer's disease. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|