1
|
Asari Y, Yasaka K, Endo K, Kanzawa J, Okimoto N, Watanabe Y, Suzuki Y, Amemiya S, Kiryu S, Abe O. Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01522-6. [PMID: 40301290 DOI: 10.1007/s10278-025-01522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
Super-resolution deep learning reconstruction (SR-DLR) is a promising tool for improving image quality by enhancing spatial resolution compared to conventional deep learning reconstruction (DLR). This study aimed to evaluate whether SR-DLR improves microbleed detection and visualization in brain magnetic resonance imaging (MRI) compared to DLR. This retrospective study included 69 patients (66.2 ± 13.8 years; 44 females) who underwent 3 T brain MRI with T2*-weighted 2D gradient echo and 3D flow-sensitive black blood imaging (reference standard) between June and August 2024. T2*-weighted images were reconstructed using SR-DLR and DLR. Three blinded readers detected microbleeds and assessed image quality, including microbleed and normal structure visibility, sharpness, noise, artifacts, and overall quality. Quantitative analysis involved measuring signal intensity along the septum pellucidum. Microbleed detection performance was analyzed using jackknife alternative free-response receiver operating characteristic analysis, while image quality was analyzed using the Wilcoxon signed-rank test and paired t-test. SR-DLR significantly outperformed DLR in microbleed detection (figure of merit: 0.690 vs. 0.645, p < 0.001). SR-DLR also demonstrated higher sensitivity for microbleed detection. Qualitative analysis showed better microbleed visualization for two readers (p < 0.001) and improved image sharpness for all readers (p ≤ 0.008). Quantitative analysis revealed enhanced sharpness, especially in full width at half maximum and edge rise slope (p < 0.001). SR-DLR improved image sharpness and quality, leading to better microbleed detection and visualization in brain MRI compared to DLR.
Collapse
Affiliation(s)
- Yusuke Asari
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan.
| | - Kazuki Endo
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Naomasa Okimoto
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yusuke Watanabe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Yuichi Suzuki
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shiori Amemiya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, 852 Hatakeda, Narita, Chiba, 286 - 0124, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7 - 3- 1 Hongo, Bunkyo-Ku, Tokyo, 113 - 8655, Japan
| |
Collapse
|
2
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
3
|
Basurto‐Islas G, Diaz MC, Ocampo LMZ, Martínez‐Herrera M, López‐Camacho PY. Natural products against tau hyperphosphorylation-induced aggregates: Potential therapies for Alzheimer's disease. Arch Pharm (Weinheim) 2025; 358:e2400721. [PMID: 39888017 PMCID: PMC11781347 DOI: 10.1002/ardp.202400721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory impairments and is considered the most prevalent form of dementia. Among the contributing factors to AD lies the hyperphosphorylation of the microtubule-associated protein tau. Phosphorylated tau reduces its affinity for microtubules and triggers other posttranslational modifications that result in its aggregation and assembly into filaments. These structures progressively accumulate within neurons leading to neurodegeneration. While current AD medications often involve undesirable side effects, the exploration of natural products as a potential therapeutic alternative has gained considerable attention. Numerous compounds have shown potential capacity for reducing tau pathology through different mechanisms, such as inhibiting kinases to reduce tau hyperphosphorylation, enhancing phosphatase activity, and blocking fibril formation. Since tau hyperphosphorylation-induced aggregation is pivotal in AD onset, this review aims to elucidate the potential of natural products in modulating this crucial molecular mechanism.
Collapse
Affiliation(s)
| | | | | | - Melchor Martínez‐Herrera
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| | - Perla Y. López‐Camacho
- Departamento de Ciencias NaturalesUniversidad Autónoma Metropolitana CuajimalpaCiudad de MéxicoMexico
| |
Collapse
|
4
|
Azargoonjahromi A. Immunotherapy in Alzheimer's disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 2024; 76:1115-1131. [PMID: 38767981 DOI: 10.1093/jpp/rgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Gantenerumab, a human monoclonal antibody (mAb), has been thought of as a potential agent to treat Alzheimer's disease (AD) by specifically targeting regions of the amyloid-β (Aβ) peptide sequence. Aβ protein accumulation in the brain leads to amyloid plaques, causing neuroinflammation, oxidative stress, neuronal damage, and neurotransmitter dysfunction, thereby causing cognitive decline in AD. Gantenerumab involves disrupting Aβ aggregation and promoting the breakdown of larger Aβ aggregates into smaller fragments, which facilitates the action of Aβ-degrading enzymes in the brain, thus slowing down the progression of AD. Moreover, Gantenerumab acts as an opsonin, coating Aβ plaques and enhancing their recognition by immune cells, which, combined with its ability to improve the activity of microglia, makes it an intriguing candidate for promoting Aβ plaque clearance. Indeed, the multifaceted effects of Gantenerumab, including Aβ disaggregation, enhanced immune recognition, and improved microglia activity, may position it as a promising therapeutic approach for AD. Of note, reports suggest that Gantenerumab, albeit its capacity to reduce or eliminate Aβ, has not demonstrated effectiveness in reducing cognitive decline. This review, after providing an overview of immunotherapy approaches that target Aβ in AD, explores the efficacy of Gantenerumab in reducing Aβ levels and cognitive decline.
Collapse
|
5
|
Menegaz de Almeida A, Leite M, Lopes LM, Gomes Lima P, Siegloch Barros ML, Rocha Pinheiro S, Andrade Í, Viana P, Morbach V, Marinheiro G, de Oliveira R, Pinheiro AC. Gantenerumab for early Alzheimer's disease: a systematic review and meta-analysis. Expert Rev Neurother 2024; 24:929-936. [PMID: 38879828 DOI: 10.1080/14737175.2024.2367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 08/09/2024]
Abstract
INTRODUCTION Gantenerumab is a monoclonal antibody targeting amyloid β protein (Aβ) in early Alzheimer's disease (AD). The authors sought to evaluate gantenerumab safety and efficacy in early AD patients. METHODS MEDLINE, Embase, and Cochrane databases were systematically searched until 2 December 2023. Data were examined using the Mantel-Haenszel method and 95% confidence intervals (CIs). Meta-regression analysis was conducted to evaluate a possible link between baseline Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB) and amyloid-related imaging abnormalities (ARIA) at follow-up. R, version 4.2.3, was used for statistical analysis. RESULTS A total of 4 RCTs and 2848 patients were included, of whom 1580 (55%) received subcutaneous gantenerumab. Concerning clinical scores, the placebo group achieved better rates of change in the Disease Assessment Scale (ADAS-Cog13) (SMD -0.11; 95% CI -0.19- -0.03; p = 0.008569; I2 = 0%). Gantenerumab was strongly associated with the occurrence of ARIA-E and ARIA-H: (19.67% vs. 2.31%; RR 9.46; 95% CI 5.55-16.11; p = <0.000001; I2 = 10%) and (21.95% vs. 12.38%; RR 1.79; 95% CI 1.50-2.13; p = <0.000001; I2 = 0%), respectively. DISCUSSION In this meta-analysis, consistent results suggest that gantenerumab is not safe and efficient for early AD, showing no improvement in clinical scores for AD and being associated with the occurrence of ARIA-E and ARIA-H.
Collapse
Affiliation(s)
| | - Marianna Leite
- Department of Medicine, Santa Marcelina University, São Paulo, Brazil
| | | | - Pedro Gomes Lima
- Department of Medicine, Federal University of Acre, Rio Branco, Brazil
| | | | | | - Ítalo Andrade
- Department of Medicine, Santo Agostinho Faculty, Vitória da Conquista, Brazil
| | - Patrícia Viana
- Department of Medicine, Extremo Sul University, Criciúma, Brazil
| | - Victória Morbach
- Department of Medicine, Feevale University, Novo Hamburgo, Brazil
| | | | - Ricardo de Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- Department of Neurosciences, Behavioural Neurosciences Institute (INeC), Ribeirão Preto, Brazil
| | - Agostinho C Pinheiro
- Department of Neurology, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Internal Medicine, Elmhurst Hospital Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
7
|
Lee D, Antonsdottir IM, Clark ED, Porsteinsson AP. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer's disease: a novel small molecule with disease modifying potential. Expert Opin Pharmacother 2024; 25:791-799. [PMID: 38814590 DOI: 10.1080/14656566.2024.2360069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, functional impairments, and neuropsychiatric symptoms. Valiltramiprosate is a tramiprosate prodrug being investigated as a novel treatment for AD. AREAS COVERED The online databases PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'ALZ-801' or 'valiltramiprosate.' Alzheon press releases were reviewed for emerging clinical information. Valiltramiprosate is an oral, well-tolerated synthetic valine-conjugate prodrug of tramiprosate. Valiltramiprosate's active metabolite include tramiprosate and 3-sulfopropanoic acid. Proposed mechanism of action is multiligand binding to Aβ42 which stabilizes amyloid monomers to prevent peptide aggregation and oligomerization. Pharmacokinetic studies show 52% oral bioavailability, rapid absorption, approximately 40% brain-drug exposure, and near complete renal clearance. Compared to tramiprosate, valiltramiprosate extends plasma tramiprosate half-life and improves interindividual pharmacokinetic variability. Interim analyses from valiltramiprosate's phase II biomarker trial show: (1) significant reductions in plasma p-tau181 and related AD fluid biomarkers; (2) brain structure preservation and reduced hippocampal atrophy by MRI; and (3) improvements on cognitive assessments at multiple timepoints. Its phase III clinical trial in ApoE ε4 homozygotes is near completion. EXPERT OPINION Valiltramiprosate's clinical trial data show early indications of efficacy with potential disease modifying effect in AD.
Collapse
Affiliation(s)
- Daniel Lee
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Inga M Antonsdottir
- Johns Hopkins School of Nursing, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Emily D Clark
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Anton P Porsteinsson
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
8
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
9
|
Rasool A, Manzoor R, Ullah K, Afzal R, Ul-Haq A, Imran H, Kaleem I, Akhtar T, Farrukh A, Hameed S, Bashir S. Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:852-864. [PMID: 37303175 DOI: 10.2174/1871527322666230609141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 06/13/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress triggers the vicious cycle leading to the degeneration of dopaminergic neurons in the nigra pars compacta. ROS produced during the metabolism of dopamine is immediately neutralized by the endogenous antioxidant defense system (EADS) under physiological conditions. Aging decreases the vigilance of EADS and makes the dopaminergic neurons more vulnerable to oxidative stress. As a result, ROS left over by EADS oxidize the dopamine-derived catechols and produces a number of reactive dopamine quinones, which are precursors to endogenous neurotoxins. In addition, ROS causes lipid peroxidation, uncoupling of the electron transport chain, and DNA damage, which lead to mitochondrial dysfunction, lysosomal dysfunction, and synaptic dysfunction. The mutations in genes such as DNAJC6, SYNJ1, SH3GL2, LRRK2, PRKN, and VPS35 caused by ROS have been associated with synaptic dysfunction and the pathogenesis of Parkinson's disease (PD). The available drugs that are used against PD can only delay the progression of the disease, but they produce various side effects. Through their antioxidant activity, flavonoids can substantiate the EADS of dopaminergic neurons and disrupt the vicious cycle incepted by oxidative stress. In this review, we show how the oxidative metabolism of dopamine generates ROS and dopamine-quinones, which then exert unrestrained OS, causing mutations in several genes involved in the proper functioning of mitochondrion, synapse, and lysosome. Besides, we also present some examples of approved drugs used for the treatment of PD, therapies in the clinical trial phase, and an update on the flavonoids that have been tested to boost the EADS of dopaminergic neurons.
Collapse
Affiliation(s)
- Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
- Faculty of Marine Sciences, Lasbella University of Agriculture Water and Marine Sciences, Uthal 90050, Pakistan
| | - Kaleem Ullah
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan
| | - Ramsha Afzal
- Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Asad Ul-Haq
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hadia Imran
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Imdad Kaleem
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | - Anum Farrukh
- Department of General Medicine, Fauji Foundation Hospital (FFH), Rawalpindi, Pakistan
| | - Sahir Hameed
- National Institute for Genomics and Advanced Biotechnology (N.I.G.A.B.) National Agriculture Research Centre Islamabad, Pakistan
| | - Shahid Bashir
- Neurosciences Center, King Fahad Specialist Hospital Dammam, P.O. Box 15215, Dammam 31444, Saudi Arabia
| |
Collapse
|
10
|
Li J, Wu X, Tan X, Wang S, Qu R, Wu X, Chen Z, Wang Z, Chen G. The efficacy and safety of anti-Aβ agents for delaying cognitive decline in Alzheimer's disease: a meta-analysis. Front Aging Neurosci 2023; 15:1257973. [PMID: 38020763 PMCID: PMC10661413 DOI: 10.3389/fnagi.2023.1257973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background This meta-analysis evaluates the efficacy and safety of amyloid-β (Aβ) targeted therapies for delaying cognitive deterioration in Alzheimer's disease (AD). Methods PubMed, EMBASE, the Cochrane Library, and ClinicalTrials.gov were systematically searched to identify relevant studies published before January 18, 2023. Results We pooled 33,689 participants from 42 studies. The meta-analysis showed no difference between anti-Aβ drugs and placebo in the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and anti-Aβ drugs were associated with a high risk of adverse events [ADAS-Cog: MDs = -0.08 (-0.32 to 0.15), p = 0.4785; AEs: RR = 1.07 (1.02 to 1.11), p = 0.0014]. Monoclonal antibodies outperformed the placebo in delaying cognitive deterioration as measured by ADAS-Cog, Clinical Dementia Rating-Sum of Boxes (CDR-SB), Mini-Mental State Examination (MMSE) and Alzheimer's Disease Cooperative Study-Activities of Daily Living (ADCS-ADL), without increasing the risk of adverse events [ADAS-Cog: MDs = -0.55 (-0.89 to 0.21), p = 0.001; CDR-SB: MDs = -0.19 (-0.29 to -0.10), p < 0.0001; MMSE: MDs = 0.19 (0.00 to 0.39), p = 0.05; ADCS-ADL: MDs = 1.26 (0.84 to 1.68), p < 0.00001]. Intravenous immunoglobulin and γ-secretase modulators (GSM) increased cognitive decline in CDR-SB [MDs = 0.45 (0.17 to 0.74), p = 0.002], but had acceptable safety profiles in AD patients. γ-secretase inhibitors (GSI) increased cognitive decline in ADAS-Cog, and also in MMSE and ADCS-ADL. BACE-1 inhibitors aggravated cognitive deterioration in the outcome of the Neuropsychiatric Inventory (NPI). GSI and BACE-1 inhibitors caused safety concerns. No evidence indicates active Aβ immunotherapy, MPAC, or tramiprosate have effects on cognitive function and tramiprosate is associated with serious adverse events. Conclusion Current evidence does not show that anti-Aβ drugs have an effect on cognitive performance in AD patients. However, monoclonal antibodies can delay cognitive decline in AD. Development of other types of anti-Aβ drugs should be cautious. Systematic Review Registration PROSPERO (https://www.crd.york.ac.uk/prospero/), identifier CRD42023391596.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ruisi Qu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaofeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Hampel H, Elhage A, Cho M, Apostolova LG, Nicoll JAR, Atri A. Amyloid-related imaging abnormalities (ARIA): radiological, biological and clinical characteristics. Brain 2023; 146:4414-4424. [PMID: 37280110 PMCID: PMC10629981 DOI: 10.1093/brain/awad188] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Excess accumulation and aggregation of toxic soluble and insoluble amyloid-β species in the brain are a major hallmark of Alzheimer's disease. Randomized clinical trials show reduced brain amyloid-β deposits using monoclonal antibodies that target amyloid-β and have identified MRI signal abnormalities called amyloid-related imaging abnormalities (ARIA) as possible spontaneous or treatment-related adverse events. This review provides a comprehensive state-of-the-art conceptual review of radiological features, clinical detection and classification challenges, pathophysiology, underlying biological mechanism(s) and risk factors/predictors associated with ARIA. We summarize the existing literature and current lines of evidence with ARIA-oedema/effusion (ARIA-E) and ARIA-haemosiderosis/microhaemorrhages (ARIA-H) seen across anti-amyloid clinical trials and therapeutic development. Both forms of ARIA may occur, often early, during anti-amyloid-β monoclonal antibody treatment. Across randomized controlled trials, most ARIA cases were asymptomatic. Symptomatic ARIA-E cases often occurred at higher doses and resolved within 3-4 months or upon treatment cessation. Apolipoprotein E haplotype and treatment dosage are major risk factors for ARIA-E and ARIA-H. Presence of any microhaemorrhage on baseline MRI increases the risk of ARIA. ARIA shares many clinical, biological and pathophysiological features with Alzheimer's disease and cerebral amyloid angiopathy. There is a great need to conceptually link the evident synergistic interplay associated with such underlying conditions to allow clinicians and researchers to further understand, deliberate and investigate on the combined effects of these multiple pathophysiological processes. Moreover, this review article aims to better assist clinicians in detection (either observed via symptoms or visually on MRI), management based on appropriate use recommendations, and general preparedness and awareness when ARIA are observed as well as researchers in the fundamental understanding of the various antibodies in development and their associated risks of ARIA. To facilitate ARIA detection in clinical trials and clinical practice, we recommend the implementation of standardized MRI protocols and rigorous reporting standards. With the availability of approved amyloid-β therapies in the clinic, standardized and rigorous clinical and radiological monitoring and management protocols are required to effectively detect, monitor, and manage ARIA in real-world clinical settings.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Aya Elhage
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Min Cho
- Eisai Inc., Alzheimer’s Disease and Brain Health, Nutley, NJ 07110, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James A R Nicoll
- Division of Clinical Neurosciences, Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Alireza Atri
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ 85351, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
13
|
Lyu D, Lyu X, Huang L, Fang B. Effects of three kinds of anti-amyloid-β drugs on clinical, biomarker, neuroimaging outcomes and safety indexes: A systematic review and meta-analysis of phase II/III clinical trials in Alzheimer's disease. Ageing Res Rev 2023; 88:101959. [PMID: 37217078 DOI: 10.1016/j.arr.2023.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE To investigate the effects of the three kinds of anti-amyloid-β (Aβ) drugs on cognitive and other functions, fluid and neuroimaging biomarkers, and safety on patients with Alzheimer's disease (AD), and rank the three kinds of anti-Aβ drugs. METHODS We searched Medline, Embase, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and AlzForum from inception to January 21, 2023 to include randomized controlled clinical trials. Random effects meta-analyses were performed. RESULTS Forty-one clinical trials (20929 participants, 9167 male) were included. Anti-Aβ drugs had significant but relatively low efficacy in preventing cognitive decline (ADAS-Cog SMD -0.07, 95% CI: -0.10 to -0.03, p < 0.001; CDR-SOB -0.05, -0.09 to -0.01, p = 0.017). Instrumental variable meta-analysis and trial sequential analysis confirmed the reliability of the pooled estimation. Beneficial effects were also observed by assessing other cognitive and activity of daily living scales and biomarkers, with acceptable safety of anti-Aβ drugs. Meta-regression demonstrated significant association between higher baseline mini-mental statement examination scores (MMSE) and better cognitive protective effects on cognitive function (ADAS-Cog β: -0.02, -0.05 to 0.00, p = 0.017) and clearance of pathological productions of anti-Aβ drugs. Network meta-analysis ranked the passive immunotherapy drugs to have the best cognitive efficacy, followed by active immunotherapy and small molecule drugs. CONCLUSION Anti-Aβ drugs have relatively low efficacy in preventing cognitive decline, and they reduce pathological productions with acceptable safety. Patients with higher baseline MMSE scores benefit more from anti-Aβ drugs. Passive immunotherapy anti-Aβ drugs show relatively better efficacy than active immunotherapy and small molecule anti-Aβ drugs.
Collapse
Affiliation(s)
- Diyang Lyu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Xuanxin Lyu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Li Huang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer's Disease. Antibodies (Basel) 2023; 12:41. [PMID: 37366656 DOI: 10.3390/antib12020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
In the elderly, a debilitating condition known as dementia, which is a major health concern, is caused by Alzheimer's disease (AD). Despite promising advances by researchers, there is currently no way to completely cure this devastating disease. It is illustrated by the deposition of amyloid β-peptide (Aβ) plaques that are followed by neural dysfunction and cognitive decline. Responses against AD activate an immune system that contributes to and accelerates AD pathogenesis. Potential efforts in the field of pathogenesis have prompted researchers to explore novel therapies such as active and passive vaccines against Aβ proteins (Aβ immunotherapy), intravenous immunoglobulin, and tau immunotherapy, as well as targets that include microglia and several cytokines for the treatment of AD. Aims are now underway by experts to begin immunotherapies before the clinical manifestation, which is made possible by improving the sensitivity of biomarkers used for the diagnosis of AD to have better outcome measures. This review provides an overview of approved immunotherapeutic strategies for AD and those currently being investigated in clinical trials. We examine their mechanisms of action and discuss the potential perspectives and challenges associated with immunotherapies for AD.
Collapse
Affiliation(s)
- Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
15
|
Vitek GE, Decourt B, Sabbagh MN. Lecanemab (BAN2401): an anti-beta-amyloid monoclonal antibody for the treatment of Alzheimer disease. Expert Opin Investig Drugs 2023; 32:89-94. [PMID: 36749830 PMCID: PMC10275297 DOI: 10.1080/13543784.2023.2178414] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Nearly a dozen monoclonal antibodies (mAbs) directed against beta-amyloid (Aβ) have been developed for the treatment of Alzheimer disease (AD), and most of these mAbs are undergoing clinical trials. Newer mAbs have targeted more specific Aβ types. Lecanemab Eisai has a high affinity for large and soluble Aβ protofibrils. Data from phase 2 clinical trials have suggested the possibility of a robust efficacy signal and manageable risk of amyloid-related imaging abnormalities (ARIAs). Lecanemab is currently being studied in phase 3 trials. AREAS COVERED This article briefly reviews mAbs that target Aβ in AD and discusses the biology, mechanism of action, and targets of lecanemab. EXPERT OPINION mAbs that target Aβ are an important focus of therapeutic development for AD, with several soon to be considered for US Food and Drug Administration approval. The experience of aducanumab informs the development of other mAbs, such as lecanemab. One consideration is the conformation of Aβ targets. Targeting monomeric species has not resulted in robust clinical efficacy, whereas targeting Aβ in the form of oligomers, protofibrils, and plaques has shown evidence of slowing clinical decline. Another consideration is that mAbs will require safety monitoring for ARIAs.
Collapse
Affiliation(s)
- Grace E Vitek
- Creighton University School of Medicine, Phoenix, Arizona
| | - Boris Decourt
- Laboratory on Neurodegeneration and Translational Research, Roseman University of Health Sciences College of Medicine, Las Vegas, Nevada
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
16
|
Honig LS, Barakos J, Dhadda S, Kanekiyo M, Reyderman L, Irizarry M, Kramer LD, Swanson CJ, Sabbagh M. ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12377. [PMID: 36949897 PMCID: PMC10026083 DOI: 10.1002/trc2.12377] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Lecanemab is a humanized immunoglobulin G1 (IgG1) monoclonal antibody that preferentially targets soluble aggregated Aβ species (protofibrils) with activity at amyloid plaques. Amyloid-related imaging abnormalities (ARIA) profiles appear to differ for various anti-amyloid antibodies. Here, we present ARIA data from a large phase 2 lecanemab trial (Study 201) in early Alzheimer's disease. METHODS Study 201 trial was double-blind, placebo-controlled (core) with an open-label extension (OLE). Observed ARIA events were summarized and modeled via Kaplan-Meier graphs. An exposure response model was developed. RESULTS In the phase 2 core and OLE, there was a low incidence of ARIA-E (<10%), with <3% symptomatic cases. ARIA-E was generally asymptomatic, mild-to-moderate in severity, and occurred early (<3 months). ARIA-E was correlated with maximum lecanemab serum concentration and incidence was higher in apolipoprotein E4 (ApoE4) homozygous carriers. ARIA-H and ARIA-E occurred with similar frequency in core and OLE. DISCUSSION Lecanemab can be administered without titration with modest incidence of ARIA.
Collapse
Affiliation(s)
- Lawrence S. Honig
- Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Jerome Barakos
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
- Clario Inc.San MateoCaliforniaUSA
| | - Shobha Dhadda
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | - Michio Kanekiyo
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | - Larisa Reyderman
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | - Michael Irizarry
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | - Lynn D. Kramer
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | - Chad J. Swanson
- Alzheimer's Disease and Brain HealthEisai Inc.NutleyNew JerseyUSA
| | | |
Collapse
|
17
|
Ostrowitzki S, Bittner T, Sink KM, Mackey H, Rabe C, Honig LS, Cassetta E, Woodward M, Boada M, van Dyck CH, Grimmer T, Selkoe DJ, Schneider A, Blondeau K, Hu N, Quartino A, Clayton D, Dolton M, Dang Y, Ostaszewski B, Sanabria-Bohórquez SM, Rabbia M, Toth B, Eichenlaub U, Smith J, Honigberg LA, Doody RS. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults With Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol 2022; 79:1113-1121. [PMID: 36121669 PMCID: PMC9486635 DOI: 10.1001/jamaneurol.2022.2909] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022]
Abstract
Importance Alzheimer disease (AD), a neurodegenerative disease characterized by β-amyloid plaques and τ tangles in the brain, represents an unmet medical need with no fully approved therapeutics to modify disease progression. Objective To investigate the safety and efficacy of crenezumab, a humanized monoclonal immunoglobulin G4 antibody targeting β-amyloid oligomers, in participants with prodromal to mild (early) AD. Design, Setting, and Participants Two phase 3 multicenter randomized double-blind placebo-controlled parallel-group efficacy and safety studies of crenezumab in participants with early AD, CREAD and CREAD2, were initiated in 2016 and 2017, respectively, and were designed to evaluate the efficacy and safety of crenezumab in participants with early AD. CREAD (194 sites in 30 countries) and CREAD2 (209 sites in 27 countries) were global multicenter studies. A total of 3736 and 3664 participants were screened in CREAD and CREAD2, respectively. A total of 3736 and 3664 participants were screened in CREAD and CREAD2, respectively. Both trials enrolled individuals aged 50 to 85 years with early AD. Participants with some comorbidities and evidence of cerebral infarction or more than 4 microbleeds or areas of leptomeningeal hemosiderosis on magnetic resonance imaging were excluded. After 2923 and 2858 were excluded, respectively, 813 participants in CREAD and 806 in CREAD2 were randomly assigned in a 1:1 ratio to either placebo or crenezumab. In the final analysis, there were 409 participants in the placebo group and 404 in the crenezumab group in CREAD and 399 in the placebo group and 407 in the crenezumab group in CREAD2. Data were analyzed up until January 2019 and August 2019, respectively. Interventions Participants received placebo or 60 mg/kg crenezumab intravenously every 4 weeks for up to 100 weeks. Main Outcomes and Measures The primary outcome was change from baseline to week 105 in Clinical Dementia Rating-Sum of Boxes (CDR-SB) score. Results There were 813 participants in CREAD (mean [SD] age, 70.7 [8.2] years; 483 female and 330 male) and 806 in CREAD2 (mean [SD] age, 70.9 [7.7] years; 456 female and 350 male). Baseline characteristics were balanced between both groups. The between-group difference in mean change from baseline in CDR-SB score (placebo minus crenezumab) was -0.17 (95% CI, -0.86 to 0.53; P = .63) at week 105 in the CREAD study (88 placebo; 86 crenezumab). Compared with previous trials, no new safety signals were identified, and amyloid-related imaging abnormalities with edema were rare, mild, and transient. No meaningful changes in AD biomarkers were observed. Both studies were discontinued following a preplanned interim analysis indicating that CREAD was unlikely to meet the primary end point. Conclusions and Relevance Crenezumab was well tolerated but did not reduce clinical decline in participants with early AD. Trial Registration ClinicalTrials.gov Identifiers: CREAD, NCT02670083; CREAD2, NCT03114657.
Collapse
Affiliation(s)
| | - Tobias Bittner
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Genentech, Inc, South San Francisco, California
| | | | | | | | - Lawrence S. Honig
- Taub Institute and Department of Neurology, Columbia University Irving Medical Center, New York, New York
| | - Emanuele Cassetta
- Fatebenefratelli Foundation, Associazione Fatebenefratelli Per la Ricerca Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Michael Woodward
- Austin Health Continuing Care Clinical Service Unit, Heidelberg, Germany
- University of Melbourne, Melbourne, Victoria, Australia
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Nan Hu
- Genentech, Inc, South San Francisco, California
| | - Angelica Quartino
- Genentech, Inc, South San Francisco, California
- Clinical Pharmacology and Quantitative Pharmacology, AstraZeneca, Gothenburg, Sweden
| | | | - Michael Dolton
- Roche Products Australia Pty Ltd, Sydney, New South Wales, Australia
| | - Yifan Dang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Sanofi Genzyme, Waltham, Massachusetts
| | - Beth Ostaszewski
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | - Balazs Toth
- Genentech, Inc, South San Francisco, California
| | | | - Jillian Smith
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Rachelle S. Doody
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Genentech, Inc, South San Francisco, California
| |
Collapse
|
18
|
Pharmacotherapy of Alzheimer's disease: an overview of systematic reviews. Eur J Clin Pharmacol 2022; 78:1567-1587. [PMID: 35881170 DOI: 10.1007/s00228-022-03363-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia. In this umbrella systematic review (SR), we summarized the efficacy of different pharmacological interventions in improving cognitive function in patients with AD. METHODS A systematic search was performed through the PubMed, Scopus, Embase, and Cochrane databases for SRs of studies assessing the efficacy of pharmacological interventions versus placebo in improving cognitive function in AD or mild cognitive impairment due to AD. The risk of bias (RoB) was assessed using the Risk of Bias in SRs (ROBIS) tool. RESULTS Out of 1748 articles found through the database survey, 33 SR articles were included. These studies assessed effects of immunotherapy, cholinesterase inhibitors (ChEIs), memantine, statins, lithium, nonsteroidal anti-inflammatory drugs (NSAIDs), antidiabetic agents, Cerebrolysin, RAS-targeting antihypertensive drugs (ARBs and ACEIs), psychostimulants, glycogen synthase kinase 3 (GSK-3) inhibitors, melatonin, and herbal medications on cognitive function in AD patients. There was no notable overall RoB in 18 studies (54.5%), the RoB in 14 studies (42.4%) was high, and in one study (3.0%) it was unclear. CONCLUSIONS The use of ChEIs, including rivastigmine, galantamine, and donepezil, as well as memantine has demonstrated a positive impact on improving cognitive outcomes of AD patients, but no considerable effects were found for immunotherapies. Melatonin, statins, antihypertensive drugs, antidiabetic agents, Cerebrolysin, psychostimulants, and some herbal drugs such as Danggui-Shaoyao-San and Ginkgo biloba seem to be effective in improving cognitive function of AD patients, but the evidence in this regard is limited.
Collapse
|
19
|
Vaz M, Silva V, Monteiro C, Silvestre S. Role of Aducanumab in the Treatment of Alzheimer’s Disease: Challenges and Opportunities. Clin Interv Aging 2022; 17:797-810. [PMID: 35611326 PMCID: PMC9124475 DOI: 10.2147/cia.s325026] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Aducanumab is a monoclonal antibody selective for amyloid β (Aβ) aggregates. In June 2021, aducanumab became the first drug underlying the pathophysiology of Alzheimer’s disease (AD) approved by the US Food and Drug Administration (FDA), under the accelerated approval pathway. The decision was based on the ability of aducanumab to remove Aβ plaques, without any evidence that the Aβ clearance is correlated with less cognitive or functional decline. This decision has generated a considerable debate in the scientific community, especially because the results from the two Phase 3 trials, EMERGE and ENGAGE, were divergent and, even after the post hoc analysis, the data were insufficient to prove aducanumab efficacy. Moreover, some researchers think that this approval will be an obstacle to the progress and also demonstrated concerns about aducanumab cost and its safety profile. The European Medicines Agency’s rejection of aducanumab in December 2021 just brought more controversy over FDA’s decision. Now, Biogen is designing the FDA’s required confirmatory study, named ENVISION, which should be complete in 2026. Despite the controversy, the aducanumab showed to affect downstream tau pathology, which could open doors for a combination therapy approach for AD (anti-tau and anti-amyloid drug). This review summarizes the clinical development of aducanumab until regulatory agencies’ decisions, the available trials data and the controversy over aducanumab approval for AD.
Collapse
Affiliation(s)
- Miguel Vaz
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, 6200-506, Portugal
- Correspondence: Miguel Vaz; Samuel Silvestre, CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal, Tel +351 275 329002/3, Fax +351 275 329099, Email ;
| | - Vítor Silva
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, 6200-506, Portugal
| | - Cristina Monteiro
- UFBI – Pharmacovigilance Unit of Beira Interior, University of Beira Interior, Covilhã, 6200-506, Portugal
| | - Samuel Silvestre
- CICS-UBI - Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Covilhã, 6200-506, Portugal
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal
| |
Collapse
|
20
|
Gabriele RMC, Abel E, Fox NC, Wray S, Arber C. Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. Front Neurosci 2022; 16:835645. [PMID: 35360155 PMCID: PMC8964081 DOI: 10.3389/fnins.2022.835645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Amyloid precursor protein (APP) and its cleavage fragment Amyloid-β (Aβ) have fundamental roles in Alzheimer's disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aβ species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aβ species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset.
Collapse
Affiliation(s)
- Rebecca M. C. Gabriele
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Emily Abel
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Nick C. Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,UK Dementia Research Institute at University College London (UCL), Queen Square Institute of Neurology, London, United Kingdom
| | - Selina Wray
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom,*Correspondence: Charles Arber,
| |
Collapse
|
21
|
Scherlek AA, Kozberg MG, Nicoll JAR, Perosa V, Freeze WM, van der Weerd L, Bacskai BJ, Greenberg SM, Frosch MP, Boche D, van Veluw SJ. Histopathological correlates of haemorrhagic lesions on ex vivo magnetic resonance imaging in immunized Alzheimer's disease cases. Brain Commun 2022; 4:fcac021. [PMID: 35224489 PMCID: PMC8870423 DOI: 10.1093/braincomms/fcac021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Haemorrhagic amyloid-related imaging abnormalities on MRI are frequently observed adverse events in the context of amyloid β immunotherapy trials in patients with Alzheimer's disease. The underlying histopathology and pathophysiological mechanisms of haemorrhagic amyloid-related imaging abnormalities remain largely unknown, although coexisting cerebral amyloid angiopathy may play a key role. Here, we used ex vivo MRI in cases that underwent amyloid β immunotherapy during life to screen for haemorrhagic lesions and assess underlying tissue and vascular alterations. We hypothesized that these lesions would be associated with severe cerebral amyloid angiopathy. Ten cases were selected from the long-term follow-up study of patients who enrolled in the first clinical trial of active amyloid β immunization with AN1792 for Alzheimer's disease. Eleven matched non-immunized Alzheimer's disease cases from an independent brain brank were used as 'controls'. Formalin-fixed occipital brain slices were imaged at 7 T MRI to screen for haemorrhagic lesions (i.e. microbleeds and cortical superficial siderosis). Samples with and without haemorrhagic lesions were cut and stained. Artificial intelligence-assisted quantification of amyloid β plaque area, cortical and leptomeningeal cerebral amyloid angiopathy area, the density of iron and calcium positive cells and reactive astrocytes and activated microglia was performed. On ex vivo MRI, cortical superficial siderosis was observed in 5/10 immunized Alzheimer's disease cases compared with 1/11 control Alzheimer's disease cases (κ = 0.5). On histopathology, these areas revealed iron and calcium positive deposits in the cortex. Within the immunized Alzheimer's disease group, areas with siderosis on MRI revealed greater leptomeningeal cerebral amyloid angiopathy and concentric splitting of the vessel walls compared with areas without siderosis. Moreover, greater density of iron-positive cells in the cortex was associated with lower amyloid β plaque area and a trend towards increased post-vaccination antibody titres. This work highlights the use of ex vivo MRI to investigate the neuropathological correlates of haemorrhagic lesions observed in the context of amyloid β immunotherapy. These findings suggest a possible role for cerebral amyloid angiopathy in the formation of haemorrhagic amyloid-related imaging abnormalities, awaiting confirmation in future studies that include brain tissue of patients who received passive immunotherapy against amyloid β with available in vivo MRI during life.
Collapse
Affiliation(s)
- Ashley A. Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Whitney M. Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J. Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Matthew P. Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Susanne J. van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Correspondence to: Susanne J. van Veluw MassGeneral Institute for Neurodegenerative Disease Massachusetts General Hospital 114 16th Street Charlestown, 02129 MA, USA E-mail:
| |
Collapse
|
22
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
23
|
Ge M, Zhang J, Chen S, Huang Y, Chen W, He L, Zhang Y. Role of Calcium Homeostasis in Alzheimer's Disease. Neuropsychiatr Dis Treat 2022; 18:487-498. [PMID: 35264851 PMCID: PMC8901263 DOI: 10.2147/ndt.s350939] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with senile plaques (SP) and neurofibrillary tangles (NFTs) in the brain. With aging of the population, AD has become the most common form of dementia. However, the mechanisms leading to AD are still under investigation, and there are currently no specific drugs for its treatment. Therefore, further study on the pathogenesis of AD to develop new drugs for AD treatment remains a top priority. Several studies have suggested that intracellular calcium homeostasis is dysregulated in AD, and this has been implicated in the deposition of amyloid β (Aβ), hyperphosphorylation of tau protein, abnormal synaptic plasticity, and apoptosis, all of which are involved in the occurrence and development of AD. In addition, some based on pathways linking calcium homeostasis and AD have achieved results in AD treatment. This review comprehensively explores the relationship between calcium homeostasis and the pathogenesis of AD to provide a theoretical basis for the future exploration of AD and the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Mengqian Ge
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Simiao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yanfen Huang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Weiyan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Lan He
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Lacorte E, Ancidoni A, Zaccaria V, Remoli G, Tariciotti L, Bellomo G, Sciancalepore F, Corbo M, Lombardo FL, Bacigalupo I, Canevelli M, Piscopo P, Vanacore N. Safety and Efficacy of Monoclonal Antibodies for Alzheimer's Disease: A Systematic Review and Meta-Analysis of Published and Unpublished Clinical Trials. J Alzheimers Dis 2022; 87:101-129. [PMID: 35275549 PMCID: PMC9198746 DOI: 10.3233/jad-220046] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are currently among the most investigated targets for potential disease-modifying therapies in Alzheimer's disease (AD). OBJECTIVE Our objectives were to identify all registered trials investigating mAbs in MCI due to AD or AD at any stage, retrieve available published and unpublished data from all registered trials, and analyze data on safety and efficacy outcomes. METHODS A systematic search of all registered trials on ClinicalTrials.gov and EUCT was performed. Available results were searched on both platforms and on PubMed, ISI Web of Knowledge, and The Cochrane Library. RESULTS Overall, 101 studies were identified on 27 mAbs. Results were available for 50 trials investigating 12 mAbs. For 18 trials, data were available from both published and unpublished sources, for 21 trials only from published sources, and for 11 trials only from unpublished sources. Meta-analyses of amyloid-related imaging abnormalities (ARIA) events showed overall risk ratios of 10.65 for ARIA-E and of 1.75 for ARIA-H. The meta-analysis of PET-SUVR showed an overall significant effect of mAbs in reducing amyloid (SMD -0.88), but when considering clinical efficacy, data on CDR-SB showed that treated patients had a statistically significant but clinically non-relevant lower worsening (MD -0.15). CONCLUSION Our results suggest that the risk-benefit profile of mAbs remains unclear. Research should focus on clarifying the effect of amyloid on cognitive decline, providing data on treatment response rate, and accounting for minimal clinically important difference. Research on mAbs should also investigate the possible long-term impact of ARIA events, including potential factors predicting their onset.
Collapse
Affiliation(s)
- Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Valerio Zaccaria
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Leonardo Tariciotti
- Neurosurgery Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Francesco Sciancalepore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Flavia L. Lombardo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
25
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
26
|
Avgerinos KI, Ferrucci L, Kapogiannis D. Effects of monoclonal antibodies against amyloid-β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer's disease. Ageing Res Rev 2021; 68:101339. [PMID: 33831607 PMCID: PMC8161699 DOI: 10.1016/j.arr.2021.101339] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate the effects of monoclonal antibodies against Aβ on cognition, function, amyloid PET and other biomarkers, as well as risk for amyloid-related imaging abnormalities (ARIA) and other adverse events, in Alzheimer's disease (AD). METHODS Pubmed, Web of Science, ClinicalTrials.gov and gray literature were searched for phase III RCTs and random-effects meta-analyses were performed. RESULTS Seventeen studies (12,585 patients) were included. Antibodies statistically improved the cognitive outcomes ADAS-Cog {SMD = -0.06 [95 % CI (-0.10; -0.02), I2 = 0%]} and MMSE {SMD = 0.05 [95 % CI (0.01; 0.09), I2 = 0%]} by small effect sizes, but did not improve the cognitive/functional measure CDR-SOB {SMD = -0.03 [95 % CI (-0.07; 0.01), I2 = 18 %]}. Moreover, antibodies decreased amyloid PET SUVR {SMD = -1.02 [95 % CI (-1.70; -0.34), I2 = 95 %]} and CSF p181-tau {SMD = -0.87 [95 % CI (-1.32; -0.43), I2 = 89 %]} by large effect sizes. They also increased risk for ARIA {RR = 4.30 [95 % CI (2.39; 7.77), I2 = 86 %]} by a large effect size. Antibody effects on reducing amyloid PET SUVR were correlated with their effects on improving ADAS-Cog (r = +0.68, p = 0.02). In subgroup analyses by individual drug, Aducanumab improved ADAS-Cog, CDR-SOB, ADCS-ADL by small effect sizes and decreased amyloid PET SUVR and CSF p181-tau by large effect sizes. Solanezumab improved ADAS-Cog and MMSE by small effect sizes, and increased (improved) CSF Aβ1-40 levels by a moderate effect size. Bapineuzumab, Gantenerumab and Crenezumab did not improve any clinical outcomes. Bapineuzumab and Gantenerumab decreased CSF p181-tau by a small and large effect size, respectively. All drugs except Solanezumab increased ARIA risk. CONCLUSIONS In this meta-analysis of phase III trials in AD, we found that monoclonal antibodies against Aβ induced clinical improvements of small effect sizes, biomarker improvements of large effect sizes, and increases in risk for the hallmark adverse event, ARIA, by a large effect size, when all drugs were pooled together. Among individual drugs, Aducanumab produced the most favorable effects followed by Solanezumab. These findings provide moderate support for the continuous development of anti-Aβ monoclonal antibodies as a treatment for AD.
Collapse
Affiliation(s)
- Konstantinos I Avgerinos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Lyu D, Shi Y, Lyu X. Effect of antiamyloid-β drugs on Alzheimer's disease: study protocol for a systematic review and meta-analysis. BMJ Open 2021; 11:e048453. [PMID: 34006557 PMCID: PMC8137253 DOI: 10.1136/bmjopen-2020-048453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease with a complex aetiology involving multiple targets and pathways. With the continuous growth of the ageing population, the burden of AD is increasing year by year. However, there has not been new drug approved for over a decade. In addition, the efficacy of memantine and cholinesterase inhibitors is not satisfactory. As amyloid-β (Aβ) is regarded as the core pathological change and the trigger mechanism of AD, anti-Aβ therapy may be an effective therapy. In recent years, a lot of clinical trials have been carried out in this field, but the results have not been well summarised and analysed. METHODS AND ANALYSIS In this study, we will study the effect of anti-Aβ antibodies versus placebo on the clinical efficacy, biomarkers, neuroimaging and safety in different stages of AD, as well as the factors that may affect the efficacy. Drugs that only target the existing Aβ are regarded as anti-Aβ antibodies. Following electronic databases will be searched from inception to April 2021: Medline-Ovid, EMBase-Ovid, Cochrane Central and clinical trial registration platform ClinicalTrials.gov. After identifying eligible studies through screening title, abstract and read full text of each retrieved literature, we will contact the correspondence authors for additional information and grey literatures. To get more reliable results, random effect model will be conducted for meta-analysis and analysis of subgroups or subsets. Funnel plot, Egger's test and sensitivity analysis will be conducted to explore potential heterogeneity. Meta-regression will be conducted to identify the factors that may affect clinical efficacy. Evidence quality assessment and trial sequential analysis will be conducted to assess the quality of evidence and confirm the reliability of the results in this study. ETHICS AND DISCUSSION This study does not require formal ethical approval. The findings will be submitted to a peer-review journal. PROSPERO REGISTRATION NUMBER CRD42020202370.
Collapse
Affiliation(s)
- Diyang Lyu
- Capital Medical University, Beijing, China
| | - Yuqing Shi
- Capital Medical University, Beijing, China
| | - Xuanxin Lyu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
29
|
Vedam-Mai V. Harnessing the immune system for the treatment of Parkinson's disease. Brain Res 2021; 1758:147308. [PMID: 33524380 DOI: 10.1016/j.brainres.2021.147308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/11/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Current treatment options for Parkinson's disease (PD) typically aim to replace dopamine, and hence only provide symptomatic relief. However, in the long run, this approach alone loses its efficacy as it is associated with debilitating side effects. Hence there is an unmet clinical need for addressing levodopa resistant symptoms, and an urgency to develop therapies that can halt or prevent the course of PD. The premise that α-syn can transmit from cell-to-cell in a prion like manner has opened up the possibility for the use of immunotherapy in PD. There is evidence for inflammation in PD as is evidenced by microglial activation, as well as the involvement of the peripheral immune system in PD, and peripheral inflammation can exacerbate dopaminergic degeneration as seen in animal models of the disease. However, mechanisms that link the immune system with PD are not clear, and the sequence of immune responses with respect to PD are still unknown. Nevertheless, our present knowledge offers avenues for the development of immune-based therapies for PD. In order to successfully employ such strategies, we must comprehend the state of the peripheral immune system during the course of PD. This review describes the developments in the field of both active and passive immunotherapies in the treatment of PD, and highlights the crucial need for future research for clarifying the role of inflammation and immunity in this debilitating disease.
Collapse
|
30
|
Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol 2020; 887:173554. [DOI: 10.1016/j.ejphar.2020.173554] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
31
|
VandeVrede L, Gibbs DM, Koestler M, La Joie R, Ljubenkov PA, Provost K, Soleimani‐Meigooni D, Strom A, Tsoy E, Rabinovici GD, Boxer AL. Symptomatic amyloid-related imaging abnormalities in an APOE ε4/ε4 patient treated with aducanumab. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12101. [PMID: 33072846 PMCID: PMC7545921 DOI: 10.1002/dad2.12101] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Amyloid-related imaging abnormalities (ARIA) are a common, dose-dependent effect of amyloid-targeting antibodies, strongly associated with the apolipoprotein E (APOE) ε4 allele. METHODS We describe the clinical course and management of a 66-year-old white male (APOE ε4/ε4) enrolled in an observational study that included amyloid and tau positron emission tomography (PET), who received aducanumab through the ENGAGE clinical trial. RESULTS Acute symptoms included headache and encephalopathy, and magnetic resonance imaging revealed ARIA-E and ARIA-H. Malignant hypertension and epileptiform activity were treated with nicardipine and levetiracetam. Subsequent clinical/imaging worsening prompted a course of methylprednisolone. Symptoms and ARIA-E resolved over 6 months, while ARIA-H persisted. Quantitative analysis of interval amyloid PET showed reduced signal in pre-existing areas but increased signal posteriorly; while tau PET showed increased signal overall. DISCUSSION In an APOE ε4/ε4 patient, ARIA symptoms were accompanied by malignant hypertension and epileptiform activity, and pulsed steroids reversed edema. Studies from larger cohorts may clarify the optimal treatment and pathophysiology of ARIA.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Daniel M Gibbs
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mary Koestler
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peter A. Ljubenkov
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Karine Provost
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - David Soleimani‐Meigooni
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Amelia Strom
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Elena Tsoy
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gil D. Rabinovici
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam L. Boxer
- Memory and Aging CenterDepartment of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
32
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Antiamyloid therapy of Alzheimer's disease tackles the overproduction and clearance of the amyloid-beta peptide (Aβ). Immunotherapeutic compounds were tested in large-scale trials. We revisit the recent literature focusing on randomized-controlled trials (RCT) using monoclonal anti-Aβ antibodies. RECENT FINDINGS Forty-three articles on anti-Aβ passive immunotherapy for Alzheimer's disease were published between January 2016 and October 2019 regarding 17 RCTs: 13 phase III trials using the monoclonal antibodies bapineuzumab, solanezumab, gantenerumab, crenezumab, and aducanumab; three phase II with crenezumab and aducanumab; and one phase I trial with BAN2401. Studies resulted largely negative considering the effect of the treatment on primary and secondary outcome variables. The incidence of the most important adverse effect, amyloid-related imaging abnormalities (ARIAs) ranged between 0.2 and 22%, in treatment groups. Primary endpoints were not met in eight trials, and five trials were discontinued prior to completion. SUMMARY Passive immunotherapy RCTs failed to show clinically relevant effects in patients with clinically manifest or prodromal dementia. The high incidence of ARIAs indicates that the risk of adverse events may outweigh the benefits of these interventions. Ongoing studies must determine the benefit of such interventions in preclinical Alzheimer's disease, addressing the effect of antiamyloid immunotherapy in samples of asymptomatic carriers of autosomal-dominant mutations related to early-onset Alzheimer's disease.
Collapse
|
34
|
Zeiss CJ. Utility of spontaneous animal models of Alzheimer’s disease in preclinical efficacy studies. Cell Tissue Res 2020; 380:273-286. [DOI: 10.1007/s00441-020-03198-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
|
35
|
Geerts H, Spiros A. Learning from amyloid trials in Alzheimer's disease. A virtual patient analysis using a quantitative systems pharmacology approach. Alzheimers Dement 2020; 16:862-872. [PMID: 32255562 PMCID: PMC7983876 DOI: 10.1002/alz.12082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/12/2020] [Accepted: 02/17/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Many trials of amyloid-modulating agents fail to improve cognitive outcome in Alzheimer's disease despite substantial reduction of amyloid β levels. METHODS We applied a mechanism-based Quantitative Systems Pharmacology model exploring the pharmacodynamic interactions of apolipoprotein E (APOE), Catechol -O -methyl Transferase (COMTVal158Met), and 5-HT transporter (5-HTTLPR) rs25531 genotypes and aducanumab. RESULTS The model predicts large clinical variability. Anticipated placebo differences on Alzheimer's Disease Assessment Scale (ADAS)-COG in the aducanumab ENGAGE and EMERGE ranged from 0.77 worsening to 1.56 points improvement, depending on the genotype-comedication combination. 5-HTTLPR L/L subjects are found to be the most resilient. Virtual patient simulations suggest improvements over placebo between 4% and 20% at the 10 mg/kg dose, depending on the imbalance of the 5-HTTLPR genotype and exposure. In the Phase II PRIME trial, maximal anticipated placebo difference at 10 mg/kg ranges from 0.3 worsening to 5.3 points improvement. DISCUSSION These virtual patient simulations, once validated against clinical data, could lead to better informed future clinical trial designs.
Collapse
Affiliation(s)
- Hugo Geerts
- In-Silico Biosciences, Certara-QSP, Berwyn, Pennsylvania, USA
| | - Athan Spiros
- In-Silico Biosciences, Certara-QSP, Berwyn, Pennsylvania, USA
| |
Collapse
|
36
|
Malek-Ahmadi M, Chen K, Perez SE, Mufson EJ. Cerebral Amyloid Angiopathy and Neuritic Plaque Pathology Correlate with Cognitive Decline in Elderly Non-Demented Individuals. J Alzheimers Dis 2020; 67:411-422. [PMID: 30594928 DOI: 10.3233/jad-180765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a vascular neuropathology commonly reported in non-cognitively impaired (NCI), mild cognitive impairment, and Alzheimer's disease (AD) brains. However, it is unknown whether similar findings are present in non-demented elderly subjects. OBJECTIVE This study determined the association between CAA and cognition among elderly NCI subjects with varying levels of AD pathology. METHODS Data from 182 cases that received a diagnosis of NCI at their first clinical assessment were obtained from the Rush Religious Orders study (RROS). A cognitive composite score was used to measure cognitive decline. CAA was dichotomized as present or absent. Cases were also dichotomized according to CERAD neuropathological diagnosis and Braak staging. A mixed model-repeated measures analysis assessed decline on the cognitive composite score. RESULTS CAA, alone, was not associated with cognitive decline [-0.87 (95% CI: -3.33, 1.58), p = 0.49]. However, among those with CAA, the High CERAD group had significantly greater decline relative to the Low CERAD group [-4.08 (95% CI: -7.10, -1.06), p = 0.008]. The High and Low CERAD groups were not significantly different [-1.77 (95% CI: -6.14, 2.60), p = 0.43] in those without CAA. Composite score decline in the High and Low Braak groups with [-1.32 (95% CI: -4.40, 1.75), p = 0.40] or without [0.27 (95% CI: -4.01, 4.56), p = 0.90] CAA was not significantly different. CONCLUSION The current data shows that an interaction between CAA and plaque load is associated with greater decline on a cognitive composite score used to test non-cognitively impaired elderly participants in AD prevention trials.
Collapse
Affiliation(s)
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
37
|
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 2020; 16:30-42. [PMID: 31827267 PMCID: PMC7268202 DOI: 10.1038/s41582-019-0281-2] [Citation(s) in RCA: 517] [Impact Index Per Article: 103.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies.
Collapse
Affiliation(s)
- Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy Pruzin
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Elmer BM, Swanson KA, Bangari DS, Piepenhagen PA, Roberts E, Taksir T, Guo L, Obinu MC, Barneoud P, Ryan S, Zhang B, Pradier L, Yang ZY, Nabel GJ. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer's disease. PLoS One 2019; 14:e0226245. [PMID: 31887144 PMCID: PMC6936806 DOI: 10.1371/journal.pone.0226245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Antibody therapies for Alzheimer’s Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies’ own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive β-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aβ scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Bradford M. Elmer
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Kurt A. Swanson
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Dinesh S. Bangari
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Peter A. Piepenhagen
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Errin Roberts
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Tatyana Taksir
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Lei Guo
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | | | - Susan Ryan
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Bailin Zhang
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | - Zhi-Yong Yang
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Gary J. Nabel
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Penninkilampi R, Casey AN, Singh MF, Brodaty H. The Association between Social Engagement, Loneliness, and Risk of Dementia: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2019; 66:1619-1633. [PMID: 30452410 DOI: 10.3233/jad-180439] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has been reported that social engagement may be associated with dementia risk. We searched PubMed, EMBASE, PsycINFO, CINAHL, LILACS, Biomed Central, Scopus, and Web of Science from January 2012 - May 2017, supplemented by extraction from previous reviews. We included cohort and case-control studies examining the association between social engagement or loneliness and dementia risk, pooling data using a random-effects model. Registered: PROSPERO (CRD42017067074). We included 31 cohort and 2 case-control studies comprising 2,370,452 participants. Poor social engagement indices were associated with increased dementia risk, including having a poor social network (RR = 1.59, 95% CI 1.31-1.96; I2 = 0.00%) and poor social support (RR = 1.28, 95% CI 1.01-1.62; I2 = 55.51%). In long-term studies (≥10 years), good social engagement was modestly protective (RR = 0.88, 95% CI 0.80-0.96; I2 = 0.00%). Loneliness was non-significantly associated with increased risk (RR = 1.38, 95% CI 0.98-1.94; I2 = 45.32). Our findings encourage interventions targeting social isolation and disengagement for dementia prevention.
Collapse
Affiliation(s)
- Ross Penninkilampi
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne-Nicole Casey
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Maria Fiatarone Singh
- The University of Sydney, faculty of Health Sciences and Sydney Medical School Sydney, NSW, Australia.,Hebrew SeniorLife and Jean Mayer USDA Human Nutrition Center on Aging at Tufts University, Boston, MA, USA
| | - Henry Brodaty
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.,Academic Department for Old Age Psychiatry, Prince of Wales Hospital, Randwick, Australia
| |
Collapse
|
40
|
Geerts H, Wikswo J, van der Graaf PH, Bai JPF, Gaiteri C, Bennett D, Swalley SE, Schuck E, Kaddurah-Daouk R, Tsaioun K, Pelleymounter M. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 9:5-20. [PMID: 31674729 PMCID: PMC6966183 DOI: 10.1002/psp4.12478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania, USA
| | - John Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jane P F Bai
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Katya Tsaioun
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Ling W, Huang YM, Qiao YC, Zhang XX, Zhao HL. Human Amylin: From Pathology to Physiology and Pharmacology. Curr Protein Pept Sci 2019; 20:944-957. [DOI: 10.2174/1389203720666190328111833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
The histopathological hallmark of type 2 diabetes is islet amyloid implicated in the developing treatment options. The major component of human islet amyloid is 37 amino acid peptide known as amylin or islet amyloid polypeptide (IAPP). Amylin is an important hormone that is co-localized, copackaged, and co-secreted with insulin from islet β cells. Physiologically, amylin regulates glucose homeostasis by inhibiting insulin and glucagon secretion. Furthermore, amylin modulates satiety and inhibits gastric emptying via the central nervous system. Normally, human IAPP is soluble and natively unfolded in its monomeric state. Pathologically, human IAPP has a propensity to form oligomers and aggregate. The oligomers show misfolded α-helix conformation and can further convert themselves to β-sheet-rich fibrils as amyloid deposits. The pathological findings and physiological functions of amylin have led to the introduction of pramlintide, an amylin analog, for the treatment of diabetes. The history of amylin’s discovery is a representative example of how a pathological finding can translate into physiological exploration and lead to pharmacological intervention. Understanding the importance of transitioning from pathology to physiology and pharmacology can provide novel insight into diabetes mellitus and Alzheimer's disease.
Collapse
Affiliation(s)
- Wei Ling
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yan-Mei Huang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Yong-Chao Qiao
- Department of Laboratory, the Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
42
|
Teter B, Morihara T, Lim GP, Chu T, Jones MR, Zuo X, Paul RM, Frautschy SA, Cole GM. Curcumin restores innate immune Alzheimer's disease risk gene expression to ameliorate Alzheimer pathogenesis. Neurobiol Dis 2019; 127:432-448. [PMID: 30951849 PMCID: PMC8092921 DOI: 10.1016/j.nbd.2019.02.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) genetics implies a causal role for innate immune genes, TREM2 and CD33, products that oppose each other in the downstream Syk tyrosine kinase pathway, activating microglial phagocytosis of amyloid (Aβ). We report effects of low (Curc-lo) and high (Curc-hi) doses of curcumin on neuroinflammation in APPsw transgenic mice. Results showed that Curc-lo decreased CD33 and increased TREM2 expression (predicted to decrease AD risk) and also increased TyroBP, which controls a neuroinflammatory gene network implicated in AD as well as phagocytosis markers CD68 and Arg1. Curc-lo coordinately restored tightly correlated relationships between these genes' expression levels, and decreased expression of genes characteristic of toxic pro-inflammatory M1 microglia (CD11b, iNOS, COX-2, IL1β). In contrast, very high dose curcumin did not show these effects, failed to clear amyloid plaques, and dysregulated gene expression relationships. Curc-lo stimulated microglial migration to and phagocytosis of amyloid plaques both in vivo and in ex vivo assays of sections of human AD brain and of mouse brain. Curcumin also reduced levels of miR-155, a micro-RNA reported to drive a neurodegenerative microglial phenotype. In conditions without amyloid (human microglial cells in vitro, aged wild-type mice), Curc-lo similarly decreased CD33 and increased TREM2. Like curcumin, anti-Aβ antibody (also reported to engage the Syk pathway, increase CD68, and decrease amyloid burden in human and mouse brain) increased TREM2 in APPsw mice and decreased amyloid in human AD sections ex vivo. We conclude that curcumin is an immunomodulatory treatment capable of emulating anti-Aβ vaccine in stimulating phagocytic clearance of amyloid by reducing CD33 and increasing TREM2 and TyroBP, while restoring neuroinflammatory networks implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- B Teter
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America; Alzheimer's Translational Center, Veterans Administration (Research 151), Bldg. 114, Rm. 114-1, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States of America.
| | - T Morihara
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G P Lim
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - T Chu
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - M R Jones
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America
| | - X Zuo
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America
| | - R M Paul
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America
| | - S A Frautschy
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| | - G M Cole
- Departments of Neurology, Geriatric Research Education and Clinical Centerand, University of California, Los Angeles (UCLA), United States of America; Departments of Medicine, University of California, Los Angeles (UCLA), United States of America; Departments of Veterans Affairs Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, University of California, Los Angeles (UCLA), United States of America.
| |
Collapse
|
43
|
Gosztyla ML, Brothers HM, Robinson SR. Alzheimer's Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence. J Alzheimers Dis 2019; 62:1495-1506. [PMID: 29504537 DOI: 10.3233/jad-171133] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The amyloid-β (Aβ) peptide has long been considered to be the driving force behind Alzheimer's disease (AD). However, clinical trials that have successfully reduced Aβ burden in the brain have not slowed the cognitive decline, and in some instances, have resulted in adverse outcomes. While these results can be interpreted in different ways, a more nuanced picture of Aβ is emerging that takes into account the facts that the peptide is evolutionarily conserved and is present throughout life in cognitively normal individuals. Recent evidence indicates a role for Aβ as an antimicrobial peptide (AMP), a class of innate immune defense molecule that utilizes fibrillation to protect the host from a wide range of infectious agents. In humans and in animal models, infection of the brain frequently leads to increased amyloidogenic processing of the amyloid-β protein precursor (AβPP) and resultant fibrillary aggregates of Aβ. Evidence from in vitro and in vivo studies demonstrates that Aβ oligomers have potent, broad-spectrum antimicrobial properties by forming fibrils that entrap pathogens and disrupt cell membranes. Importantly, overexpression of Aβ confers increased resistance to infection from both bacteria and viruses. The antimicrobial role of Aβ may explain why increased rates of infection have been observed in some of the AD clinical trials that depleted Aβ. Perhaps progress toward a cure for AD will accelerate once treatment strategies begin to take into account the likely physiological functions of this enigmatic peptide.
Collapse
Affiliation(s)
- Maya L Gosztyla
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Holly M Brothers
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
44
|
Huang YM, Shen J, Zhao HL. Major Clinical Trials Failed the Amyloid Hypothesis of Alzheimer's Disease. J Am Geriatr Soc 2019; 67:841-844. [DOI: 10.1111/jgs.15830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Yan-Mei Huang
- Department of Immunology, Guangxi Area of Excellence; Guilin Medical University; Guilin China
| | - Jian Shen
- Department of Immunology, Guangxi Area of Excellence; Guilin Medical University; Guilin China
| | - Hai-Lu Zhao
- Department of Immunology, Guangxi Area of Excellence; Guilin Medical University; Guilin China
| |
Collapse
|
45
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
46
|
Abstract
Symptomatic treatment options for Parkinson disease have steadily improved, and individualized therapeutic approaches are becoming established for every stage of the disease. However, disease-modifying therapy with a causal approach is still unavailable. The central causative role of alpha-synuclein pathology, including its progressive spread to most areas of the CNS, has been widely recognized, and a strong involvement of immune responses has recently been discovered. New immunologic technologies have been shown to effectively prevent the progression of alpha-synuclein pathology in animal models. These approaches have recently been translated into the first human clinical trials, representing a novel starting point for the causal therapy of Parkinson disease. In this review, the pathomechanistic role of alpha-synuclein and its influence on the surrounding cellular environment are analyzed with a strong focus on immune responses and neuroinflammation. The potential of novel immunotherapeutic approaches that reduce the burden of alpha-synuclein pathology in the CNS is critically evaluated, and currently ongoing human clinical trials are presented. The clinical development of these new immunotherapies is progressing rapidly and gives reason to hope that a causal therapy of Parkinson disease could be possible in the foreseeable future.
Collapse
|
47
|
Abstract
Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Herline K, Prelli F, Mehta P, MacMurray C, Goñi F, Wisniewski T. Immunotherapy to improve cognition and reduce pathological species in an Alzheimer's disease mouse model. ALZHEIMERS RESEARCH & THERAPY 2018; 10:54. [PMID: 29914551 PMCID: PMC6006698 DOI: 10.1186/s13195-018-0384-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is characterized by physiologically endogenous proteins amyloid beta (Aβ) and tau undergoing a conformational change and accumulating as soluble oligomers and insoluble aggregates. Tau and Aβ soluble oligomers, which contain extensive β-sheet secondary structure, are thought to be the most toxic forms. The objective of this study was to determine the ability of TWF9, an anti-β-sheet conformation antibody (aβComAb), to selectively recognize pathological Aβ and phosphorylated tau in AD human tissue compared with cognitively normal age-matched controls and to improve the performance of old 3xTg-AD mice with advanced pathology in behavioral testing after acute treatment with TWF9. Methods In this study, we used immunohistochemistry, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) to characterize TWF9 specificity. We further assessed cognitive performance in old (18–22 months) 3xTg-AD mice using both a Barnes maze and novel object recognition after intraperitoneal administration of TWF9 (4 mg/kg) biweekly for 2 weeks before the start of behavioral testing. Injections continued for the duration of the behavioral testing, which lasted 2 weeks. Results Histological analysis of TWF9 in formalin-fixed paraffin-embedded human control and AD (ABC score: A3B3C3) brain tissue revealed preferential cytoplasmic immunoreactivity in neurons in the AD tissue compared with controls (p < 0.05). Furthermore, ELISA using oligomeric and monomeric Aβ showed a preferential affinity for oligomeric Aβ. Immunoprecipitation studies showed that TWF9 extracted both phosphorylated tau (p < 0.01) and Aβ (p < 0.01) from fresh frozen brain tissues. Results show that treated old 3xTg-AD mice have an enhanced novel object recognition memory (p < 0.01) and Barnes maze performance (p = 0.05) compared with control animals. Overall plaque burden, neurofibrillary tangles, microgliosis, and astrocytosis remained unchanged. Soluble phosphorylated tau was significantly reduced in TWF9-treated mice (p < 0.05), and there was a trend for a reduction in soluble Aβ levels in the brain homogenates of female 3xTg-AD mice (p = 0.06). Conclusions This study shows that acute treatment with an aβComAb can effectively improve performance in behavioral testing without reduction of amyloid plaque burden, and that peripherally administered IgG can affect levels of pathological species in the brain.
Collapse
Affiliation(s)
- Krystal Herline
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Frances Prelli
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Pankaj Mehta
- Department of Immunology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | - Fernando Goñi
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA. .,Departments of Pathology and Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Ma W, Wu M, Zhou S, Tao Y, Xie Z, Zhong Y. Reduced Smoothened level rescues Aβ-induced memory deficits and neuronal inflammation in animal models of Alzheimer's disease. J Genet Genomics 2018; 45:237-246. [PMID: 29807798 DOI: 10.1016/j.jgg.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022]
Abstract
Emerging evidence suggests that neuro-inflammation begins early and drives the pathogenesis of Alzheimer's disease (AD), and anti-inflammatory therapies are under clinical development. However, several anti-inflammatory compounds failed to improve memory in clinical trials, indicating that reducing inflammation alone might not be enough. On the other hand, neuro-inflammation is implicated in a number of mental disorders which share the same therapeutic targets. Based on these observations, we screened a batch of genes related with mental disorder and neuro-inflammation in a classical olfactory conditioning in an amyloid beta (Aβ) overexpression fly model. A Smoothened (SMO) mutant was identified as a genetic modifier of Aβ toxicity in 3-min memory and downregulation of SMO rescued Aβ-induced 3-min and 1-h memory deficiency. Also, Aβ activated innate inflammatory response in fly by increasing the expression of antimicrobial peptides, which were alleviated by downregulating SMO. Furthermore, pharmaceutical administration of a SMO antagonist LDE rescued Aβ-induced upregulation of SMO in astrocytes of mouse hippocampus, improved memory in Morris water maze (MWM), and reduced expression of astrocyte secreting pro-inflammatory factors IL-1β, TNFα and the microglia marker IBA-1 in an APP/PS1 transgenic mouse model. Our study suggests that SMO is an important conserved modulator of Aβ toxicity in both fly and mouse models of AD.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengnan Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyan Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye Tao
- Suzhou Joekai Biotechnology LLC, Suzhou 215347, China
| | - Zuolei Xie
- Beijing Joekai Biotechnology LLC, Beijing 100094, China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Brothers HM, Gosztyla ML, Robinson SR. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Front Aging Neurosci 2018; 10:118. [PMID: 29922148 PMCID: PMC5996906 DOI: 10.3389/fnagi.2018.00118] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyloid-ß (Aß) is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD), and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes) are addressed first.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, The Ohio State University Columbus, Columbus, OH, United States
| | - Maya L Gosztyla
- Department of Neuroscience, The Ohio State University Columbus, Columbus, OH, United States
| | - Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|