1
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Fialova L, Barilly P, Stetkarova I, Bartos A, Noskova L, Zimova D, Zido M, Hoffmanova I. Impaired intestinal permeability in patients with multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025; 169:37-43. [PMID: 37581230 DOI: 10.5507/bp.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND A number of recent studies have shown that the intestinal microbiome, part of the brain-gut axis, is implicated in the pathophysiology of multiple sclerosis. An essential part of this axis, is the intestinal barrier and gastrointestinal disorders with intestinal barrier dysregulation appear to be linked to CNS demyelination, and hence involved in the etiopathogenesis of multiple sclerosis (MS). OBJECTIVE The aim of this study was to evaluate the integrity of the intestinal barrier in patients with clinically definite multiple sclerosis (CDMS) and clinically isolated syndrome (CIS) using two serum biomarkers, claudin-3 (CLDN3), a component of tight epithelial junctions, and intestinal fatty acid binding protein (I-FABP), a cytosolic protein in enterocytes. METHODS Serum levels of CLDN3 in 37 MS patients and 22 controls, and serum levels of I-FABP in 46 MS patients and 51 controls were measured using commercial ELISA kits. Complete laboratory tests excluded the presence of gluten-related disorders in all subjects. Thirty MS patients received either disease-modifying drugs (DMD), immunosuppression (IS) or corticosteroid treatment. RESULTS CLDN3 levels were only significantly higher in the MS patients treated with DMD or IS compared to the control group (P=0.006). There were no differences in I-FABP serum levels between the groups. Serum CLDN3 levels did not correlate with serum I-FABP levels in CDMS, in CIS patients or controls. CONCLUSIONS In multiple sclerosis patients, the intestinal epithelium may be impaired with increased permeability, but without significant enterocyte damage characterized by intracellular protein leakage. Based on our data, CLDN3 serum levels appear to assess intestinal dysfunction in MS patients but mainly in treated ones.
Collapse
Affiliation(s)
- Lenka Fialova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavla Barilly
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Denisa Zimova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Michal Zido
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
3
|
Ipavec N, Rogić Vidaković M, Markotić A, Pavelin S, Buljubašić Šoda M, Šoda J, Dolić K, Režić Mužinić N. Treated and Untreated Primary Progressive Multiple Sclerosis: Walkthrough Immunological Changes of Monocytes and T Regulatory Cells. Biomedicines 2024; 12:464. [PMID: 38398067 PMCID: PMC10887021 DOI: 10.3390/biomedicines12020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to investigate regulatory T cells (Tregs) and monocytes; specifically, the expression of CTLA-4 (CD152) and FOXP3+ in CD4+CD25+ Tregs and the expression of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40, and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated (N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs. Further, ocrelizumab treated PPMS subjects, compared to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical monocytes. Increased percentages of CTLA-4+ and FOXP3+ in CD4+CD25+ Tregs in both ocrelizumab treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical CD14+CD16++ monocytes for treated compared to untreated PPMS subjects suggests a possible role for ocrelizumab in dampening CNS inflammation.
Collapse
Affiliation(s)
- Nina Ipavec
- Transfusion Medicine Division, University Hospital of Split, 21000 Split, Croatia;
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| | - Anita Markotić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia;
| | | | - Joško Šoda
- Signal Processing, Analysis, Advanced Diagnostics Research and Education Laboratory (SPAADREL), Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, University of Split, 21000 Split, Croatia;
| | - Krešimir Dolić
- Department of Interventional and Diagnostic Radiology, University Hospital of Split, 21000 Split, Croatia;
- Department of Radiology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Nikolina Režić Mužinić
- Department of Medical Chemistry and Biochemistry, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
4
|
Chen L, Zhu LF, Zhang LY, Chu YH, Dong MH, Pang XW, Yang S, Zhou LQ, Shang K, Xiao J, Wang W, Qin C, Tian DS. Causal association between the peripheral immunity and the risk and disease severity of multiple sclerosis. Front Immunol 2024; 15:1325938. [PMID: 38390334 PMCID: PMC10881847 DOI: 10.3389/fimmu.2024.1325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Reverchon F, Guillard C, Mollet L, Auzou P, Gosset D, Madouri F, Valéry A, Menuet A, Ozsancak C, Pallix-Guyot M, Morisset-Lopez S. T Lymphocyte Serotonin 5-HT7 Receptor Is Dysregulated in Natalizumab-Treated Multiple Sclerosis Patients. Biomedicines 2022; 10:biomedicines10102418. [PMID: 36289679 PMCID: PMC9599221 DOI: 10.3390/biomedicines10102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin (5-HT) is known as a potent immune cell modulator in autoimmune diseases and should be protective in the pathogenesis of multiple sclerosis (MS). Nevertheless, there is limited knowledge about receptors involved in 5-HT effects as well as induced mechanisms. Among 5-HT receptors, the 5-HT7 receptor is able to activate naïve T cells and influence the inflammatory response; however, its involvement in the disease has never been studied so far. In this study, we collected blood sample from three groups: acute relapsing MS patients (ARMS), natalizumab-treated MS patients (NTZ), and control subjects. We investigated the 5-HT7 expression on circulating lymphocytes and evaluated the effects of its activation on cytokine production with peripheral blood mononuclear cell (PBMC) cultures. We found a significant increase in the 5-HT7 surface expression on T lymphocytes and on the different CD4+ T cell subsets exclusively in NTZ-treated patients. We also showed that the selective agonist 5-carboxamidotryptamine (5-CT)-induced 5-HT7R activation significantly promotes the production of IL-10, a potent immunosuppressive cytokine in PBMCs. This study provides for the first time a dysregulation of 5-HT7 expression in NTZ-MS patients and its ability to promote IL-10 release, suggesting its protective role. These findings strengthen the evidence that 5-HT7 may play a role in the immuno-protective mechanisms of NTZ in MS disease and could be considered as an interesting therapeutic target in MS.
Collapse
Affiliation(s)
- Flora Reverchon
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 45071 Orleans, France
- Correspondence: ; Tel.: +33-0238257974
| | - Colleen Guillard
- UPR4301, Center for Molecular Biophysics, CNRS, 45071 Orleans, France
| | - Lucile Mollet
- UPR4301, Center for Molecular Biophysics, CNRS, 45071 Orleans, France
| | - Pascal Auzou
- Neurology Department, Regional Hospital Orleans, 45100 Orleans, France
| | - David Gosset
- UPR4301, Center for Molecular Biophysics, CNRS, 45071 Orleans, France
| | - Fahima Madouri
- UPR4301, Center for Molecular Biophysics, CNRS, 45071 Orleans, France
| | - Antoine Valéry
- Medical Information Department, Regional Hospital Orleans, 45100 Orleans, France
| | - Arnaud Menuet
- UMR7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, 45071 Orleans, France
| | - Canan Ozsancak
- Neurology Department, Regional Hospital Orleans, 45100 Orleans, France
| | - Maud Pallix-Guyot
- Neurology Department, Regional Hospital Orleans, 45100 Orleans, France
| | | |
Collapse
|
6
|
Guerrera G, Ruggieri S, Picozza M, Piras E, Gargano F, Placido R, Gasperini C, Salvetti M, Buscarinu MC, Battistini L, Borsellino G, Angelini DF. EBV-specific CD8 T lymphocytes and B cells during glatiramer acetate therapy in patients with MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e876. [PMID: 32817203 PMCID: PMC7455312 DOI: 10.1212/nxi.0000000000000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022]
Abstract
Objective Infection with Epstein-Barr virus (EBV) has been associated with clinical activity and risk of developing MS. The purpose of this study is to investigate the impact of glatiramer acetate (GA) therapy on EBV-specific immune responses and disease course. Methods We characterized EBV-specific CD8 T lymphocytes and B cells during disease-modifying treatments in 2 groups of patients with MS. We designed a 2-pronged approach consisting of a cross-sectional study (39 untreated patients, 38 patients who had undergone 12 months of GA treatment, and 48 healthy donors compatible for age and sex with the patients with MS) and a 12-month longitudinal study (35 patients treated with GA). CD8 EBV-specific T cells and B lymphocytes were studied using pentamers and multiparametric flow cytometry. Results We find that treatment with GA enhances viral recognition by inducing an increased number of circulating virus-specific CD8 T cells (p = 0.0043) and by relieving their features of exhaustion (p = 0.0053) and senescence (p < 0.0001, p = 0.0001). B cells, phenotypically and numerically tracked along the 1-year follow-up study, show a steady decrease in memory B-cell frequencies (p = 0.025), paralleled by an increase of the naive B subset. Conclusion GA therapy acts as a disease-modifying therapy restoring homeostasis in the immune system, including anti-EBV responses.
Collapse
Affiliation(s)
- Gisella Guerrera
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Serena Ruggieri
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Mario Picozza
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Eleonora Piras
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Francesca Gargano
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Roberta Placido
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Claudio Gasperini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Marco Salvetti
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Maria Chiara Buscarinu
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Luca Battistini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Giovanna Borsellino
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy
| | - Daniela F Angelini
- From the Neuroimmunology Unit (G.G., S.R., M.P., E.P., F.G., R.P., B.L., G.B., D.F.A.), IRCSS Fondazione Santa Lucia, Rome; Department of Neurosciences (C.G.), San Camillo-Forlanini Hospital, Rome; Department of Neurosciences, Mental Health, and Sensory Organs (NESMOS) (M.S., M.C.B.), Center for Experimental Neurological Therapies, S. Andrea Hospital-site, "Sapienza" University of Rome; and Neurological Institute (M.S.), NEUROMED, Molise, Italy.
| |
Collapse
|
7
|
Saresella M, Marventano I, Barone M, La Rosa F, Piancone F, Mendozzi L, d'Arma A, Rossi V, Pugnetti L, Roda G, Casagni E, Cas MD, Paroni R, Brigidi P, Turroni S, Clerici M. Alterations in Circulating Fatty Acid Are Associated With Gut Microbiota Dysbiosis and Inflammation in Multiple Sclerosis. Front Immunol 2020; 11:1390. [PMID: 32733460 PMCID: PMC7358580 DOI: 10.3389/fimmu.2020.01390] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Butyric acid (BA) is a short-chain fatty acid (SCFA) with anti-inflammatory properties, which promotes intestinal barrier function. Medium-chain fatty acids (MCFA), including caproic acid (CA), promote TH1 and TH17 differentiation, thus supporting inflammation. Aim: Since most SCFAs are absorbed in the cecum and colon, the measurement of BA in peripheral blood could provide information on the health status of the intestinal ecosystem. Additionally, given the different immunomodulatory properties of BA and CA the evaluation of their serum concentration, as well as their ratio could be as a simple and rapid biomarker of disease activity and/or treatment efficacy in MS. Methods: We evaluated serum BA and CA concentrations, immune parameters, intestinal barrier integrity and the gut microbiota composition in patients with multiple sclerosis (MS) comparing result to those obtained in healthy controls. Results: In MS, the concentration of BA was reduced and that of CA was increased. Concurrently, the microbiota was depleted of BA producers while it was enriched in mucin-degrading, pro-inflammatory components. The reduced serum concentration of BA seen in MS patients correlated with alterations of the barrier permeability, as evidenced by the higher plasma concentrations of lipopolysaccharide and intestinal fatty acid-binding protein, and inflammation. Specifically, CA was positively associated with CD4+/IFNγ+ T lymphocytes, and the BA/CA ratio correlated positively with CD4+/CD25high/Foxp3+ and negatively with CD4+/IFNγ+ T lymphocytes. Conclusion: The gut microbiota dysbiosis found in MS is possibly associated with alterations of the SCFA/MCFA ratio and of the intestinal barrier; this could explain the chronic inflammation that characterizes this disease. SCFA and MCFA quantification could be a simple biomarker to evaluate the efficacy of therapeutic and rehabilitation procedures in MS.
Collapse
Affiliation(s)
| | | | - Monica Barone
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Gabriella Roda
- Departments of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Eleonora Casagni
- Departments of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Rita Paroni
- Health Sciences, University of Milan, Milan, Italy
| | - Patrizia Brigidi
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Microbial Ecology of Health Unit, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Pathophysiology and Trasplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Buscarinu MC, Fornasiero A, Romano S, Ferraldeschi M, Mechelli R, Reniè R, Morena E, Romano C, Pellicciari G, Landi AC, Salvetti M, Ristori G. The Contribution of Gut Barrier Changes to Multiple Sclerosis Pathophysiology. Front Immunol 2019; 10:1916. [PMID: 31555257 PMCID: PMC6724505 DOI: 10.3389/fimmu.2019.01916] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
The gut barrier consists of several components, including the mucus layer, made of mucins and anti-bacterial molecule, the epithelial cells, connected by tight junction proteins, and a mixed population of cells involved in the interplay with microbes, such as M cells, elongations of “antigen presenting cells” dwelling the lamina propria, intraepithelial lymphocytes and Paneth cells secreting anti-bacterial peptides. Recently, the influence of intestinal permeability (IP) changes on organs far from gut has been investigated, and IP changes in multiple sclerosis (MS) have been described. A related topic is the microbiota dysfunction that underpins the development of neuroinflammation in animal models and human diseases, including MS. It becomes now of interest to better understand the mechanisms through which IP changes contribute to pathophysiology of neuroinflammation. The following aspects seem of relevance: studies on other biomarkers of IP alterations; the relationship with known risk factors for MS development, such as vitamin D deficiency; the link between blood brain barrier and gut barrier breakdown; the effects of IP increase on microbial translocation and microglial activation; the parallel patterns of IP and neuroimmune changes in MS and neuropsychiatric disorders, that afflict a sizable proportion of patients with MS. We will also discuss the therapeutic implications of IP changes, considering the impact of MS-modifying therapies on gut barrier, as well as potential approaches to enhance or protect IP homeostasis.
Collapse
Affiliation(s)
- Maria Chiara Buscarinu
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Arianna Fornasiero
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Silvia Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | | | - Rosella Mechelli
- Department of Human Science and Promotion of Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Roberta Reniè
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Emanuele Morena
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Carmela Romano
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Giulia Pellicciari
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Anna Chiara Landi
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy.,IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Giovanni Ristori
- Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Centre for Experimental Neurological Therapies, Sapienza University, Rome, Italy
| |
Collapse
|
9
|
Camara-Lemarroy CR. Can Our Guts Tell Us Anything About MS? J Neuroimmune Pharmacol 2019; 14:367-368. [PMID: 30771156 DOI: 10.1007/s11481-019-09841-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29 Street NW, Calgary, AB, T2N 2T9, Canada. .,The Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 1403 29 Street NW, Calgary, AB, T2N 2T9, Canada.
| |
Collapse
|