1
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rodríguez-De Jesús AE, Cartagena-Isern LJ, García-Requena LA, Roche-Lima A, Meléndez LM. Quantitative Proteomics Reveal That CB2R Agonist JWH-133 Downregulates NF-κB Activation, Oxidative Stress, and Lysosomal Exocytosis from HIV-Infected Macrophages. Int J Mol Sci 2024; 25:3246. [PMID: 38542221 PMCID: PMC10970132 DOI: 10.3390/ijms25063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect 15-55% of HIV-positive patients and effective therapies are unavailable. HIV-infected monocyte-derived macrophages (MDM) invade the brain of these individuals, promoting neurotoxicity. We demonstrated an increased expression of cathepsin B (CATB), a lysosomal protease, in monocytes and post-mortem brain tissues of women with HAND. Increased CATB release from HIV-infected MDM leads to neurotoxicity, and their secretion is associated with NF-κB activation, oxidative stress, and lysosomal exocytosis. Cannabinoid receptor 2 (CB2R) agonist, JWH-133, decreases HIV-1 replication, CATB secretion, and neurotoxicity from HIV-infected MDM, but the mechanisms are not entirely understood. We hypothesized that HIV-1 infection upregulates the expression of proteins associated with oxidative stress and that a CB2R agonist could reverse these effects. MDM were isolated from healthy women donors (n = 3), infected with HIV-1ADA, and treated with JWH-133. After 13 days post-infection, cell lysates were labeled by Tandem Mass Tag (TMT) and analyzed by LC/MS/MS quantitative proteomics bioinformatics. While HIV-1 infection upregulated CATB, NF-κB signaling, Nrf2-mediated oxidative stress response, and lysosomal exocytosis, JWH-133 treatment downregulated the expression of the proteins involved in these pathways. Our results suggest that JWH-133 is a potential alternative therapy against HIV-induced neurotoxicity and warrant in vivo studies to test its potential against HAND.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Luz J. Cartagena-Isern
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Luis A. García-Requena
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico; (L.J.C.-I.); (L.A.G.-R.)
| | - Abiel Roche-Lima
- Integrated Informatics Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (A.R.-L.)
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
2
|
Zhao J, Veeranan-Karmegam R, Baker FC, Mysona BA, Bagchi P, Liu Y, Smith SB, Gonsalvez GB, Bollinger KE. Defining the ligand-dependent proximatome of the sigma 1 receptor. Front Cell Dev Biol 2023; 11:1045759. [PMID: 37351276 PMCID: PMC10284605 DOI: 10.3389/fcell.2023.1045759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
Sigma 1 Receptor (S1R) is a therapeutic target for a wide spectrum of pathological conditions ranging from neurodegenerative diseases to cancer and COVID-19. S1R is ubiquitously expressed throughout the visceral organs, nervous, immune and cardiovascular systems. It is proposed to function as a ligand-dependent molecular chaperone that modulates multiple intracellular signaling pathways. The purpose of this study was to define the S1R proximatome under native conditions and upon binding to well-characterized ligands. This was accomplished by fusing the biotin ligase, Apex2, to the C terminus of S1R. Cells stably expressing S1R-Apex or a GFP-Apex control were used to map proximal proteins. Biotinylated proteins were labeled under native conditions and in a ligand dependent manner, then purified and identified using quantitative mass spectrometry. Under native conditions, S1R biotinylates over 200 novel proteins, many of which localize within the endomembrane system (endoplasmic reticulum, Golgi, secretory vesicles) and function within the secretory pathway. Under conditions of cellular exposure to either S1R agonist or antagonist, results show enrichment of proteins integral to secretion, extracellular matrix formation, and cholesterol biosynthesis. Notably, Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) displays increased binding to S1R under conditions of treatment with Haloperidol, a well-known S1R antagonist; whereas Low density lipoprotein receptor (LDLR) binds more efficiently to S1R upon treatment with (+)-Pentazocine ((+)-PTZ), a classical S1R agonist. Furthermore, we demonstrate that the ligand bound state of S1R correlates with specific changes to the cellular secretome. Our results are consistent with the postulated role of S1R as an intracellular chaperone and further suggest important and novel functionalities related to secretion and cholesterol metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
| | - Rajalakshmi Veeranan-Karmegam
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Frederick C. Baker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, United States
| | - Yutao Liu
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Graydon B. Gonsalvez
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Culver Vision Discovery Institute, Augusta, GA, United States
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Zapata-Martín del Campo CM, Maldonado JC. Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Front Neurosci 2022; 16:904816. [PMID: 35645713 PMCID: PMC9134113 DOI: 10.3389/fnins.2022.904816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | | | | | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Jose C. Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
4
|
Zhao J, Gonsalvez GB, Mysona BA, Smith SB, Bollinger KE. Sigma 1 Receptor Contributes to Astrocyte-Mediated Retinal Ganglion Cell Protection. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35103752 PMCID: PMC8819349 DOI: 10.1167/iovs.63.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Sigma 1 receptor (S1R) is expressed in retinal ganglion cells (RGCs) and astrocytes, and its activation is neuroprotective. We evaluated the contribution of S1R within optic nerve head astrocytes (ONHAs) to growth and survival of RGCs in vitro. Methods Wild-type (WT) RGCs and WT or S1R knockout (S1R KO) ONHAs were cocultured for 2, 4, or 7 days. Total and maximal neurite length, neurite root, and extremity counts were measured. Cell death was measured using a TUNEL assay. Signal transducer and activator of transcription 3 phosphorylation levels were evaluated in ONHA-derived lysates by immunoblotting. Results The coculture of WT RGCs with WT or S1R KO ONHAs increased the total and maximal neurite length. Neurite root and extremity counts increased at 4 and 7 days when WT RGCs were cocultured with WT or S1R KO ONHAs. At all timepoints, the total and maximal neurite length decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs. Root and extremity counts decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs at 2 and 7, but not 4 days. RGC apoptosis increased in S1R KO ONHA coculture and S1R KO-conditioned medium, compared with WT ONHA coculture or WT-conditioned medium. S1R KO ONHA-derived lysates showed decreased phosphorylated signal transducer and activator of transcription 3 levels compared with WT ONHA-derived lysates. Conclusions The absence of S1R within ONHAs has a deleterious effect on RGC neurite growth and RGC survival, reflected in analysis of WT RGC + S1R KO ONHA indirect cocultures. The data suggest that S1R may enhance ganglion cell survival via glia-mediated mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | | | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| |
Collapse
|
5
|
Rosario-Rodríguez LJ, Gerena Y, García-Requena LA, Cartagena-Isern LJ, Cuadrado-Ruiz JC, Borges-Vélez G, Meléndez LM. Cannabinoid receptor type 2 agonist JWH-133 decreases cathepsin B secretion and neurotoxicity from HIV-infected macrophages. Sci Rep 2022; 12:233. [PMID: 34996989 PMCID: PMC8741953 DOI: 10.1038/s41598-021-03896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.
Collapse
Affiliation(s)
- Lester J Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA
| | - Yamil Gerena
- Department of Pharmacology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Luis A García-Requena
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR, USA
| | - Luz J Cartagena-Isern
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR, USA
| | - Juan C Cuadrado-Ruiz
- Department of Biology, University of Puerto Rico, Bayamón Campus, Bayamón, PR, USA
| | - Gabriel Borges-Vélez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA.
| |
Collapse
|
6
|
Drugs of Abuse and Their Impact on Viral Pathogenesis. Viruses 2021; 13:v13122387. [PMID: 34960656 PMCID: PMC8707190 DOI: 10.3390/v13122387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Commonly misused substances such as alcohol, cocaine, heroin, methamphetamine, and opioids suppress immune responses and may impact viral pathogenesis. In recent years, illicit use of opioids has fueled outbreaks of several viral pathogens, including the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). This review focuses on the myriad of mechanisms by which drugs of abuse impact viral replication and disease progression. Virus–drug interactions can accelerate viral disease progression and lead to increased risk of virus transmission.
Collapse
|
7
|
Zhao Q, Yu S, Ling Y, Hao S, Liu J. The Protective Effects of Dexmedetomidine against Hypoxia/Reoxygenation-Induced Inflammatory Injury and Permeability in Brain Endothelial Cells Mediated by Sigma-1 Receptor. ACS Chem Neurosci 2021; 12:1940-1947. [PMID: 34014076 DOI: 10.1021/acschemneuro.1c00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) mainly arises from the clinical treatment of ischemic stroke, induced by the blood-brain barrier (BBB) disruption and infiltrated inflammation. The Sigma-1 receptor (Sigma-1R) is a novel target for neuroprotection, and the α2-receptor agonist pain medication dexmedetomidine displays a neuroprotective effect through activating Sigma-1R. The present study aims to investigate the potential therapeutic effect of dexmedetomidine in a mouse stroke model and hypoxia/reoxygenation(OGD/R)-induced brain endothelial dysfunction. First, we found that Sigma-1R was significantly upregulated in middle cerebral artery occlusion (MCAO) mice by the administration of dexmedetomidine. In vivo experiments revealed that dexmedetomidine ameliorated hyperpermeability of the blood-brain barrier (BBB), lowered the expression level of Occludin, and impaired brain function as measured by neurological scores in MCAO mice. In vitro assays show that dexmedetomidine alleviated OGD/R-caused cytotoxicity, hyperpermeability, abnormal expression of Occludin, and inflammatory factors in human brain microvascular endothelial cells (HBMVECs). Moreover, blockage of Sigma-1R by its antagonist BD1047 abolished the neuroprotective property of dexmedetomidine in both animal and cell culture experiments. On the basis of these findings, we conclude that dexmedetomidine therapy shows neuroprotection in MCAO mice. Mechanistically, dexmedetomidine alleviated hypoxia/reoxygenation-induced cerebral endothelial dysfunction by activating the Sigma-1R-mediated signaling pathway.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Shoushui Yu
- Department of Anesthesiology, Rizhao People's Hospital, Rizhao, Shandong 276800, China
| | - Yong Ling
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Shiyuan Hao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jia Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
8
|
Brimson JM, Prasanth MI, Malar DS, Brimson S, Thitilertdecha P, Tencomnao T. Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: The possible role of the sigma-1 receptor and autophagy. Expert Opin Ther Targets 2021; 25:435-449. [PMID: 34236922 PMCID: PMC8290373 DOI: 10.1080/14728222.2021.1952987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Introduction: Despite the availability of new vaccines for SARS-CoV-2, there has been slow uptake and problems with supply in some parts of the world. Hence, there is still a necessity for drugs that can prevent hospitalization of patients and reduce the strain on health care systems. Drugs with sigma affinity potentially provide protection against the most severe symptoms of SARS-COV-2 and could prevent mortality via interactions with the sigma-1 receptor.Areas covered: This review examines the role of the sigma-1 receptor and autophagy in SARS-CoV-2 infections and how they may be linked. The authors reveal how sigma ligands may reduce the symptoms, complications, and deaths resulting from SARS-CoV-2 and offer insights on those patient cohorts that may benefit most from these drugs.Expert opinion: Drugs with sigma affinity potentially offer protection against the most severe symptoms of SARS-CoV-2 via interactions with the sigma-1 receptor. Agonists of the sigma-1 receptor may provide protection of the mitochondria, activate mitophagy to remove damaged and leaking mitochondria, prevent ER stress, manage calcium ion transport, and induce autophagy to prevent cell death in response to infection.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Lu D, Sun H, Yu J, Kuang YQ, Wang KH. Chemical sex drugs regulate HIV infection and replication in immune cells: a vicious circle. AIDS 2021; 35:147-150. [PMID: 33048887 DOI: 10.1097/qad.0000000000002708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Hua Sun
- NHC Key Laboratory of Drug Addiction Medicine
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | | |
Collapse
|
10
|
Motawe ZY, Abdelmaboud SS, Cuevas J, Breslin JW. PRE-084 as a tool to uncover potential therapeutic applications for selective sigma-1 receptor activation. Int J Biochem Cell Biol 2020; 126:105803. [PMID: 32668330 PMCID: PMC7484451 DOI: 10.1016/j.biocel.2020.105803] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022]
Abstract
The discovery of a highly selective putative sigma-1 (σ1) receptor agonist, PRE-084, has revealed the numerous potential uses of this receptor subtype as a therapeutic target. While much work has been devoted to determining the role of σ1 receptors in normal and pathophysiological states in the nervous system, recent work suggests that σ1 receptors may be important for modulating functions of other tissues. These discoveries have provided novel insights into σ1 receptor structure, function, and importance in multiple intracellular signaling mechanisms. These discoveries were made possible by σ1 receptor-selective agonists such as PRE-084. The chemical properties and pharmacological actions of PRE-084 will be reviewed here, along with the expanding list of potential therapeutic applications for selective activation of σ1 receptors.
Collapse
Affiliation(s)
- Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Salma S Abdelmaboud
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
11
|
Motawe ZY, Farsaei F, Abdelmaboud SS, Cuevas J, Breslin JW. Sigma-1 receptor activation-induced glycolytic ATP production and endothelial barrier enhancement. Microcirculation 2020; 27:e12620. [PMID: 32279379 PMCID: PMC7821090 DOI: 10.1111/micc.12620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We tested the hypothesis that σ1 modulates endothelial barrier function due to its influence on endothelial bioenergetics. METHODS Cultured HUVEC monolayers were used to model the endothelial barrier. ECIS, Transwell assays, and immunofluorescence labeling of junctional proteins were used to evaluate endothelial barrier function. Endothelial cell bioenergetics was determined using extracellular flux analysis and direct ATP level measurements. The endothelial-specific contribution of σ1 was tested using the σ1-selective agonist, PRE-084, and with targeted knockdown of σ1 expression using siRNA. RESULTS Activation of σ1 with PRE-084 significantly enhanced endothelial barrier function and decreased permeability to albumin and dextran. Knockdown of σ1 with siRNA reduced barrier function and abolished PRE-084-induced endothelial barrier enhancement. PRE-084 upregulated endothelial glycolysis and glycolytic ATP production, but this response was abolished by siRNA-mediated knockdown of σ1 expression. PRE-084 also reduced the degree of endothelial barrier dysfunction caused by the mitochondrial oxidative phosphorylation uncoupler CCCP. CONCLUSION Activation of σ1 enhances endothelial barrier function and modulates the ratio of glycolytic versus mitochondrial ATP production. These novel findings suggest that endothelial σ1 may prove beneficial as a novel therapeutic target for reducing microvascular hyperpermeability and counteracting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Forouzandeh Farsaei
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Salma S Abdelmaboud
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
13
|
HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons. Sci Rep 2019; 9:8006. [PMID: 31142756 PMCID: PMC6541605 DOI: 10.1038/s41598-019-44463-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-associated neurocognitive disorders prevail in 20-50 percent of infected individuals. Macrophages transmigrate through the blood brain barrier during HIV-1 infection, triggering neuronal dysfunction. HIV-infected macrophages secrete cathepsin B (CATB), and serum amyloid p component (SAPC), inducing neuronal apoptosis by an unknown mechanism. We hypothesized that HIV infection facilitates CATB/SAPC secretion from macrophages followed by neuronal internalization, promoting dysfunction. SK-N-SH neuronal cells were exposed to active recombinant histidine-tagged cathepsin B (His-CATB). His-CATB entry was tracked by intracellular flow cytometry, and neuronal dysfunction was verified by western blot. Macrophage-derived extracellular vesicles (EVs) were tested for the presence of CATB and SAPC. Neurons internalized His-CATB, an effect that was partially decreased by pre-treatment with anti-CATB antibody. Pre-treatment with CATB and SAPC antibodies decreased cleavage of caspase-3 and restored synaptophysin in neurons. Neurons exposed to macrophage-conditioned media differentially internalized His-CATB, dependent on the HIV replication levels. Finally, CATB and SAPC were secreted in EVs. We report for the first time that CATB is secreted from macrophages both free and in EVs, and is internalized by neurons. Moreover, HIV-replication levels modulate the amount of CATB neuronal uptake, and neuronal dysfunction can be decreased with CATB antibodies. In conclusion, the CATB/SAPC complex represents a novel target against HIV-associated neurocognitive disorders.
Collapse
|