1
|
Ebrahimi E, Khodadadi I, Shafiee G, Abbasi E. Effects of opium on cholesterol metabolism in rats fed normal and high-fat/high-cholesterol diet. Toxicol Rep 2025; 14:102014. [PMID: 40230514 PMCID: PMC11995082 DOI: 10.1016/j.toxrep.2025.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
There is a misconception that opium can lower blood sugar and cholesterol levels. Hence, this study aimed to investigate the influences of opium on the expression of key cholesterol metabolism genes in the liver and intestine of rats receiving a cholesterol-rich diet. Male Wistar rats were randomly divided into four groups (n = 6): normal control, opium addiction, hypercholesterolemic diet, and opium addiction received hypercholesterolemic diet. After 28 days, the blood glucose levels, liver enzymes, and cholesterol in the rat's serum were measured. The cholesterol regulatory genes and transporters such as 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, low-density lipoprotein receptor (LDL-R), cholesterol 7 alpha-hydroxylase 1 (CYP7A1) (in liver tissue), and ATP Binding cassette subfamily g member 5 and 8 (ABCG5 and ABCG8), and Niemann-Pick C1-like 1 protein (NPC1L1) (in intestinal tissue) were measured. Intestinal morphological changes were also evaluated. Opium decreased serum glucose and total cholesterol levels (P < 0.05). In contrast, the levels of liver enzymes increased compared to the normal control group (P < 0.05). Histological examinations revealed that opium caused disorganization, deformation, and destruction of cells in intestinal tissue. Real-time PCR analysis demonstrated that opium increased the expression of LDL receptor genes, HMG-CoA reductase enzyme, and CYP7A1 in the liver compared to the normal control group (P < 0.05). The changes of ABCG8 and NPC1L1 transporters in intestinal tissue were not significant. Opium had beneficial effects on blood lipid and glucose levels, but histological findings indicated destructive effects on intestinal tissues.
Collapse
Affiliation(s)
- Elaheh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Nutrition Health Research Center, Institute of Health Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamreza Shafiee
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Nutrition Health Research Center, Institute of Health Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Oppenheimer M, Tao J, Moidunny S, Roy S. Anxiety-like behavior during protracted morphine withdrawal is driven by gut microbial dysbiosis and attenuated with probiotic treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.633224. [PMID: 39975140 PMCID: PMC11838364 DOI: 10.1101/2025.01.29.633224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of anxiety during protracted opioid withdrawal heightens the risk of relapse into the cycle of addiction. Understanding the mechanisms driving anxiety during opioid withdrawal could facilitate the development of therapeutics to prevent negative affect and promote continued abstinence. Our lab has previously established the gut microbiome as a driver of various side effects of opioid use, including analgesic tolerance and somatic withdrawal symptoms. We therefore hypothesized that the gut microbiome contributes to the development of anxiety-like behavior during protracted opioid withdrawal. In this study, we first established a mouse model of protracted morphine withdrawal, characterized by anxiety-like behavior and gut microbial dysbiosis. Next, we used fecal microbiota transplantation (FMT) to show that gut dysbiosis alone is sufficient to induce anxiety-like behavior. We further demonstrate that probiotic therapy during morphine withdrawal attenuates the onset of anxiety-like behavior, highlighting its therapeutic potential. Lastly, we examined transcriptional changes in the amygdala of morphine-withdrawn mice treated with probiotics to explore mechanisms by which the gut-brain axis mediates anxiety-like behavior. Our results support the use of probiotics as a promising therapeutic strategy to prevent gut dysbiosis and associated anxiety during opioid withdrawal, with potential implications for improving treatment outcomes in opioid recovery programs.
Collapse
|
3
|
Coluzzi F, Scerpa MS, Loffredo C, Borro M, Pergolizzi JV, LeQuang JA, Alessandri E, Simmaco M, Rocco M. Opioid Use and Gut Dysbiosis in Cancer Pain Patients. Int J Mol Sci 2024; 25:7999. [PMID: 39063241 PMCID: PMC11276997 DOI: 10.3390/ijms25147999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Opioids are commonly used for the management of severe chronic cancer pain. Their well-known pharmacological effects on the gastrointestinal system, particularly opioid-induced constipation (OIC), are the most common limiting factors in the optimization of analgesia, and have led to the wide use of laxatives and/or peripherally acting mu-opioid receptor antagonists (PAMORAs). A growing interest has been recently recorded in the possible effects of opioid treatment on the gut microbiota. Preclinical and clinical data, as presented in this review, showed that alterations of the gut microbiota play a role in modulating opioid-mediated analgesia and tolerability, including constipation. Moreover, due to the bidirectional crosstalk between gut bacteria and the central nervous system, gut dysbiosis may be crucial in modulating opioid reward and addictive behavior. The microbiota may also modulate pain regulation and tolerance, by activating microglial cells and inducing the release of inflammatory cytokines and chemokines, which sustain neuroinflammation. In the subset of cancer patients, the clinical meaning of opioid-induced gut dysbiosis, particularly its possible interference with the efficacy of chemotherapy and immunotherapy, is still unclear. Gut dysbiosis could be a new target for treatment in cancer patients. Restoring the physiological amount of specific gut bacteria may represent a promising therapeutic option for managing gastrointestinal symptoms and optimizing analgesia for cancer patients using opioids.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Scerpa
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Chiara Loffredo
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Elisa Alessandri
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maurizio Simmaco
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
- Department of Neuroscience, Mental Health and Sense Organs NESMOS, Sapienza University of Rome, 00185 Rome, Italy
| | - Monica Rocco
- Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy
- Unit of Anaesthesia, Intensive Care, and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy
| |
Collapse
|
4
|
Yan L, Kang P, Cao C, Jinhui B, Yong L. Prognostic value of systemic immune-inflammation index/albumin ratio for immunotherapy-treated patients receiving opioids. PLoS One 2024; 19:e0305119. [PMID: 38935663 PMCID: PMC11210763 DOI: 10.1371/journal.pone.0305119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE This study evaluated the effect of the systemic immune-inflammation index/albumin ratio (SII/ALB) on the prognosis of immunotherapy-treated patients receiving opioids. METHODS A retrospective analysis was conducted of 185 immunotherapy-treated patients who received opioids at Xuzhou Central Hospital from 01/09/2021 to 01/09/2023. The results of related clinical data were collected during the week before the cancer patients received immunotherapy. The SII/ALB cut-off value was determined, and the relationship between the SII/ALB and clinical pathological parameters was analyzed using the chi-square test. The effect of the SII/ALB on progression-free survival (PFS) was examined using Kaplan-Meier curves and the Cox proportional hazard model. RESULT The SII/ALB cut-off value was 20.86, and patients were divided into low (SII/ALB ≤ 20.86) and high (SII/ALB > 20.86) SII/ALB groups. Adverse reactions (hazard ratio [HR] = 0.108; 95% confidence interval [CI]: 0.061-0.192, P < 0.001) and the SII/ALB (HR = 0.093; 95% CI: 0.057-0.151, P < 0.001) were independent prognostic factors for PFS. Compared with the high SII/ALB group, the low SII/ALB group had longer PFS after opioid treatment (12.2 vs. 5.2 months, P < 0.001). CONCLUSION The SII/ALB is a potentially important prognostic parameter in immunotherapy-treated patients receiving opioids.
Collapse
Affiliation(s)
- Lei Yan
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pan Kang
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chengsong Cao
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Bu Jinhui
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liu Yong
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou Central Hospital Affiliated to Medical School of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Madurai NK, Jantzie LL, Yen E. Sex differences in neonatal outcomes following prenatal opioid exposure. Front Pediatr 2024; 12:1357970. [PMID: 38577634 PMCID: PMC10991792 DOI: 10.3389/fped.2024.1357970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
The impact of the opioid epidemic on pregnant people and children is a growing public health crisis. Understanding how opioids affect the developing brain during pregnancy and postnatally remains a critical area of investigation. Biological sex plays a crucial role in all physiologic processes, with the potential for a significant impact on neonatal outcomes, including those infants with opioid exposure. Here, we aim to explore current literature on the effect of sex on neonatal outcomes following prenatal opioid exposure. Sex differences in adults with opioid use disorder have been well studied, including increased mortality among males and higher rates of psychiatric comorbidities and likelihood of relapse in females. However, such differences are not yet well understood in neonates. Emerging clinical data suggest sex-specific effects in infants with prenatal opioid exposure on the expression of genes related to feeding regulation and reward signaling pathways. Increased susceptibility to white matter injury has also been noted in female infants following prenatal opioid exposure. Understanding the impact of sex as a biological variable on neonatal outcomes following prenatal opioid exposure is paramount to improving the health and well-being of infants, children, and adults impacted by the opioid epidemic.
Collapse
Affiliation(s)
- Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurodevelopmental Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth Yen
- Mother Infant Research Institute (MIRI), Tufts Medical Center, Boston, MA, United States
- Division of Newborn Medicine, Tufts Medicine Pediatrics-Boston Children's, Boston, MA, United States
- Department of Pediatrics, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Greenberg JM, Winters AD, Zagorac B, Kracht DJ, Francescutti DM, Cannella N, Ciccocioppo R, Woods LCS, Mackle J, Hardiman GT, Kuhn BN, Kalivas PW, Kuhn DM, Angoa-Perez M. Long access heroin self-administration significantly alters gut microbiome composition and structure. Front Psychiatry 2024; 15:1369783. [PMID: 38476614 PMCID: PMC10927763 DOI: 10.3389/fpsyt.2024.1369783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and β-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of β-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M. Greenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Andrew D. Winters
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Branislava Zagorac
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Dina M. Francescutti
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Leah C. Solberg Woods
- Department of Molecular Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - James Mackle
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gary T. Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Brittany N. Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Donald M. Kuhn
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
9
|
Kesh K, Tao J, Ghosh N, Jalodia R, Singh S, Dawra R, Roy S. Prescription opioids induced microbial dysbiosis worsens severity of chronic pancreatitis and drives pain hypersensitivity. Gut Microbes 2024; 16:2310291. [PMID: 38329115 PMCID: PMC10857465 DOI: 10.1080/19490976.2024.2310291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Opioids, such as morphine and oxycodone, are widely used for pain management associated with chronic pancreatitis (CP); however, their impact on the progression and pain sensitivity of CP has never been evaluated. This report investigates the impact of opioid use on the severity of CP, pain sensitivity, and the gut microbiome. C57BL/6 mice were divided into control, CP, CP with morphine/oxycodone, and either morphine or oxycodone alone groups. CP was induced by administration of caerulein (50ug/kg/h, i.p. hourly x7, twice a week for 10 weeks). The mouse-to-pancreas weight ratio, histology, and Sirius red staining were performed to measure CP severity. Tail flick and paw pressure assays were used to measure thermal and mechanical pain. DNA was extracted from the fecal samples and subjected to whole-genome shotgun sequencing. Germ-free mice were used to validate the role of gut microbiome in sensitizing acute pancreatic inflammation. Opioid treatment exacerbates CP by increasing pancreatic necrosis, fibrosis, and immune-cell infiltration. Opioid-treated CP mice exhibited enhanced pain hypersensitivity and showed distinct clustering of the gut microbiome compared to untreated CP mice, with severely compromised gut barrier integrity. Fecal microbiota transplantation (FMT) from opioid-treated CP mice into germ-free mice resulted in pancreatic inflammation in response to a suboptimal caerulein dose. Together, these analyses revealed that opioids worsen the severity of CP and induce significant alterations in pain sensitivity and the gut microbiome in a caerulein CP mouse model. Microbial dysbiosis plays an important role in sensitizing the host to pancreatic inflammation.
Collapse
Affiliation(s)
- Kousik Kesh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Nillu Ghosh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Richa Jalodia
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Shafeek P, Clegg T, Kawmi N, Luciano S, Bone C, Graziane N. The temporal relationship between antibiotic and opioid prescription on the risk of developing an opioid use disorder: A national database study. J Addict Dis 2023; 41:274-281. [PMID: 35938745 DOI: 10.1080/10550887.2022.2108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Previously, we discovered that subjects co-prescribed both antibiotics and opioids on the same day in a hospital setting displayed an increased risk of developing an opioid use disorder (OUD) 12 months following hospital discharge. The goal of this study was to examine whether prescribing antibiotics in the inpatient or emergency department setting at various time points before or after an opioid prescription impacted the risk OUD.Methods: A propensity score matched cohort study was conducted to identify subjects (18-65 years old) with no previous history of OUD. Two cohorts were defined: subjects who were prescribed antibiotics 0-1, 2-4, 5-7, 8-10, 11-12 months before or after the date of an opioid prescription while in the emergency department or inpatient setting, from the years 2010-2019. The diagnosis of an Opioid Related Disorder (F11.10-F11.20) 12 months following discharge from the emergency department or inpatient unit was then observed.Results: Primary analysis showed that subjects prescribed an antibiotic 0-1 month or 8-10 months before an opioid prescription showed a modest risk of developing an OUD 12 months following an opioid prescription (0.04% and 0.20%, respectively). Similarly, subjects prescribed an antibiotic 0-1 month, 5-7 months, or 8-10 months after an opioid prescription displayed a modest risk of developing OUD 12 months after an opioid prescription (0.02% risk, 0.14% risk, and 0.16% risk, respectively).Conclusions: These findings suggest that there is little to no effect on the risk of developing OUD when antibiotics are prescribed at various time points before or after opioid prescription.
Collapse
Affiliation(s)
- Peter Shafeek
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Taylor Clegg
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | - Noor Kawmi
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, PA, USA
| | | | - Curtis Bone
- Departments of Family and Community Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Nicholas Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
12
|
Sens JP, Hofford RS, Kiraly DD. Effect of germ-free status on transcriptional profiles in the nucleus accumbens and transcriptomic response to chronic morphine. Mol Cell Neurosci 2023; 126:103874. [PMID: 37315877 PMCID: PMC10921993 DOI: 10.1016/j.mcn.2023.103874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Opioid use disorder is a public health crisis that causes tremendous suffering for patients as well as substantial social and economic costs for society. There are currently available treatments for patients with opioid use disorder, but they remain intolerable or ineffective for many. Thus the need to develop new avenues for therapeutics development in this space is great. Substantial work in models of substance use disorders, including opioid use disorder, demonstrates that prolonged exposure to drugs of abuse leads to marked transcriptional and epigenetic dysregulation in limbic substructures. It is widely believed that these changes in gene regulation in response to drugs are a key driving factor in the perpetuation of drug taking and seeking behaviors. Thus, development of interventions that could shape transcriptional regulation in response to drugs of abuse would be of high value. Over the past decade there has been a surge in research demonstrating that the resident bacteria of the gastrointestinal tract, collectively the gut microbiome, can have tremendous influence on neurobiological and behavioral plasticity. Previous work from our group and others has demonstrated that alterations in the gut microbiome can alter behavioral responses to opioids in multiple paradigms. Additionally, we have previously reported that depletion of the gut microbiome with antibiotics markedly shifts the transcriptome of the nucleus accumbens following prolonged morphine exposure. In this manuscript we present a comprehensive analysis of the effects of the gut microbiome on transcriptional regulation of the nucleus accumbens following morphine by utilizing germ-free, antibiotic treated, and control mice. This allows for detailed understanding of the role of the microbiome in regulating baseline transcriptomic control, as well as response to morphine. We find that germ-free status leads to a marked gene dysregulation in a manner distinct to adult mice treated with antibiotics, and that altered gene pathways are highly related to cellular metabolic processes. These data provide additional insight into the role of the gut microbiome in modulating brain function and lay a foundation for further study in this area.
Collapse
Affiliation(s)
- Jonathon P Sens
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
13
|
Bennett SJ, Davila CA, Reyes Z, Valentín-Acevedo A, Carrasco KG, Abadie R, Marlin MC, Beel M, Chapple AG, Fernando S, Guthridge JM, Chiou KS, Dombrowski K, West JT, Wood C. Immune profiling in Puerto Rican injection drug users with and without HIV-1 infection. J Leukoc Biol 2023; 114:142-153. [PMID: 37042743 PMCID: PMC10776106 DOI: 10.1093/jleuko/qiad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Antiretroviral therapy has been effective in suppressing HIV viral load and enabling people living with HIV to experience longer, more conventional lives. However, as people living with HIV are living longer, they are developing aging-related diseases prematurely and are more susceptible to comorbidities that have been linked to chronic inflammation. Coincident with HIV infection and aging, drug abuse has also been independently associated with gut dysbiosis, microbial translocation, and inflammation. Here, we hypothesized that injection drug use would exacerbate HIV-induced immune activation and inflammation, thereby intensifying immune dysfunction. We recruited 50 individuals not using injection drugs (36/50 HIV+) and 47 people who inject drugs (PWID, 12/47 HIV+). All but 3 of the HIV+ subjects were on antiretroviral therapy. Plasma immune profiles were characterized by immunoproteomics, and cellular immunophenotypes were assessed using mass cytometry. The immune profiles of HIV+/PWID-, HIV-/PWID+, and HIV+/PWID+ were each significantly different from controls; however, few differences between these groups were detected, and only 3 inflammatory mediators and 2 immune cell populations demonstrated a combinatorial effect of injection drug use and HIV infection. In conclusion, a comprehensive analysis of inflammatory mediators and cell immunophenotypes revealed remarkably similar patterns of immune dysfunction in HIV-infected individuals and in people who inject drugs with and without HIV-1 infection.
Collapse
Affiliation(s)
- Sydney J. Bennett
- School of Biological Sciences, University of Nebraska–Lincoln, 1104 T St, Lincoln, NE 68588, United States
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Ave, New Orleans, LA 70112, United States
| | - Carmen Ana Davila
- Department of Sociology, University of Nebraska–Lincoln, 660 N 12th St, Lincoln, NE 68588, United States
| | - Zahiraliz Reyes
- Department of Microbiology and Immunology, Universidad Central del Caribe, PO Box 60327, Bayamón, Puerto Rico 00960, United States
| | - Aníbal Valentín-Acevedo
- Department of Microbiology and Immunology, Universidad Central del Caribe, PO Box 60327, Bayamón, Puerto Rico 00960, United States
| | - Kim Gocchi Carrasco
- Department of Sociology, University of Nebraska–Lincoln, 660 N 12th St, Lincoln, NE 68588, United States
| | - Roberto Abadie
- Department of Sociology, University of Nebraska–Lincoln, 660 N 12th St, Lincoln, NE 68588, United States
| | - M. Caleb Marlin
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, United States
| | - Marci Beel
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, United States
| | - Andrew G. Chapple
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Ave, New Orleans, LA 70112, United States
| | - Samodha Fernando
- Department of Animal Science, University of Nebraska–Lincoln, 3940 Fair St, Lincoln, NE 68503, United States
| | - Joel M. Guthridge
- Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd, Oklahoma City, OK 73104, United States
| | - Kathy S. Chiou
- Department of Psychology, University of Nebraska–Lincoln, 1220 T St, Lincoln, NE 68588, United States
| | - Kirk Dombrowski
- University of Vermont, 5 South Prospect St, Burlington, VT 05405, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Ave, New Orleans, LA 70112, United States
| | - Charles Wood
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, 1700 Tulane Ave, New Orleans, LA 70112, United States
| |
Collapse
|
14
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Meng J, Abu YF, Zhang Y, Zhou Y, Xie Y, Yan Y, Tao J, Ramakrishnan S, Chen C, Roy S. Opioid-induced microbial dysbiosis disrupts irinotecan (CPT-11) metabolism and increases gastrointestinal toxicity in a murine model. Br J Pharmacol 2023; 180:1362-1378. [PMID: 36562107 PMCID: PMC10089971 DOI: 10.1111/bph.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioids are commonly used for the management of cancer-associated pain and chemotherapy-induced diarrhoea. The chemotherapeutic irinotecan (CPT-11) causes severe gastrointestinal (GI) toxicity due to deconjugation of inactive metabolite SN-38 glucuronide (SN-38G) by bacterial β-glucuronidases to the active 7-ethyl-10-hydroxycamptothecin (SN-38). Opioids are known to cause gut microbial dysbiosis, this study evaluated whether CPT-11 anti-tumour efficacy and GI toxicity are exacerbated by opioid co-administration. EXPERIMENTAL APPROACH Eight-week-old C57BL/6 male mice were co-administration with CPT-11 ± opioid. 16S rRNA sequencing was used for gut microbiome analysis. LC-MS analyses of plasma and intestinal extracts were performed to investigate the pharmacokinetic profile of CPT-11. Histological analysis and quantitative real-time polymerase chain reaction were used to determine the severity of intestinal tissue damage. Human liver microsome In vitro assay was performed to confirm the effects of opioids on CPT-11 metabolism. KEY RESULTS Gut microbiome analysis showed that morphine treatment induced enrichment of β-glucuronidase-producing bacteria in the intestines of CPT-11-treated mice, resulting in SN-38 accumulation and exacerbation of GI toxicity in the small intestine. Oral administration of both antibiotics and glucuronidase inhibitor protected mice against GI toxicity induced with CPT-11 and morphine co-administration, implicating a microbiome-dependent mechanism. Additionally, morphine and loperamide decreased the plasma concentration of SN-38 and compromised CPT-11 anti-tumour efficacy, this seemed to be microbiome independent. CONCLUSION AND IMPLICATIONS Gut microbiota play a significant role in opioid and chemotherapeutic agent drug-drug interactions. Inhibition of gut microbial glucuronidase may also prevent adverse GI effects of CPT-11 in patients on opioids.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136
| | - Yue Zhang
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Yuyin Zhou
- Department of Food Science and Nutrition, University of Minnesota, MN 55108
| | - Yun Xie
- Department of Food Science and Nutrition, University of Minnesota, MN 55108
| | - Yan Yan
- Department of Surgery, University of Miami, Miami, FL 33136
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL 33136
| | | | - Chi Chen
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL 33136
| |
Collapse
|
16
|
Binh Tran TD, Nguyen H, Sodergren E, Addiction CFSNO, Dickson PE, Wright SN, Philip VM, Weinstock GM, Chesler EJ, Zhou Y, Bubier JA. Microbial glutamate metabolism predicts intravenous cocaine self-administration in diversity outbred mice. Neuropharmacology 2023; 226:109409. [PMID: 36592885 PMCID: PMC9943525 DOI: 10.1016/j.neuropharm.2022.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ). We found that ACQ mice are more active and exploratory and display decreased fear than FACQ mice. The microbial abundances that differentiated ACQ from FACQ mice were an increased abundance of Barnesiella, Ruminococcus, and Robinsoniella and decreased Clostridium IV in ACQ mice. There was a sex-specific correlation between ACQ and microbial abundance, a reduced Lactobacillus abundance in ACQ male mice, and a decreased Blautia abundance in female ACQ mice. The abundance of Robinsoniella was correlated, and Clostridium IV inversely correlated with the number of doses of cocaine self-administered during acquisition. Functional analysis of the microbiome composition of a subset of mice suggested that gut-brain modules encoding glutamate metabolism genes are associated with the propensity to self-administer cocaine. These findings establish associations between the microbiome composition and glutamate metabolic potential and the ability to acquire cocaine IVSA thus indicating the potential translational impact of targeting the gut microbiome or microbial metabolites for treatment of SUD. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Thi Dong Binh Tran
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Hoan Nguyen
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Erica Sodergren
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | | | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, USA
| | - Susan N Wright
- Division of Neuroscience and Behavior, National Institute on Drug Abuse, National Institutes of Health, Three White Flint North, Room 08C08 MSC 6018, Bethesda, MD, 20892, USA
| | - Vivek M Philip
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA
| | - George M Weinstock
- The Jackson Laboratory Genomic Medicine, 10 Discovery Way, Farmington, CT, USA
| | - Elissa J Chesler
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, USA
| | - Jason A Bubier
- The Jackson Laboratory Mammalian Genetics, 600 Main St, Bar Harbor, ME, USA.
| |
Collapse
|
17
|
Ren M, Lotfipour S. Antibiotic Knockdown of Gut Bacteria Sex-Dependently Enhances Intravenous Fentanyl Self-Administration in Adult Sprague Dawley Rats. Int J Mol Sci 2022; 24:409. [PMID: 36613853 PMCID: PMC9820294 DOI: 10.3390/ijms24010409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Communication between the brain and gut bacteria impacts drug- and addiction-related behaviors. To investigate the role of gut microbiota on fentanyl reinforcement and reward, we depleted gut bacteria in adult Sprague Dawley male and female rats using an oral, nonabsorbable antibiotic cocktail and allowed rats to intravenously self-administer fentanyl on an escalating schedule of reinforcement. We found that antibiotic treatment enhanced fentanyl self-administration in males, but not females, at the lowest schedule of reinforcement (i.e., fixed ratio 1). Both males and females treated with antibiotics self-administered greater amounts of fentanyl at higher schedules of reinforcement. We then replete microbial metabolites via short-chain fatty acid administration to evaluate a potential mechanism in gut-brain communication and found that restoring metabolites decreases fentanyl self-administration back to controls at higher fixed ratio schedules of reinforcement. Our findings highlight an important relationship between the knockdown and rescue of gut bacterial metabolites and fentanyl self-administration in adult rats, which provides support for a significant relationship between the gut microbiome and opioid use. Further work in this field may lead to effective, targeted treatment interventions in opioid-related disorders.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Emergency Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Yu X, Zhao L, Song B. Impact of opioid analgesics on the efficacy of immune checkpoint inhibitors in a lung cancer population. BMC Pulm Med 2022; 22:431. [PMID: 36411438 PMCID: PMC9677634 DOI: 10.1186/s12890-022-02210-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE A retrospective clinical study was conducted to compare the prognosis between the opioid analgesic (OA) treated and OA-untreated groups and to evaluate the effect of opioid analgesics on the efficacy of immune checkpoint inhibitors (ICIs) in the treatment of advanced lung cancer patients. In addition, a subgroup analysis of the clinical characteristics of the enrolled patients was performed to explore possible influencing factors. METHODS This study reviewed the medical records of eligible patients who received ICIs at our institution. The clinicopathological features and clinical outcomes were compared. Also, the use of OA was collected. Patient survival, the incidence of immune-related adverse events (irAEs), and other baseline variables were examined in both cohorts according to whether OA was used. RESULTS A total of 132 patients were included in the study. Of them, 39 (29.5%) were in the OA-treated group. No significant differences in baseline characteristics were observed between the OA-treated and untreated groups. The combined application of OA treatment significantly shortened progression-free survival (PFS) (P < 0.001) and overall survival (OS) (P = 0.002). However, both groups experienced similar incidences and gradations of irAEs. According to multivariate analysis, OA treatment resulted in significantly worse PFS (HR = 4.994, 95% CI 3.217-7.753, P < 0.001) and OS (HR = 3.618, 95% CI 2.030-6.240, P < 0.001). CONCLUSIONS Clinical outcomes of ICIs were significantly diminished in a cohort of Chinese patients with advanced lung cancer receiving OA therapy.
Collapse
Affiliation(s)
- Xiaoyuan Yu
- grid.452461.00000 0004 1762 8478First Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Zhao
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| | - Bin Song
- grid.470966.aThird Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032 China
| |
Collapse
|
19
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|
20
|
Jalodia R, Antoine D, Braniff RG, Dutta RK, Ramakrishnan S, Roy S. Opioid-Use, COVID-19 Infection, and Their Neurological Implications. Front Neurol 2022; 13:884216. [PMID: 35677336 PMCID: PMC9169980 DOI: 10.3389/fneur.2022.884216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an imminent threat to human health and public safety. ACE2 and transmembrane serine protease 2 proteins on host cells provide the viral entry point to SARS-CoV-2. Although SARS-CoV-2 mainly infects the respiratory system, there have been reports of viral neurotropism and central nervous system injury as indicated by plasma biomarkers, including neurofilament light chain protein and glial fibrillary acidic protein. Even with a small proportion of infections leading to neurological manifestation, the overall number remains high. Common neurological manifestations of SARS-CoV-2 infection include anosmia, ageusia, encephalopathy, and stroke, which are not restricted to only the most severe infection cases. Opioids and opioid antagonists bind to the ACE2 receptor and thereby have been hypothesized to have therapeutic potential in treating COVID-19. However, in the case of other neurotropic viral infections such as human immunodeficiency virus (HIV), opioid use has been established to exacerbate HIV-mediated central nervous system pathogenesis. An analysis of electronic health record data from more than 73 million patients shows that people with Substance Use Disorders are at higher risk of contracting COVID-19 and suffer worse consequences then non-users. Our in-vivo and in-vitro unpublished studies show that morphine treatment causes increased expression of ACE2 in murine lung and brain tissue as early as 24 h post treatment. At the same time, we also observed morphine and lipopolysaccharides treatment lead to a synergistic increase in ACE2 expression in the microglial cell line, SIM-A9. This data suggests that opioid treatment may potentially increase neurotropism of SARS-CoV-2 infection. We have previously shown that opioids induce gut microbial dysbiosis. Similarly, gut microbiome alterations have been reported with SARS-CoV-2 infection and may play a role in predicting COVID-19 disease severity. However, there are no studies thus far linking opioid-mediated dysbiosis with the severity of neuron-specific COVID-19 infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|