1
|
Chayer M, Phan P, Arnoux PJ, Wang Z, Rawlinson JJ, Aruwajoye O, Aubin CÉ. Understanding the influence of cage and instrumentation strategies with oblique lumbar interbody fusion for grade I spondylolisthesis - A comprehensive biomechanical modeling study. Spine J 2025:S1529-9430(25)00186-X. [PMID: 40194709 DOI: 10.1016/j.spinee.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND CONTEXT Proper implant selection and placement in oblique lumbar intervertebral fusion (OLIF) are essential to achieve the best possible results for the patient. Key factors such as interbody cage length, height, angle, and material must all be carefully considered to achieve the intended results and minimize complications. Significant challenges remain in selecting the appropriate cage parameters to control spinal alignment while minimizing subsidence risk. Ongoing debates include how long a cage should be to optimize load distribution, as well as how variations in cage angle and placement influence the outcomes. PURPOSE This study aims to biomechanically model and investigate how variations in interbody cage dimensions, positioning, and material properties influence indirect decompression, realignment, and resulting stresses involved in cage subsidence. STUDY DESIGN Computational biomechanical study of interbody cage and OLIF influence on correction outcomes. METHODS A pathological finite element model of the L4-L5 segment presenting a grade I spondylolisthesis was used to simulate 172 different OLIF configurations, evaluating cage position (anterior, central, posterior), angle (6° or 12°), material (PEEK or titanium), length (40 to 60 mm), and height (10 to 14 mm). Bilateral pedicle screw fixation was also tested. The simulated outcomes included disc height, foraminal and spinal canal dimensions, segmental lordosis, vertebral slip, endplate stresses, and displacements under various loading conditions. Statistical comparisons were tested to analyze the influence of model, implant, and surgical parameters on correction outcomes. RESULTS Longer (left-to-right dimension) cages (60 mm), which overhang on both sides of the vertebrae and sit on the apophyseal ring, significantly reduced vertebral endplate displacements and stresses by 33% compared to shorter cages (40 mm) (p < 0.05). Posterior cage positioning improved the decompression but raised stresses by 45% and reduced segmental lordosis by 28%. Lowering cage height from 14 to 10 mm and increasing the angle from 6° to 12° reduced endplate stresses by 53% and 33%, respectively. BPS fixation decreased stresses by 36% on average. The trends observed concurred with recently published OLIF clinical studies. CONCLUSIONS This study highlights the biomechanical influence of implant characteristics and positioning on OLIF results and subsidence risks. Competing factors unveil an optimization problem that can be effectively addressed with the help of accurate, robust, and reproducible numerical simulations and regression models. This study further confirms that the developed tools not only accurately simulate the surgical approach and corroborate clinical findings but also offer a relevant framework for in-depth analysis. CLINICAL SIGNIFICANCE Leveraging numerical methods, this study provides biomechanical insights into how variations in cage parameters during OLIF procedures influence outcomes. The findings aim to help clinicians refine strategies to attain desired outcomes (decompression and alignment) while understanding the consequences on the risk of subsidence. By aligning with clinical trends, our results offer valuable explanations and support for biomechanical-based surgical decision-making.
Collapse
Affiliation(s)
- Mathieu Chayer
- Institute of Biomedical Engineering, Polytechnique Montréal, PO Box 6079, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, Montreal, Canada.
| | - Philippe Phan
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Pierre-Jean Arnoux
- Laboratoire de biomécanique appliquée, Aix-Marseille Université/Université Gustave Eiffel, Marseille, France.
| | - Zhi Wang
- Centre Hospitalier de l'Université de Montréal, Montreal, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | - Jeremy J Rawlinson
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Montreal, Quebec, H3C 3A7, Canada; Spine Applied Research, Cranial and Spinal Technologies Medtronic, 18400 Pyramid Place, Memphis, Tennesse, 38132, USA.
| | - Olumide Aruwajoye
- Spine Applied Research, Cranial and Spinal Technologies Medtronic, 18400 Pyramid Place, Memphis, Tennesse, 38132, USA.
| | - Carl-Éric Aubin
- Institute of Biomedical Engineering, Polytechnique Montréal, PO Box 6079, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, Montreal, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada; Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Montreal, Quebec, H3C 3A7, Canada.
| |
Collapse
|
2
|
Liang Z, Dai X, Li W, Chen W, Shi Q, Wei Y, Liang Q, Lin Y. Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis. Med Biol Eng Comput 2025; 63:575-594. [PMID: 39425882 DOI: 10.1007/s11517-024-03218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Research on degenerative spondylolisthesis (DS) has focused primarily on the biomechanical responses of pathological segments, with few studies involving muscle modelling in simulated analysis, leading to an emphasis on the back muscles in physical therapy, neglecting the ventral muscles. The purpose of this study was to quantitatively analyse the biomechanical response of the spinopelvic complex and surrounding muscle groups in DS patients using integrative modelling. The findings may aid in the development of more comprehensive rehabilitation strategies for DS patients. Two new finite element spinopelvic complex models with detailed muscles for normal spine and DS spine (L4 forwards slippage) modelling were established and validated at multiple levels. Then, the spinopelvic position parameters including peak stress of the lumbar isthmic-cortical bone, intervertebral discs, and facet joints; peak strain of the ligaments; peak force of the muscles; and percentage difference in the range of motion were analysed and compared under flexion-extension (F-E), lateral bending (LB), and axial rotation (AR) loading conditions between the two models. Compared with the normal spine model, the DS spine model exhibited greater stress and strain in adjacent biological tissues. Stress at the L4/5 disc and facet joints under AR and LB conditions was approximately 6.6 times greater in the DS spine model than in the normal model, the posterior longitudinal ligament peak strain in the normal model was 1/10 of that in the DS model, and more high-stress areas were found in the DS model, with stress notably transferring forwards. Additionally, compared with the normal spine model, the DS model exhibited greater muscle tensile forces in the lumbosacral muscle groups during F-E and LB motions. The psoas muscle in the DS model was subjected to 23.2% greater tensile force than that in the normal model. These findings indicated that L4 anterior slippage and changes in lumbosacral-pelvic alignment affect the biomechanical response of muscles. In summary, the present work demonstrated a certain level of accuracy and validity of our models as well as the differences between the models. Alterations in spondylolisthesis and the accompanying overall imbalance in the spinopelvic complex result in increased loading response levels of the functional spinal units in DS patients, creating a vicious cycle that exacerbates the imbalance in the lumbosacral region. Therefore, clinicians are encouraged to propose specific exercises for the ventral muscles, such as the psoas group, to address spinopelvic imbalance and halt the progression of DS.
Collapse
Affiliation(s)
- Ziyang Liang
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Xiaowei Dai
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Weisen Li
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Weimei Chen
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yizong Wei
- Beijing Guangming Orthopedics and Traumatology Hospital, Beijing, 102200, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuanfang Lin
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
3
|
Liang Z, Wu K, Tian T, Mo F. Human head-neck model and its application thresholds: a narrative review. Int J Surg 2025; 111:1042-1070. [PMID: 38990352 PMCID: PMC11745654 DOI: 10.1097/js9.0000000000001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
There have been many studies on human head-neck biomechanical models in the last two decades, and the associated modelling techniques were constantly evolving at the same time. Computational approaches have been widely leveraged, in parallel to conventional physical tests, to investigate biomechanics and injuries of the head-neck system in fields like the automotive industry, orthopedic, sports medicine, etc. The purpose of this manuscript is to provide a global review of the existing knowledge related to the modelling approaches, structural and biomechanical characteristics, validation, and application of the present head-neck models. This endeavor aims to support further enhancements and validations in modelling practices, particularly addressing the lack of data for model validation, as well as to prospect future advances in terms of the topics. Seventy-four models subject to the proposed selection criteria are considered. Based on previously established and validated head-neck computational models, most of the studies performed in-depth investigations of included cases, which revolved around four specific subjects: physiopathology, treatment evaluation, collision condition, and sports injury. Through the review of the recent 20 years of research, the summarized modelling information indicated existing deficiencies and future research topics, as well as provided references for subsequent head-neck model development and application.
Collapse
Affiliation(s)
- Ziyang Liang
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
- Department of Tuina and Spinal Orthopedics in Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, People’s Republic of China
| | - Ke Wu
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| | - Tengfei Tian
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| | - Fuhao Mo
- State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University
- Xiangjiang Laboratory, Changsha, Hunan
| |
Collapse
|
4
|
Chayer M, Phan P, Arnoux PJ, Wang Z, Aubin CÉ. Biomechanical modelling of indirect decompression in oblique lumbar intervertebral fusions - A finite element study. Clin Biomech (Bristol, Avon) 2024; 120:106352. [PMID: 39321613 DOI: 10.1016/j.clinbiomech.2024.106352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Oblique lumbar intervertebral fusion aims to decompress spinal nerves via an interbody fusion cage, but the optimal surgical strategy, including implant selection for specific patient characteristics, remains unclear. A biomechanical model was developed to assess how pathophysiological characteristics and instrumentation impact spinal realignment, indirect decompression, and cage subsidence risk. METHODS A finite element model of the L4-L5 segment was derived from a validated asymptomatic T1-S1 spine model. Five cases of grade I spondylolisthesis with normal or osteoporotic bone densities and initial disc heights of 4.3 to 8.3 mm were simulated. Oblique lumbar intervertebral fusion with cage heights of 10, 12, and 14 mm (12° lordosis) was examined. Postoperative changes in disc height, foraminal and spinal canal dimensions, segmental lordosis, and vertebral slip were assessed. Vertebral stresses and displacements under 10 Nm flexion and 400 N gravitational load were compared between stand-alone constructs and bilateral pedicle screw fixation using rods of 4.75, 5.5, and 6 mm diameters. FINDINGS Oblique lumbar intervertebral fusion significantly improved postoperative disc height, foraminal and spinal canal dimensions, with the greatest enhancements observed with 14 mm cages. Bilateral pedicle screw fixation markedly reduced cortical endplate stresses and displacements compared to stand-alone constructs, with added benefits from larger rod diameters. Low bone density increased displacements by 63 %. INTERPRETATION Thicker cages achieve better decompression but increase subsidence risk. Bilateral pedicle screw fixation with 6 mm rods minimizes endplate stresses and displacements, especially in osteoporotic cases. Future research will validate these findings and explore the model's potential for surgical planning.
Collapse
Affiliation(s)
- Mathieu Chayer
- Institute of Biomedical Engineering, Polytechnique Montréal, PO Box 6079, Montreal, QC H3C 3A7, Canada; Sainte-Justine University Hospital Center, Montreal, Canada
| | - Philippe Phan
- Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université/Université Gustave Eiffel, Marseille, France
| | - Zhi Wang
- Centre Hospitalier de l'Université de Montréal, Montreal, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Carl-Éric Aubin
- Institute of Biomedical Engineering, Polytechnique Montréal, PO Box 6079, Montreal, QC H3C 3A7, Canada; Sainte-Justine University Hospital Center, Montreal, Canada; Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
5
|
Cutlan R, Khokhar M, Shammout N, Shah AS, Frazer L, Yoganandan N, Shender BS, Sheehy J, Paskoff G, Nicolella D, Bentley T, Shabani S, Stemper BD. Lumbar Spine Orientation Affects Compressive Fracture Outcome. Ann Biomed Eng 2024:10.1007/s10439-024-03604-y. [PMID: 39453511 DOI: 10.1007/s10439-024-03604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/15/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Understanding how spinal orientation affects injury outcome is essential to understand lumbar injury biomechanics associated with high-rate vertical loading. METHODS Whole-column human lumbar spines (T12-L5) were dynamically loaded using a drop tower to simulate peak axial forces associated with high-speed aircraft ejections and helicopter crashes. Spines were allowed to maintain natural lordotic curvature for loading, resulting in a range of orientations. Pre-test X-rays were used to quantify specimen orientation at the time of loading. Primary fracture types were identified (wedge, n = 6; burst, n = 4; hyperextension, n = 4) and compared for loading parameters and lumbar orientation. RESULTS Fracture type was dependent on peak acceleration, bending moment, Cobb angle, sagittal spinal tilt, and location of the applied load. CONCLUSIONS Lumbar spine orientation under high-rate axial acceleration affected the resulting fracture type. Analysis of pre-test X-rays revealed that spines that sustained wedge and burst fractures were oriented straighter at the time of loading. The load was applied centrally to T12 in spines with burst fractures, and anteriorly to T12 in spines with wedge fractures. Spines that sustained hyperextension fracture had lower peak accelerations, larger Cobb angles at the time of loading, and sustained larger extension moments. Fracture presentation is an important and understudied factor that influences biomechanical stability, clinical course, and long-term patient outcomes.
Collapse
Affiliation(s)
- Rachel Cutlan
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Khokhar
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nader Shammout
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lance Frazer
- Southwest Research Institute, San Antonio, TX, USA
| | - Narayan Yoganandan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Barry S Shender
- Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - James Sheehy
- Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | - Glenn Paskoff
- Naval Air Warfare Center Aircraft Division, Patuxent River, MD, USA
| | | | | | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Sharma S, Sun Y, Bonyun J, Khadem M, Amadio J, Eskandari AH, Alambeigi F. A Biomechanics-Aware Robot-Assisted Steerable Drilling Framework for Minimally Invasive Spinal Fixation Procedures. IEEE Trans Biomed Eng 2024; 71:1810-1819. [PMID: 38206784 PMCID: PMC11168586 DOI: 10.1109/tbme.2024.3352607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In this paper, we propose a novel biomechanics-aware robot-assisted steerable drilling framework with the goal of addressing common complications of spinal fixation procedures occurring due to the rigidity of drilling instruments and implants. This framework is composed of two main unique modules to design a robotic system including (i) a Patient-Specific Biomechanics-aware Trajectory Selection Module used to analyze the stress and strain distribution along an implanted pedicle screw in a generic drilling trajectory (linear and/or curved) and obtain an optimal trajectory; and (ii) a complementary semi-autonomous robotic drilling module that consists of a novel Concentric Tube Steerable Drilling Robot (CT-SDR) integrated with a seven degree-of-freedom robotic manipulator. This semi-autonomous robot-assisted steerable drilling system follows a multi-step drilling procedure to accurately and reliably execute the optimal hybrid drilling trajectory (HDT) obtained by the Trajectory Selection Module. Performance of the proposed framework has been thoroughly analyzed on simulated bone materials by drilling various trajectories obtained from the finite element-based Selection Module using Quantitative Computed Tomography (QCT) scans of a real patient's vertebra.
Collapse
|
7
|
Huneidi M, Bailly N, Farah K, May A, Arnoux PJ, Fuentes S. Iatrogenic vertebral fracture in ankylosed spine during liver transplantation: a case report and biomechanical study using finite element method. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1332-1339. [PMID: 38172415 DOI: 10.1007/s00586-023-08103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE The occurrence of an iatrogenic vertebral fracture during non-spinal digestive surgery is an exceptional event that has not been previously documented. Our study aims to explain the occurrence of this fracture from a biomechanical perspective, given its rarity. Using a finite element model of the spine, we will evaluate the strength required to induce a vertebral fracture through a hyperextension mechanism, considering the structure of the patient's spine, whether it is ossified or healthy. METHODS A 70-year-old patient was diagnosed T12 fracture during a liver transplantation on ankylosed spine. We use a finite element model of the spine. Different mechanical properties were applied to the spine model: first to a healthy spine, the second to a osteoporotic ossified spine. The displacement and force imposed at the Sacrum, the time and location of fractures initiation were recorded and compared between the two spine conditions. RESULTS A surgical treatment is done associating decompression with posterior fixation. After biomechanical study, we found that the fracture initiation occurred for the ossified spine after a sacrum displacement of 29 mm corresponding to an applied force of 65 N. For the healthy spine it occurred at a sacrum displacement of 52 mm corresponding to an applied force of 350 N. CONCLUSION The force required to produce a type B fracture in an ankylosed spine is 5 times less than in a healthy spine. These data enable us to propose several points of management to avoid unexpected complications with ankylosed spines during surgical procedures. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Maxime Huneidi
- Département de Chirurgie Rachidienne, Hôpital Pellegrin, Place Amélie Raba Léon, 33076, Bordeaux, CHU Bordeaux, France.
| | - Nicolas Bailly
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR- Université de la Méditerranée, 13916, Marseille Cedex 20, France
| | - Kaissar Farah
- Département de Neurochirurgie, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Adrien May
- Département de Neurochirurgie, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR- Université de la Méditerranée, 13916, Marseille Cedex 20, France
| | - Stéphane Fuentes
- Département de Neurochirurgie, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, 264 Rue Saint Pierre, 13005, Marseille, France
| |
Collapse
|
8
|
Pourgiv S, Mosavar A, Jamshidi N, Mohammadi A. Ultrasonic-assisted drilling of cortical and cancellous bone in a comparative point of view. Heliyon 2024; 10:e26248. [PMID: 38434327 PMCID: PMC10906326 DOI: 10.1016/j.heliyon.2024.e26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/30/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Background During bone drilling, a common procedure in clinical surgeries, excessive heat generation and drilling force can cause damage to bone tissue, potentially leading to failure of implants and fixation screws or delayed healing. With this in mind, the aim of this study was to evaluate the efficiency of ultrasonic-assisted drilling compared to conventional drilling as a potential method for bone drilling. Methods This study examined optimal drilling parameters based on previous findings and investigated both cortical and cancellous bone. In addition to evaluating drilling force and temperature elevation, the effects of these factors on osteonecrosis and micro-crack formation were explored in ultrasonic-assisted and conventional drilling through histopathological assessment and microscopic imaging. To this end, three drilling speeds and two drilling feed-rates were considered as variables in the in vitro experiments. Furthermore, numerical modeling provided insight into temperature distribution during the drilling process in both methods and compared three different vibration amplitudes. Results Although temperature elevations were lower in the conventional drilling, ultrasonic-assisted drilling produced less drilling force. Additionally, the latter method resulted in smaller osteonecrosis regions and did not produce micro-cracks in cortical bone or structural damage in cancellous bone. Conclusions Ultrasonic-assisted drilling, which caused less damage to bone tissue in both cortical and cancellous bone, was comparatively more advantageous. Notably, this study demonstrated that to determine the superiority of one method over the other, we cannot rely solely on temperature variation results. Instead, we must consider the cumulative effect of both temperature elevation and drilling force.
Collapse
Affiliation(s)
- Sousan Pourgiv
- Department of Biomedical Engineering, University of Isfahan, 81746-73441, Iran
| | - Alireza Mosavar
- Department of Biomedical Engineering, University of Isfahan, 81746-73441, Iran
- Department of Biomechanics, School of Mechanical Engineering, College of Engineering, University of Tehran, 14174-66191, Tehran, Iran
| | - Nima Jamshidi
- Department of Biomedical Engineering, University of Isfahan, 81746-73441, Iran
| | - Aminollah Mohammadi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
9
|
Wolny R, Wiczenbach T, Andrzejewska AJ, Spodnik JH. Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study. J Mech Behav Biomed Mater 2024; 151:106404. [PMID: 38244422 DOI: 10.1016/j.jmbbm.2024.106404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
PURPOSE This study aimed to investigate the geometrical and mechanical properties of human thoracic spine ligaments subjected to uniaxial quasi-static tensile test. METHODS Four human thoracic spines, obtained through a body donation program, were utilized for the study. The anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL), capsular ligament (CL), ligamenta flava (LF), and the interspinous ligament and supraspinous ligament complex (ISL + SSL), were investigated. The samples underwent specimen preparation, including dissection, cleaning, and reinforcement, before being immersed in epoxy resin. Uniaxial tensile tests were performed using a custom-designed mechanical testing machine equipped with an environmental chamber (T = 36.6 °C; humidity 95%). Then, the obtained tensile curves were averaged preserving the characteristic regions of typical ligaments response. RESULTS Geometrical and mechanical properties, such as initial length and width, failure load, and failure elongation, were measured. Analysis of variance (ANOVA) revealed significant differences among the ligaments for all investigated parameters. Pairwise comparisons using Tukey's post-hoc test indicated differences in initial length and width. ALL and PLL exhibited higher failure forces compared to CL and LF. ALL and ISL + SSL demonstrated biggest failure elongation. Comparisons with other studies showed variations in initial length, failure force, and failure elongation across different ligaments. The subsystem (Th1 - Th6 and Th7 - Th12) analysis revealed increases in initial length, width, failure force, and elongation for certain ligaments. CONCLUSIONS Variations of both the geometric and mechanical properties of the ligaments were noticed, highlighting their unique characteristics and response to tensile force. Presented results extend very limited experimental data base of thoracic spine ligaments existing in the literature. The obtained geometrical and mechanical properties can help in the development of more precise human body models (HBMs).
Collapse
Affiliation(s)
- R Wolny
- Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233, Gdańsk, Poland
| | - T Wiczenbach
- Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233, Gdańsk, Poland.
| | - A J Andrzejewska
- Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233, Gdańsk, Poland
| | - J H Spodnik
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| |
Collapse
|
10
|
Guo LX, Liu J. Topology optimization and dynamic characteristic evaluation of W-shaped interspinous process device. Comput Methods Biomech Biomed Engin 2023; 26:1610-1619. [PMID: 36200492 DOI: 10.1080/10255842.2022.2129968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/03/2022]
Abstract
For reducing the adjacent segment degeneration of the lumbar spine, the interspinous process device as a kind of flexible non-fusion device was designed to overcome the deficiencies associated with rigid fusion devices. However, it was not clear how the interspinous process device influenced the human spine system, especially the lumbar spine under a vibration environment. This study was designed to evaluate the effect of StenoFix under the vibration condition and also to optimize the structure of the device to obtain better biomechanical performance. A finite element model of the intact lumbar spine was developed and validated. The surgical finite element model was constructed by implanting the interspinous process device StenoFix. Using topology optimization, a new device StenoFix-new was redesigned. The results showed that the interspinous process device decreased vibration amplitudes of annulus stress and intradiscal pressure under vibration at the surgical level. The redesigned StenoFix-new with the smaller stiffness exhibited a better dynamic flexibility performance than StenoFix. In addition, the range of motions of StenoFix-new was closer to the intact model than StenoFix at the surgical level. These results might encourage the designers to give more consideration to the dynamic characteristics of the human spine on the premise of ensuring the safety and strength of implanted devices.
Collapse
Affiliation(s)
- Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Juan Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
11
|
Xu G, Liang Z, Tian T, Meng Q, Bertin KM, Mo F. Development of a finite element full spine model with active muscles for quantitatively analyzing sarcopenia effects on lumbar load. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107709. [PMID: 37473587 DOI: 10.1016/j.cmpb.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND OBJECTIVE The musculoskeletal imbalance caused by disease is one of the most critical factors leading to spinal injuries, like sarcopenia. However, the effects of musculoskeletal imbalances on the spine are difficult to quantitatively investigate. Thus, a complete finite element spinal model was established to analyze the effects of musculoskeletal imbalance, especially concerning sarcopenia. METHODS A finite element spinal model with active muscles surrounding the vertebrae was established and validated from anatomic verification to the whole spine model in dynamic loading at multiple levels. It was then coupled with the previously developed neuromuscular model to quantitatively analyze the effects of erector spinae (ES) and multifidus (MF) sarcopenia on spinal tissues. The severity of the sarcopenia was classified into three levels by changing the physiological cross-sectional area (PCSA) of ES and MF, which were mild (60% PCSA of ES and MF), moderate (48% PCSA of ES and MF), and severe (36% PCSA of ES and MF). RESULTS The stress and strain levels of most lumbar tissues in the sarcopenia models were more significant than those of the normal model during spinal extension movement. The sarcopenia caused load concentration in several specific regions. The stress level of the L4-L5 intervertebral disc and L1 vertebra significantly increased with the severity of sarcopenia and showed relatively larger values than other segments. From the normal model to a severe sarcopenia model, the stress value of the L4-L5 intervertebral disc and L1 vertebra increased by 128% and 113%, respectively. The strain level of L5-S1 also inclined significantly with the severity of sarcopenia, and the relatively larger capsule strain values occurred at lower back segments from L3 to S1. CONCLUSIONS In summary, the validated spinal coupling model can be used for spinal injury risk analysis caused by musculoskeletal imbalance. The results suggested that sarcopenia can primarily lead to high injury risk of the L4-L5 intervertebral disc, L1 vertebrae, and L3-S1 joint capsule regarding significant stress or strain variance.
Collapse
Affiliation(s)
- Guangming Xu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Ziyang Liang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China; Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tengfei Tian
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qingnan Meng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Komera Musoni Bertin
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fuhao Mo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
12
|
Hambli R, De Leacy R, Vienney C. Effect of a new transpedicular vertebral device for the treatment or prevention of vertebral compression fractures: A finite element study. Clin Biomech (Bristol, Avon) 2023; 102:105893. [PMID: 36682151 DOI: 10.1016/j.clinbiomech.2023.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND A finite element study was performed to investigate the biomechanical performance of a novel transpedicular implant (V-STRUT©, Hyprevention, France) made of PEEK (polyetheretherketone) material in terms of strengthening the osteoporotic vertebra and the thoraco-lumbar spine. The objective was to assess numerically the efficacy of the implant to reduce the stress distribution within bone and absorb part of the stress by the implant thanks to its optimized material selection close to that of normal bone. METHODS A numerical model was generated based on a scan of an osteoporotic patient. The model is composed of three consecutive vertebrae and intervertebral discs. A heterogeneous distribution of bone material properties was assigned to the bone. In order to investigate the rationale of the device material selection, three FE models were developed (i) without the device to serve a reference model, (ii) with device made in Titanium material and (iii) with device made in PEEK material. Stiffness and stress distribution within the spine segment were computed and compared in order to assess the implants' performances. FINDINGS The results obtained by the simulations indicated that the novel transpedicular implant made of PEEK material provided support to the superior vertebral endplate, restored the thoraco-lumbar spine segment stiffness and reduced the stress applied to the vertebrae under the compressive load. INTERPRETATION Implant geometry in combination with its material properties are very important factors to restore vertebral strength and stiffness and limiting the risk of fracture at the same vertebra or adjacent ones.
Collapse
Affiliation(s)
- Ridha Hambli
- Univ. Orléans, Univ. Tours, INSA CVL, LaMé, Orléans 45000, France.
| | - Reade De Leacy
- Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
13
|
Study on the process of intervertebral disc disease by the theory of continuum damage mechanics. Clin Biomech (Bristol, Avon) 2022; 98:105738. [PMID: 35987169 DOI: 10.1016/j.clinbiomech.2022.105738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recently, more and more people suffer from low back pain triggered by lumbar degenerative disc disease. The mechanical factor is one of the most significant causes of disc degeneration. This study aims to explore the biomechanical responses of the intervertebral disc, and investigate the process of disc injury by the theory of continuum damage mechanics. METHODS A finite element model of the L4-L5 lumbar spine was developed and validated. The model not only considered changes in permeability coefficient with strain, but also included physiological factors such as osmotic pressure. Three loading conditions were simulated: (A) static loads, (B) vibration loads, (C) injury process. FINDINGS The simulation results revealed that the facet joints shared massive stresses of the intervertebral discs, and prevented excessive lumbar spine movement. However, their asymmetrical position may have led to degeneration. The von Mises stress and pore pressure of annulus fibrosus showed significantly different trends under static loads and vibration loads. The von Mises stress of nucleus pulposus was not sensitive to vibration loads, but its pore pressure was conspicuously influenced by vibration loads. The injury first appeared at the posterior centre, and then, it gradually expanded along the edge of the intervertebral disc. With an increase in the loading steps, the damage rate of the intervertebral disc increased logarithmically. INTERPRETATION The variation in the biomechanical performance of the intervertebral disc could be attributed to the periodic movement of internal fluids. This study might be helpful for understanding the mechanism of intervertebral disc degeneration.
Collapse
|
14
|
Jiang Y, Xiong X, Chen Z, Li Y. Movement posture and injury pattern of pelvis-lumbar spine of seated human impacted by the vertical high loads: a finite element analysis. Comput Methods Biomech Biomed Engin 2022; 26:835-845. [PMID: 35758223 DOI: 10.1080/10255842.2022.2091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The injury conditions of the sitting position occupant inside the military equipment are highly related to the vertical impact environments. In this study, a detailed three-dimensional finite element (FE) model of pelvis-lumbar spine of seated human with nonlinear material property and strain failure criterion was developed and validated. A series of sinusoidal accelerations with a constant peak speed of 8 m/s and frequencies ranging from 10 Hz to 90 Hz were loaded on the FE model to investigate the injury conditions under different high loading rates. The results indicated that the injury patterns mainly include wedge fracture of the junction between lumbar spine and pelvis, and comminuted fracture of ischial tuberosity. The bending moment caused by the large angle deflection of pelvis under 10 Hz case (low rate) and the acting force caused by the excessive curvature of lumbar spine under 30 Hz-70 Hz cases (medium and high rate) cause the junction wedge fractured, while the high impact force under 30 Hz-50 Hz cases (medium rate) leads to comminuted fracture of the ischial tuberosity. The associated mechanism that the shorter the time interval between the peak of seat loading speed and the peak of hip muscle compression, the more serious dynamic responses of pelvis-lumbar spine is revealed for the first time.
Collapse
Affiliation(s)
- Yongbo Jiang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China.,Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Xun Xiong
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China.,Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Zihao Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China.,Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Ying Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, China.,Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Dubé-Cyr R, Villemure I, Arnoux PJ, Rawlinson J, Aubin CÉ. Instrumentation of the sacroiliac joint with cylindrical threaded implants: A detailed finite element study of patient characteristics affecting fixation performance. J Orthop Res 2021; 39:2693-2702. [PMID: 33620100 DOI: 10.1002/jor.25012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/04/2023]
Abstract
The sacroiliac joint (SIJ) is a known pain generator that, in severe cases, may require surgical fixation to reduce intra-articular displacements and allow for arthrodesis. The objective of this computational study was to analyze how the number of implants affected SIJ stabilization with patient-specific characteristics such as the pelvic geometry and bone quality. Detailed finite element models were developed to account for three pelvises of differing anatomy. Each model was tested with a normal and low bone density (LD) under two types of loading: compression only and compression with flexion and extension moments. These models were instrumented with one to three cylindrical, threaded and fenestrated implants through a posterior oblique trajectory, requiring less muscle dissection than the more common lateral trajectory used with triangular implants. Compared with the noninstrumented pelvis, the change in range of motion (ROM) and stress distribution were used to characterize joint stabilization. Noninstrumented mobility ranged from 0.86 to 2.55 mm and from 1.37° to 6.11°. Across patient-specific characteristics, the ROM reduction with one implant varied from 3% to 21% for vertical and 15% to 47% for angular displacements. With two implants, the ROM reduction ranged from 12% to 41% for vertical and from 28% to 61% for angular displacements. Three implants, however, did not further improve the joint stability (14% to 42% for vertical and 32% to 63% for angular displacements). With respect to patient characteristics, an LD led to a decreased stabilization and a higher volume of stressed bone (>75% of yield stress). A better understanding of how patient characteristics affect the implant performance could help improve surgical planning of sacroiliac arthrodesis.
Collapse
Affiliation(s)
- Roxanne Dubé-Cyr
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.,Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Marseille, France.,Laboratoire de Biomécanique Appliquée, IFSTTAR, LBA UMR T24, Boulevard Pierre Dramard, Aix-Marseille Université, Marseille, France
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.,Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Marseille, France
| | - Pierre-Jean Arnoux
- iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Marseille, France.,Laboratoire de Biomécanique Appliquée, IFSTTAR, LBA UMR T24, Boulevard Pierre Dramard, Aix-Marseille Université, Marseille, France
| | - Jeremy Rawlinson
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.,Medtronic, Spinal Applied Research, Memphis, Tennessee, USA
| | - Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Quebec, Canada.,Sainte-Justine University Hospital Center, Montreal, Quebec, Canada.,iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Marseille, France
| |
Collapse
|
16
|
Ventura L, Lorenzini M, Kim W, Ajoudani A. A Flexible Robotics-Inspired Computational Model of Compressive Loading on the Human Spine. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Sun PD, Zhang XX, Zhang YW, Wang Z, Wu XY, Wu YC, Yu XL, Gan HR, Liu XD, Ai ZZ, He JY, Dong XP. Stress analysis of the thoracolumbar junction in the process of backward fall: An experimental study and finite element analysis. Exp Ther Med 2021; 22:1117. [PMID: 34504571 PMCID: PMC8383768 DOI: 10.3892/etm.2021.10551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/21/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to evaluate the biomechanical mechanism of injuries of the thoracolumbar junction by the methods of a backward fall simulation experiment and finite element (FE) analysis (FEA). In the backward fall simulation experiment, one volunteer was selected to obtain the contact force data of the sacrococcygeal region during a fall. Utilizing the fall data, the FEA simulation of the backward fall process was given to the trunk FE model to obtain the stress status of local bone structures of the thoracolumbar junction during the fall process. In the fall simulation test, the sacrococcygeal region of the volunteer landed first; the total impact time was 1.14±0.58 sec, and the impact force was up to 4,056±263 N. The stress of thoracic (T)11 was as high as 42 MPa, that of the posterior margin and the junction of T11 was as high as 70.67 MPa, and that of the inferior articular process and the superior articular process was as high as 128 MPa. The average stress of T12 and the anterior margin of lumbar 1 was 25 MPa, and that of the endplate was as high as 21.7 MPa, which was mostly distributed in the back of the endplate and the surrounding cortex. According to the data obtained from the fall experiment as the loading condition of the FE model, the backward fall process can be simulated to improve the accuracy of FEA results. In the process of backward fall, the front edge of the vertebral body and the root of vertebral arch in the thoracolumbar junction are stress concentration areas, which have a greater risk of injury.
Collapse
Affiliation(s)
- Pei-Dong Sun
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Human Anatomy, Southern Medical University, Guangdong Key Laboratory of Medical Biomechanics, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao-Xiang Zhang
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan-Wei Zhang
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhe Wang
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Yu Wu
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan-Chao Wu
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xing-Liang Yu
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hao-Ran Gan
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiang-Dong Liu
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zi-Zheng Ai
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Ying He
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xie-Ping Dong
- Department of Orthopedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
18
|
Kitahama Y, Ohashi H, Namba H, Sakai K, Shizuka H, Miyake H. Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery. Asian J Endosc Surg 2021; 14:628-635. [PMID: 33051991 DOI: 10.1111/ases.12879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/27/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Diagnosis is the key to improving spinal surgery outcomes. Improvements in the diagnosis of radiculopathy have created new indications for full-endoscopic spine surgery. We assessed the finite element method (FEM) to visualize and digitize lesions not detected by conventional diagnostic imaging. METHODS We used FEM in two patients: a lumbar patient and a cervical patient. The lumbar patient was a 67-year-old woman with a history of rheumatoid arthritis; she also had osteoporosis and pulmonary fibrosis. She had left L3 radiculopathy due to an L3 vertebral fracture. The cervical patient was a 61-year-old woman with left C6 radiculopathy due to C5-C6 disc herniation. We performed full endoscopic foraminotomy per the patients's request. Based on preoperative and postoperative CT Digital Imaging and Communications in Medicine data of 0.5-mm slices, 3-D imaging data were reproduced, and kinetic simulation of FEM was performed. RESULTS Postoperatively, both patients' radiculopathy disappeared, improving their activities of daily living and enabling them to walk and work. Also, the total contact area and maximum contact pressure of the nerve tissue decreased from 30% to 80% and from 33% to 67%, respectively. CONCLUSIONS A new method for perioperative evaluation and simulation, FEM can be to visualize and digitize the conditions of the lesion causing radiculopathy. FEM that can overcome both time and economic constraints in routine clinical practice is needed.
Collapse
Affiliation(s)
- Yoshihiro Kitahama
- Medical Photonics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Spine Center, Omaezaki Municipal Hospital, Omaezaki, Japan
| | - Hiroyuki Ohashi
- Rheumatoid Arthritis Center, Omaezaki Municipal Hospital, Omaezaki, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiko Sakai
- Faculty of Engineering, Mechanical Engineering, Shizuoka University, Hamamatsu, Japan
| | - Hiroo Shizuka
- Faculty of Engineering, Mechanical Engineering, Shizuoka University, Hamamatsu, Japan
| | - Hideaki Miyake
- Medical Photonics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
19
|
Komeili A, Rasoulian A, Moghaddam F, El-Rich M, Li LP. The importance of intervertebral disc material model on the prediction of mechanical function of the cervical spine. BMC Musculoskelet Disord 2021; 22:324. [PMID: 33794848 PMCID: PMC8017640 DOI: 10.1186/s12891-021-04172-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Linear elastic, hyperelastic, and multiphasic material constitutive models are frequently used for spinal intervertebral disc simulations. While the characteristics of each model are known, their effect on spine mechanical response requires a careful investigation. The use of advanced material models may not be applicable when material constants are not available, model convergence is unlikely, and computational time is a concern. On the other hand, poor estimations of tissue's mechanical response are likely if the spine model is oversimplified. In this study, discrepancies in load response introduced by material models will be investigated. METHODS Three fiber-reinforced C2-C3 disc models were developed with linear elastic, hyperelastic, and biphasic behaviors. Three different loading modes were investigated: compression, flexion and extension in quasi-static and dynamic conditions. The deformed disc height, disc fluid pressure, range of motion, and stresses were compared. RESULTS Results indicated that the intervertebral disc material model has a strong effect on load-sharing and disc height change when compression and flexion were applied. The predicted mechanical response of three models under extension had less discrepancy than its counterparts under flexion and compression. The fluid-solid interaction showed more relevance in dynamic than quasi-static loading conditions. The fiber-reinforced linear elastic and hyperelastic material models underestimated the load-sharing of the intervertebral disc annular collagen fibers. CONCLUSION This study confirmed the central role of the disc fluid pressure in spinal load-sharing and highlighted loading conditions where linear elastic and hyperelastic models predicted energy distribution different than that of the biphasic model.
Collapse
Affiliation(s)
- Amin Komeili
- School of Engineering, University of Guelph, Guelph, Canada.
| | | | | | - Marwan El-Rich
- Healthcare Engineering Innovation Center, Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Le Ping Li
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Robinson DL, Tse KM, Franklyn M, Zhang J, Fernandez JW, Ackland DC, Lee PVS. Specimen-specific fracture risk curves of lumbar vertebrae under dynamic axial compression. J Mech Behav Biomed Mater 2021; 118:104457. [PMID: 33780859 DOI: 10.1016/j.jmbbm.2021.104457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Underbody blast attacks of military vehicles by improvised explosives have resulted in high incidence of lumbar spine fractures below the thorocolumbar junction in military combatants. Fracture risk curves related to vertical loading at individual lumbar spinal levels can be used to assess the protective ability of new injury mitigation equipment. The objectives of this study were to derive fracture risk curves for the lumbar spine under high rate compression and identify how specimen-specific attributes and lumbar spinal level may influence fracture risk. In this study, we tested a sample of three-vertebra specimens encompassing all spinal levels between T12 to S1 in high-rate axial compression. Each specimen was tested with a non-injurious load, followed by a compressive force sufficient to induce vertebral body fracture. During testing, bone fracture was identified using measurements from acoustic emission sensors and changes in load cell readings. Following testing, the fractures were assessed using computed tomographic (CT) imaging. The CT images showed isolated fractures of trabecular bone, or fractures involving both cortical and trabecular bone. Results from the compressive force measurements in conjunction with a survival analysis demonstrated that the compressive force corresponding to fracture increased inferiorly as a function of lumbar spinal level. The axial rigidity (EA) measured at the mid-plane of the centre vertebra or the volumetric bone mineral density (vBMD) of the vertebral body trabecular bone most greatly influenced fracture risk. By including these covariates in the fracture risk curves, no other variables significantly affected fracture risk, including the lumbar spinal level. The fracture risk curves presented in this study may be used to assess the risk of injury at individual lumbar vertebra when exposed to dynamic axial compression.
Collapse
Affiliation(s)
- Dale L Robinson
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Kwong Ming Tse
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Melbourne, VIC, Australia
| | | | - JiangYue Zhang
- The Johns Hopkins University Applied Physics Lab, Laurel, MD, USA
| | - Justin W Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David C Ackland
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter Vee Sin Lee
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Biomechanical comparison of spinal cord compression types occurring in Degenerative Cervical Myelopathy. Clin Biomech (Bristol, Avon) 2021; 81:105174. [PMID: 33279293 DOI: 10.1016/j.clinbiomech.2020.105174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Degenerative Cervical Myelopathy results from spine degenerations narrowing the spinal canal and inducing cord compressions. Prognosis is challenging. This study aimed at simulating typical spinal cord compressions observed in patients with a realistic model to better understand pathogenesis for later prediction of patients' evolution. METHODS A 30% reduction in cord cross-sectional area at C5-C6 was defined as myelopathy threshold based on Degenerative Cervical Myelopathy features from literature and MRI measurements in 20 patients. Four main compression types were extracted from MRIs and simulated with a comprehensive three-dimensional finite element spine model. Median diffuse, median focal and lateral types were modelled as disk herniation while circumferential type additionally involved ligamentum flavum hypertrophy. All stresses were quantified along inferior-superior axis, compression development and across atlas-defined spinal cord regions. FINDINGS Anterior gray and white matter globally received the highest stress while lateral pathways were the least affected. Median diffuse compression induced the highest stresses. Circumferential type focused stresses in posterior gray matter. Along inferior-superior axis, those two types showed a peak of constraints at compression site while median focal and lateral types showed lower values but extending further. INTERPRETATION Median diffuse type would be the most detrimental based on stress amplitude. Anterior regions would be the most at risk, except for circumferential type where posterior regions would be equally affected. In addition to applying constraints, ischemia could be a significant component explaining the early demyelination reported in lateral pathways. Moving towards patient-specific simulations, biomechanical models could become strong predictors for degenerative changes.
Collapse
|
22
|
Sivasankari S, Balasubramanian V. Influence of occupant collision state parameters on the lumbar spinal injury during frontal crash. J Adv Res 2020; 28:17-26. [PMID: 33364041 PMCID: PMC7753953 DOI: 10.1016/j.jare.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 11/27/2022] Open
Abstract
Introduction Developed a detailed finite element model of spine and validated with the experimental or cadaveric tests to gain insight on occupant safety. Objectives This study evaluates the influence of occupant collision state parameters such as height of the drop, occupant seating posture (occupant posture angle) and mass of the upper body on the risk of lumbar spinal injury during a frontal crash. Methods This parametric evaluation utilizing response surface methodology (RSM) performed. ANOVA was used to test the significance of parameters. Results Higher axial force of 3547 N is observed with higher dropping distance of 1500 mm. Similarly, higher strain and energy absorption were observed for the same dropping condition respectively. Conclusion The result shows that all the factors considered in the experiment contribute to the risk of spinal lumbar injury during the frontal crash. Among all, height of the drop and the occupant posture angle are the most significant parameters in determining the lumbar spinal injury of occupant. It is observed that the injury criteria are directly proportional to the posture angle of the seat and height of drop.
Collapse
Affiliation(s)
- S Sivasankari
- RBG Labs, Department of Engineering Design, IIT Madras, Chennai 600036, India
| | | |
Collapse
|
23
|
Sivasankari S, Balasubramanian V. Developing a heuristic relationship to predict the spinal injury during vertical impact for autonomous vehicle and bio environment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105618. [PMID: 32603988 DOI: 10.1016/j.cmpb.2020.105618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent research and tested data suggested that spinal injuries occur more often in a frontal impact. Most of the published information is focused on the lumbar spinal injury with respect to axial compression force by varying the height of drops. Parametric studies on the lumbar spinal injury are very scanty. Therefore, the present investigation aimed to optimize the effects of drop height, torso weight and seat angle on the characterization of lumbar injury criteria METHODS: A detailed finite element model of a spine with multi-segmented spinal columns is developed and validated with the experimental or cadaveric tests using CORA evaluation. Hence, Dynamic loading studies or weight drop techniques were used to characterize the effect of drop height, seat angle and torso weight of the upper body on the lumbar spinal injury during a frontal impact. Parametric simulations were carried out using response surface methodology (RSM). Test of significance (p < 0.05) on the parameters was carried out using ANOVA. Desirability Function Approach is used to optimize the parameters for better safety design. RESULTS The result shows that all the factors considered in the experiment are related to the risk of lumbar spinal injury during the frontal impact. All the factors selected, the drop height, torso weight and the seat angle were the most prominent element in determining the lumbar spinal injury. The injury increased with the increase in the posture angle of the seat. Optimal parameters were determined for the better safety of the occupants as seat angle of 105°, drop height 500 mm and torso weight of 25 kg in vehicle design. During vertical impact, posterior undergoes maximum impact in the portions of vertebra and confirmed with the patient case study fracture of vertical drop incident. CONCLUSIONS This research insight gives an improved understanding of the parametric influence of design alternatives to minimize the risk of lumbar spinal injury in automotive vehicles. The optimal combination of drop height and the seat angle provides futuristic view on autonomous vehicle seat design.
Collapse
|
24
|
Distribution of Young's modulus at various sampling points in a human lumbar spine vertebral body. Spine J 2020; 20:1861-1875. [PMID: 32592901 DOI: 10.1016/j.spinee.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Mathematical modeling for creating computer spine models is one of the basic methods underlying many scientific publications. The accuracy of strength parameters of tissues introduced into such models translates directly into the reliability of obtained results. Experimental determination of Young's modulus (E) in various areas of spongy bone tissue seems to be crucial for creating a reliable spine model without excessive simplifications in the form of a single E value for the whole vertebral body. PURPOSE The aim of the study was to determine Young's modulus in different parts of the lumbar vertebral column for samples subjected to compression and bending. STUDY DESIGN Cylindrical spongy bone tissue samples were subjected to bending and compression strength tests. METHODS The study included 975 pathologically unchanged samples of spongy bone tissue harvested from the lumbar vertebrae of 15 male donors. The samples were subjected to compression or bending strength tests and then Young's modulus was determined for each sample depending on its location in the vertebral body. The samples were tested differently between given locations within one vertebra as well as between vertebrae. RESULTS Compressed specimens are characterized by highly significantly different Young's modulus values depending on the location in the vertebral body. Samples No. 7 and No. 9 in the anterior part of the vertebral body have highly significantly higher Young's modulus values compared to those in the posterior part of the vertebral body for all lumbar vertebrae. Samples subjected to bending showed significant differences (p<.05) between samples located closer to the vertebral canal (No.16, No.17) and samples located further away (No.14, No.15) with higher values for the samples located in the posterior part of the vertebral body. CONCLUSIONS Accommodating the anisotropic structure of spongy bone in computer models and the application of different Young's module values for areas within one vertebral body will allow one to obtain realistic results of computer simulations used. CLINICAL SIGNIFICANCE Determining the exact strength parameters of spongy bone tissue within one vertebra and changes in these properties in subsequent vertebrae will allow to create more accurate computer models of the lumbar spine and the whole spine. This, in turn, will translate into more reliable computer simulations used, among others, to determine the risk of fractures or osteoporotic changes, or simulation of the procedure of spinal fusion.
Collapse
|
25
|
Fradet L, Bianco RJ, Tatsumi R, Coleman J, Aubin CÉ. Biomechanical comparison of sacral and transarticular sacroiliac screw fixation. Spine Deform 2020; 8:853-862. [PMID: 32274770 DOI: 10.1007/s43390-020-00108-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
STUDY DESIGN A detailed finite element analysis of screw fixation in the sacrum and pelvis. OBJECTIVE To biomechanically assess and compare the fixation performance of sacral and transarticular sacroiliac screws. Instrumentation constructs are used to achieve fixation and stabilization for the treatment of spinopelvic pathologies. The optimal screw trajectory and type of bone engagement to caudally anchor long fusion constructs are not yet known. METHODS A detailed finite element model of the sacroiliac articulation with two different bone densities was developed. Two sacral and one transarticular sacroiliac screw trajectories were modeled with different diameters (5.5 and 6.5 mm) and lengths (uni-cortical, bi-cortical and quad-cortical purchase). Axial pullout and flexion/extension toggle forces were applied on the screws representing intra and post-operative loads. The force-displacement results and von Mises stresses were used to characterize the failure pattern. RESULTS Overall, sacroiliac screws provided forces to failure 2.75 times higher than sacral fixation screws. On the contrary, the initial stiffness was approximately half as much for sacroiliac screws. High stresses were located at screw tips for the sacral trajectories and near the cortical bone screw entry points for the sacroiliac trajectory. Overall, the diameter and length of the screws had significant effects on the screw fixation (33% increase in force to failure; 5% increase in initial stiffness). A 20% drop in bone mineral density (lower bone quality) decreased the initial stiffness by 25% and the force to failure by 5-10%. High stresses and failure occurred at the screw tip for uni- and tri-cortical screws and were close to trabecular-cortical bone interface for bi-cortical and quad-cortical screws. CONCLUSIONS Sacroiliac fixation provided better anchorage than sacral fixation. The transarticular purchase of the sacroiliac trajectory resulted in differences in failure pattern and fixation performance.
Collapse
Affiliation(s)
- Léo Fradet
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada.,Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada.,International Laboratory - Spine Imaging and Biomechanics, Montreal, Canada
| | - Rohan-Jean Bianco
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada.,Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Boulevard Pierre Dramard, 13916, Marseille Cedex 20, France.,International Laboratory - Spine Imaging and Biomechanics, Marseille, France
| | - Robert Tatsumi
- Department of Orthopaedics and Rehabilitation, Oregon Health & Sciences University, 3181, Portland, OR, USA
| | | | - Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, QC, H3C 3A7, Canada. .,Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, QC, H3T 1C5, Canada. .,International Laboratory - Spine Imaging and Biomechanics, Montreal, Canada.
| |
Collapse
|
26
|
Agostinho Hernandez B, Gill HS, Gheduzzi S. A Novel Modelling Methodology Which Predicts the Structural Behaviour of Vertebral Bodies under Axial Impact Loading: A Finite Element and DIC Study. MATERIALS 2020; 13:ma13194262. [PMID: 32987869 PMCID: PMC7578961 DOI: 10.3390/ma13194262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
Cervical spine injuries (CSIs) arising from collisions are uncommon in contact sports, such as rugby union, but their consequences can be devastating. Several FE modelling approaches are available in the literature, but a fully calibrated and validated FE modelling framework for cervical spines under compressive dynamic-impact loading is still lacking and material properties are not adequately calibrated for such events. This study aimed to develop and validate a methodology for specimen-specific FE modelling of vertebral bodies under impact loading. Thirty-five (n = 35) individual vertebral bodies (VBs) were dissected from porcine spine segments, potted in bone cement and μCT scanned. A speckle pattern was applied to the anterior faces of the bones to allow digital image correlation (DIC), which monitored the surface displacements. Twenty-seven (n = 27) VBs were quasi-statically compressively tested to a load up to 10 kN from the cranial side. Specimen-specific FE models were developed for fourteen (n = 14) of the samples in this group. The material properties were optimised based on the experimental load-displacement data using a specimen-specific factor (kGSstatic) to calibrate a density to Young’s modulus relationship. The average calibration factor arising from this group was calculated (K¯GSstatic) and applied to a control group of thirteen (n = 13) samples. The resulting VB stiffnesses was compared to experimental findings. The final eight (n = 8) VBs were subjected to an impact load applied via a falling mass of 7.4kg at a velocity of 3.1ms−1. Surface displacements and strains were acquired from the anterior VB surface via DIC, and the impact load was monitored with two load cells. Specimen-specific FE models were created for this dynamic group and material properties were assigned again based on the density–Young’s modulus relationship previously validated for static experiments, supplemented with an additional factor (KGSdynamic). The optimised conversion factor for quasi-static loading, K¯GSstatic, had an average of 0.033. Using this factor, the validation models presented an average numerical stiffness value 3.72% greater than the experimental one. From the dynamic loading experiments, the value for KGSdynamic was found to be 0.14, 4.2 times greater than K¯GSstatic. The average numerical stiffness was 2.3% greater than in the experiments. Almost all models presented similar stiffness variations and regions of maximum displacement to those observed via DIC. The developed FE modelling methodology allowed the creation of models which predicted both static and dynamic behaviour of VBs. Deformation patterns on the VB surfaces were acquired from the FE models and compared to DIC data, achieving high agreement. This methodology is now validated to be fully applied to create whole cervical spine models to simulate axial impact scenarios replicating rugby collision events.
Collapse
|
27
|
A novel scoliosis instrumentation using special superelastic nickel-titanium shape memory rods: a biomechanical analysis using a calibrated computer model and data from a clinical trial. Spine Deform 2020; 8:369-379. [PMID: 32096138 DOI: 10.1007/s43390-020-00075-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/01/2019] [Indexed: 10/24/2022]
Abstract
STUDY DESIGN Biomechanical analysis of scoliosis instrumentation using superelastic Nickel-titanium shape memory (SNT) rods. OBJECTIVE To compare SNT with conventional Titanium (Ti) and Cobalt-chrome (Co-Cr) rods. A clinical trial has documented comparable efficacy between two adolescent idiopathic scoliosis (AIS) cohorts instrumented using SNT versus conventional Ti rods. The shape memory and superelasticity of the SNT rod are thought to allow easy rod insertion, progressive curve correction, and correction from spinal tissue relaxation, but study is yet to be done to assess the effects of the shape memory and superelasticity. METHODS Instrumentations of AIS patients from the clinical trial were computationally simulated using SNT, Ti and Co-Cr rods (5.5 or 6 mm; 30°, 50° or 60° sagittal contouring angles; 0°, 25° or 50° coronal over-contouring angles). Curve correction, its improvement from stress relaxation in the spine, and loads in the instrumentation constructs were computed and compared. RESULTS The simulated main thoracic Cobb angles (MT) and thoracic kyphosis with the SNT rods were 4°-7° higher and 1°-2° lower than the Ti and Co-Cr rods, respectively. Bone-implant forces with Ti and Co-Cr rods were higher than the SNT rods by 84% and 130% at 18 °C and 35% and 65% at 37 °C, respectively (p < 0.001). Further corrections of the MT from the simulated stress relaxation in the spine were 4°-8° with the SNT rods versus 2°-5° with the Ti and Co-Cr rods (p < 0.001). CONCLUSION This study concurs with clinical observation that the SNT rods are easier to insert and can result in similar correction to the conventional rods. The SNT rods allow significantly lower bone-implant forces and have the ability to take advantage of post-instrumentation correction as the tissues relax.
Collapse
|
28
|
Beauséjour MH, Petit Y, Hagen J, Arnoux PJ, Thiong JMM, Wagnac E. Contribution of injured posterior ligamentous complex and intervertebral disc on post-traumatic instability at the cervical spine. Comput Methods Biomech Biomed Engin 2020; 23:832-843. [PMID: 32463324 DOI: 10.1080/10255842.2020.1767776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Posterior ligamentous complex (PLC) and intervertebral disc (IVD) injuries are common cervical spine flexion-distraction injuries, but the residual stability following their disruption is misknown. The objective of this study was to evaluate the effect of PLC and IVD disruption on post-traumatic cervical spine stability under low flexion moment (2 Nm) using a finite element (FE) model of C2-T1. The PLC was removed first and a progressive disc rupture (one third, two thirds and complete rupture) was modeled to simulate IVD disruption at C2-C3, C4-C5 and C6-C7. At each step, a non-traumatic flexion moment was applied and the change in stability was evaluated. PLC removal had little impact at C2-C3 but increased local range of motion (ROM) at the injured level by 77.2% and 190.7% at C4-C5 and C6-C7, respectively. Complete IVD rupture had the largest impact on C2-C3, increasing C2-C3 ROM by 181% and creating a large antero-posterior displacement of the C2-C3 segment. The FE analysis showed PLC and disc injuries create spinal instability. However, the PLC played a bigger role in the stability of the middle and lower cervical spine while the IVD was more important at the upper cervical spine. Stabilization appears important when managing patients with soft tissue injuries.
Collapse
Affiliation(s)
- Marie-Hélène Beauséjour
- Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, Canada.,Department of traumatology and acute care, Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Canada.,Department TS2, Laboratoire de biomecanique appliquee, IFSTTAR, LBA UMR T24, Aix-Marseille Universite, Marseille, France
| | - Yvan Petit
- Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, Canada.,Department of traumatology and acute care, Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Jeremy Hagen
- Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, Canada.,Department of traumatology and acute care, Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Pierre-Jean Arnoux
- Department TS2, Laboratoire de biomecanique appliquee, IFSTTAR, LBA UMR T24, Aix-Marseille Universite, Marseille, France
| | - Jean-Marc Mac Thiong
- Department of traumatology and acute care, Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Canada
| | - Eric Wagnac
- Department of Mechanical Engineering, Ecole de technologie superieure, Montreal, Canada.,Department of traumatology and acute care, Research Center, Hopital du Sacre-Coeur de Montreal, Montreal, Canada
| |
Collapse
|
29
|
Schaefer A, Ferdinands RED, O'Dwyer N, Edwards S. A biomechanical comparison of conventional classifications of bowling action-types in junior fast bowlers. J Sports Sci 2020; 38:1085-1095. [PMID: 32281483 DOI: 10.1080/02640414.2020.1741972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.
Collapse
Affiliation(s)
- Andrew Schaefer
- School of Exercise Science, Sport and Health, Charles Sturt University , Australia
| | - Rene E D Ferdinands
- Discipline of Exercise and Sport Science, The University of Sydney , Australia
| | - Nicholas O'Dwyer
- Discipline of Exercise and Sport Science, The University of Sydney , Australia
| | - Suzi Edwards
- School of Environmental and Life Sciences, University of Newcastle , Ourimbah, Australia.,Priority Research Centre for Physical Activity and Nutrition, University of Newcastle , Callaghan, Australia
| |
Collapse
|
30
|
Bailly N, Diotalevi L, Beauséjour MH, Wagnac É, Mac-Thiong JM, Petit Y. Numerical investigation of the relative effect of disc bulging and ligamentum flavum hypertrophy on the mechanism of central cord syndrome. Clin Biomech (Bristol, Avon) 2020; 74:58-65. [PMID: 32145670 DOI: 10.1016/j.clinbiomech.2020.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The pathogenesis of the central cord syndrome is still unclear. While there is a consensus on hyperextension as the main traumatic mechanism leading to this condition, there is yet to be consensus in studies regarding the pathological features of the spine (intervertebral disc bulging or ligamentum flavum hypertrophy) that could contribute to clinical manifestations. METHODS A comprehensive finite element model of the cervical spine segment and spinal cord was used to simulate high-speed hyperextension. Four stenotic cases were modelled to study the effect of ligamentum flavum hypertrophy and intervertebral disc bulging on the von Mises stress and strain. FINDINGS During hyperextension, the downward displacement of the ligamentum flavum and a reduction of the spinal canal diameter (up to 17%) led to a dynamic compression of the cord. Ligamentum flavum hypertrophy was associated with stress and strain (peak of 0.011 Mpa and 0.24, respectively) in the lateral corticospinal tracts, which is consistent with the histologic pattern of the central cord syndrome. Linear intervertebral disc bulging alone led to a higher stress in the anterior and posterior funiculi (peak 0.029 Mpa). Combined with hypertrophic ligamentum flavum, it further increased the stress and strain in the corticospinal tracts and in the posterior horn (peak of 0.023 Mpa and 0.35, respectively). INTERPRETATION The stenotic typology and geometry greatly influence stress and strain distribution resulting from hyperextension. Ligamentum flavum hypertrophy is a main feature leading to central cord syndrome.
Collapse
Affiliation(s)
- Nicolas Bailly
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Marie-Hélène Beauséjour
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France; Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR- Université de la Méditerranée, F-13916 Marseille cedex 20, France
| | - Éric Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France
| | - Jean-Marc Mac-Thiong
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; Department of Orthopaedic Surgery, Université de Montréal, P.O. box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), France.
| |
Collapse
|
31
|
Rastegar S, Arnoux PJ, Wang X, Aubin CÉ. Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion. Comput Methods Biomech Biomed Engin 2020; 23:456-466. [DOI: 10.1080/10255842.2020.1737027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sajjad Rastegar
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, Canada
- Sainte-Justine University Hospital Center, Montreal, Canada
- iLab Spine - International Laboratory – Spine Imaging and Biomechanics, Montreal, Canada; and Marsheille, France
| | - Pierre-Jean Arnoux
- iLab Spine - International Laboratory – Spine Imaging and Biomechanics, Montreal, Canada; and Marsheille, France
- Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR/Aix-Marseille Université, Marseille, France
| | - Xiaoyu Wang
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, Canada
- Sainte-Justine University Hospital Center, Montreal, Canada
- iLab Spine - International Laboratory – Spine Imaging and Biomechanics, Montreal, Canada; and Marsheille, France
| | - Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, Montréal, Canada
- Sainte-Justine University Hospital Center, Montreal, Canada
- iLab Spine - International Laboratory – Spine Imaging and Biomechanics, Montreal, Canada; and Marsheille, France
| |
Collapse
|
32
|
Diotalevi L, Bailly N, Wagnac É, Mac-Thiong JM, Goulet J, Petit Y. Dynamics of spinal cord compression with different patterns of thoracolumbar burst fractures: Numerical simulations using finite element modelling. Clin Biomech (Bristol, Avon) 2020; 72:186-194. [PMID: 31901589 DOI: 10.1016/j.clinbiomech.2019.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND In thoracolumbar burst fractures, spinal cord primary injury involves a direct impact and energy transfer from bone fragments to the spinal cord. Unfortunately, imaging studies performed after the injury only depict the residual bone fragments position and pattern of spinal cord compression, with little insight on the dynamics involved during traumas. Knowledge of underlying mechanisms could be helpful in determining the severity of the primary injury, hence the extent of spinal cord damage and associated potential for recovery. Finite element models are often used to study dynamic processes, but have never been used specifically to simulate different severities of thoracolumbar burst fractures. METHODS Previously developed thoracolumbar spine and spinal cord finite element models were used and further validated, and representative vertebral fragments were modelled. A full factorial design was used to investigate the effects of comminution of the superior fragment, presence of an inferior fragment, fragments rotation and velocity, on maximum Von Mises stress and strain, maximum major strain, and pressure in the spinal cord. FINDINGS Fragment velocity clearly was the most influential factor. Fragments rotation and presence of an inferior fragment increased pressure, but rotation decreased both strains outputs. Although significant for both strains outputs, comminution of the superior fragment isn't estimated to influence outputs. INTERPRETATION This study is the first, to the authors' knowledge, to examine a detailed spinal cord model impacted in situ by fragments from burst fractures. This numeric model could be used in the future to comprehensively link traumatic events or imaging study characteristics to known spinal cord injuries severity and potential for recovery.
Collapse
Affiliation(s)
- Lucien Diotalevi
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), Canada
| | - Nicolas Bailly
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), Canada
| | - Éric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), Canada.
| | - Jean-Marc Mac-Thiong
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; Department of Orthopaedic Surgery, Université de Montréal, P.O. box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Julien Goulet
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; Department of Orthopaedic Surgery, Université de Montréal, P.O. box 6128, Station Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin blvd, Montréal H4J 1C5, Québec, Canada; International Laboratory on Spine Imaging and Biomechanics (iLab-Spine), Canada.
| |
Collapse
|
33
|
Beausejour MH, Petit Y, Arnoux PJ, Wagnac E. Comparison of Two Intervertebral Disc Failure Models in a Numerical C4-C5 Trauma Model .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5415-5418. [PMID: 31947080 DOI: 10.1109/embc.2019.8857095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intervertebral disc (IVD) is essential for the mobility and stability of the spine. During flexion-distraction injuries, which are frequent at the cervical spine level, the IVD is often disrupted. Finite element studies have been done to investigate injury mechanisms and patterns at the cervical spine. However, they rarely include IVD failure model. The aim of this paper was to implement and compare two types of IVD failure models and their impact on hyperflexion and hyperflexion-compression injuries simulations. The failure models were tested on a detailed C4-C5 finite elements model. The first failure model consisted in a maximal strain model applied to the elements of the annulus and nucleus. The second failure model consisted in the implementation of a rupture plane in the middle of the IVD with a tied interface created between the two sections. This interface is defined by threshold stress values of detachment in traction and shearing. The two failure models were tested in flexion only and in flexion-compression. The model without inclusion of an IVD failure model was also tested. Loads at failure and injury patterns were reported. Both failure models produce failure loads that were consistent with experimental data. Injury patterns observed were in agreement with experimental and numerical studies. However, in flexion-compression, the rupture plane model simulation reached important energy error due to high deformations in the IVD elements. Also, without inclusion of an IVD failure model, energy error forced the end of the simulation in flexion-compression. Therefore, inclusion of IVD failure model is important since it leads to realistic results, but the maximal strain failure model is recommended.
Collapse
|
34
|
Tuchtan L, Godio-Raboutet Y, Delteil C, Léonetti G, Piercecchi Marti MD, Thollon L. Study of cerebrospinal injuries by force transmission secondary to mandibular impacts using a finite element model. Forensic Sci Int 2019; 307:110118. [PMID: 31869653 DOI: 10.1016/j.forsciint.2019.110118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Brain and cervical injuries are often described after major facial impacts but rarely after low-intensity mandibular impacts. Force transmission to the brain and spinal cord from a mandibular impact such as a punch was evaluated by the creation and validation of a complete finite element model of the head and neck. Anteroposterior uppercut impacts on the jaw were associated with considerable extension and strong stresses at the junction of the brainstem and spinal cord. Hook punch impacts transmitted forces directly to the brainstem and the spinal cord without extension of the spinal cord. Deaths after this type of blow with no observed histological lesions may be related to excessive stressing of the brainstem, through which pass the sensory-motor pathways and the vagus nerve and which is the regulatory center of the major vegetative functions. Biological parameters are different in each individual, and by using digital modeling they can be modulated at will (jaw shape, dentition…) for a realistic approach to forensic applications.
Collapse
Affiliation(s)
- Lucile Tuchtan
- Forensic Department, APHM, Hôpital de la Timone, 13385 Marseille, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | - Yves Godio-Raboutet
- Aix Marseille Univ, IFSTTAR, LBA, Marseille, France; iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), France
| | - Clémence Delteil
- Forensic Department, APHM, Hôpital de la Timone, 13385 Marseille, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Georges Léonetti
- Forensic Department, APHM, Hôpital de la Timone, 13385 Marseille, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Marie-Dominique Piercecchi Marti
- Forensic Department, APHM, Hôpital de la Timone, 13385 Marseille, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Lionel Thollon
- Aix Marseille Univ, IFSTTAR, LBA, Marseille, France; iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), France
| |
Collapse
|
35
|
A biomechanical investigation of thoracolumbar burst fracture under vertical impact loads using finite element method. Clin Biomech (Bristol, Avon) 2019; 68:29-36. [PMID: 31146081 DOI: 10.1016/j.clinbiomech.2019.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND A sudden vertical impact load on spine can cause spinal burst fracture, especially in the thoracolumbar junction region. This study aimed at investigating the mechanism of spinal burst fracture under different energy vertical impact loads, producing the failure risk region to understand burst fracture, reducing nervous system damage and guiding clinical treatment. METHODS A nonlinear finite element model of T12-L1 motion segment was created to analyze the response of the vertical impact load. A rigid ball was used to impact the segment vertically to simulate the vertical impact load in practice. There were three different mass balls to represent the different loads: low energy, intermediate energy and high energy (respectively 13 J, 30 J and 56 J). The results of impact force, vertical displacement, stress, intradiscal pressure and contact force were obtained during the process. FINDINGS At low energy condition, the rigid ball rebounded rapidly. At intermediate energy condition, fractures were initiated in vertebral foramen and left rear regions on the superior cortical bone near the superior endplate of L1. At high energy condition, burst fracture occurred and a part of L1 was isolated from the model. INTERPRETATION The fracture occurred on the L1 segment only at the intermediate energy and high energy. The strength of vertebral body under low and intermediate energy was enough to support the impact. The burst fracture pattern at high energy was also observed in clinical practice. The findings may explain the mechanism of burst fracture.
Collapse
|
36
|
Effect of impact velocity and ligament mechanical properties on lumbar spine injuries in posterior-anterior impact loading conditions: a finite element study. Med Biol Eng Comput 2019; 57:1381-1392. [DOI: 10.1007/s11517-019-01964-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
|
37
|
Implant-supported overdentures with different clinical configurations: Mechanical resistance using a numerical approach. J Prosthet Dent 2019; 121:546.e1-546.e10. [PMID: 30711289 DOI: 10.1016/j.prosdent.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
Abstract
STATEMENT OF PROBLEM Implant-supported overdentures (IODs) are a treatment option for patients with complete edentulism. However, this treatment increases the possibilities of peri-implant complications, characterized by inflammation or partial loss of surrounding hard and soft tissues. PURPOSE The purpose of this finite element analysis study was to evaluate the mechanical performance of different bar-IOD designs under different clinical configurations by comparing the stress and strain distribution on the bone during secondary stabilization. MATERIAL AND METHODS A finite element model of the mandible representing a patient with complete edentulism was developed. Different designs of bar-IODs were modeled and compared. The parameters studied were the material properties (cobalt-chromium, zirconium dioxide, titanium grade 5, and titanium grade 4), diameter and bar-IOD cross-sectional shape, tilt of the posterior implants (30 degrees), presence of a distal extension cantilever in the bar-IODs (12 mm), and number of implants (4 or 6). Two different mastication loading conditions were analyzed. One- and 2-way ANOVAs and the Tukey honestly significant differences post hoc test (α=.05) were used to determine the significant von Mises stress and strain values in the bone. RESULTS The 4 materials tested in the bar-IOD did not have a significant mechanical effect on the bone (P<.05). A smaller diameter and structure of the bar-IOD led to significantly higher bone stress (P<.001). A distal extension cantilever led to an increased stress concentration (model M1 versus model M3: P<.001), which reached 50% in the event of tilting of the posterior implants (model M2 versus model M4: P<.001). Tilting of the posterior implants alone, without extension, had a nonsignificant effect (model M3 versus model M4: P=.999). Model M5 supported with 6 implants reduces the stress transferred to the bone compared with model M3 supported with 4 implants (P<.05). CONCLUSIONS Distal extensions in bar-IODs, the tilt of the posterior implants, and the low amount of material in the cross-sectional area in the bar-IOD were the most influential parameters on the mechanical resistance of dental implants in the mandibular bone.
Collapse
|
38
|
Fradet L, Wang X, Crandall D, Aubin CE. Biomechanical Analysis of Acute Proximal Junctional Failure After Surgical Instrumentation of Adult Spinal Deformity: The Impact of Proximal Implant Type, Osteotomy Procedures, and Lumbar Lordosis Restoration. Spine Deform 2019; 6:483-491. [PMID: 30122382 DOI: 10.1016/j.jspd.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/24/2017] [Accepted: 02/11/2018] [Indexed: 11/28/2022]
Abstract
STUDY DESIGN Computer biomechanical simulations to analyze risk factors of proximal junctional failure (PJF) following adult scoliosis instrumentation. OBJECTIVE To evaluate the biomechanical effects on the proximal junctional spine of the proximal implant type, tissue dissection, and lumbar lordosis (LL) restoration. SUMMARY OF BACKGROUND DATA PJF is a severe proximal junctional complication following adult spinal instrumentation requiring revision surgery. Potential risk factors have been reported in the literature, but knowledge on their biomechanics is still lacking to address the issues. METHODS A patient-specific multibody and finite-element hybrid modeling technique was developed for a 54-year-old patient having undergone instrumented spinal fusion for multilevel stenosis resulting in PJF. Based on the actual surgery, 30 instrumentation scenarios were derived and simulated by changing the implant type at the upper instrumented vertebra (UIV), varying the extent of proximal osteotomy and the degree of LL creation. Five functional loads were simulated, and stresses and strains were analyzed for each of the 30 tested scenarios. RESULTS There was 80% more trabecular bone with stress greater than 0.5 MPa in the UIV with screws compared to hooks. Hooks allowed 96% more mobility of the proximal instrumented functional unit compared to screws. The bilateral complete facetectomy along with posterior ligaments dissection caused a significant increase of the range of motion of the functional unit above the UIV. LL creation increased the flexion moment applied on the proximal vertebra from 7.5 to 17.5 Nm, which generated damage at the bone-screw interface that affected the screw purchase. CONCLUSION Using hooks at UIV and reducing posterior proximal spinal element dissection lowered stress levels in the proximal junctional spinal segment and thus reduced the biomechanical risks of PJF. LL restoration was associated with increased stress levels in postoperative functional upper body flexion.
Collapse
Affiliation(s)
- Leo Fradet
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada; iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
| | - Xiaoyu Wang
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| | - Dennis Crandall
- Sonoran Spine Center, 1255 W. Rio Salado Parkway, Tempe, AZ 85281, USA
| | - Carl-Eric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada; iLab-Spine (International Laboratory-Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France.
| |
Collapse
|
39
|
Mustafy T, Arnoux PJ, Benoit A, Bianco RJ, Aubin CE, Villemure I. Load-sharing biomechanics at the thoracolumbar junction under dynamic loadings are modified by anatomical features in adolescent and pediatric vs adult functional spinal units. J Mech Behav Biomed Mater 2018; 88:78-91. [DOI: 10.1016/j.jmbbm.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/10/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
|
40
|
Sterba M, Arnoux PJ, Labelle H, Warner WC, Aubin CÉ. Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sport-related dynamic loading conditions. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2044-2052. [PMID: 29926211 DOI: 10.1007/s00586-018-5667-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To study the risks of spondylolysis due to extrinsic loading conditions related to sports activities and intrinsic spino-pelvic postural parameters [pelvic incidence (PI) and sacral slope (SS)]. METHODS A comprehensive osseo-disco-ligamentous L4-S1 finite element model was built for three cases with spondylolysis representing three different spino-pelvic angular configurations (SS = 32°, 47°, 59° and PI = 49°, 58°, 72°, respectively). After simulating the standing posture, 16 dynamic loading conditions were computationally tested for each configuration by combining four sport-related loads (compression, sagittal and lateral bending and axial torque). For each simulation, the Von Mises stress, L5-S1 facet contact force and resultant internal loads at the sacral endplate were computed. Significant effects were determined with an ANOVA. RESULTS The maximal stress and volume of cancellous bone in the pars with stress higher than 75% of the ultimate stress were higher with 900 N simulated compression (2.2 MPa and 145 mm3) compared to only the body weight (1.36 MPa and 20.9 mm3) (p < 0.001). Combined compression with 10 Nm of flexion and an axial torque of 6 Nm generated the highest stress conditions (up to 2.7 MPa), and L5-S1 facet contact force (up to 430 N). The maximal stress was on average 17% higher for the case with the highest SS compared to the one with lowest SS for the 16 tested conditions (p = 0.0028). CONCLUSIONS Combined flexion and axial rotation with compression generated the highest stress conditions related to risks of spondylolysis. The stress conditions intensify in patients with higher PI and SS. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Manon Sterba
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA UMR T24, Marseille, France.,iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada.,iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Marseille, France.,Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, Aix-Marseille Université, IFSTTAR, LBA UMR T24, Marseille, France.,iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Marseille, France
| | - Hubert Labelle
- Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | | | - Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, Canada. .,iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada. .,Sainte-Justine University Hospital Center, Montreal, QC, Canada.
| |
Collapse
|
41
|
Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patient-specific three-dimensional finite element modeling. Med Biol Eng Comput 2018; 56:2137-2150. [DOI: 10.1007/s11517-018-1844-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/09/2018] [Indexed: 12/24/2022]
|
42
|
A Numerical Investigation of Risk Factors Affecting Lumbar Spine Injuries Using a Detailed Lumbar Model. Appl Bionics Biomech 2018; 2018:8626102. [PMID: 29849762 PMCID: PMC5932496 DOI: 10.1155/2018/8626102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/05/2018] [Indexed: 01/12/2023] Open
Abstract
Recent field data showed that lumbar spine fractures occurred more frequently in late model vehicles than early ones in frontal crashes. However, the lumbar spine designs of the current crash test dummies are not accurate in human anatomy and have not been validated against any human/cadaver impact responses. In addition, the lumbar spines of finite element (FE) human models, including GHBMC and THUMS, have never been validated previously against cadaver tests. Therefore, this study developed a detailed FE lumbar spine model and validated it against cadaveric tests. To investigate the mechanism of lumbar spine injury in frontal crashes, effects of changing the coefficient of friction (COF), impact velocity, cushion thickness and stiffness, and cushion angle on the risk of lumbar spine injuries were analyzed based on a Taguchi array of design of experiments. The results showed that impact velocity is the most important factor in determining the risk of lumbar spine fracture (P = 0.009). After controlling the impact velocity, increases in the cushion thickness can effectively reduce the risk of lumbar spine fracture (P = 0.039).
Collapse
|
43
|
Larger vertebral endplate concavities cause higher failure load and work at failure under high-rate impact loading of rabbit spinal explants. J Mech Behav Biomed Mater 2018; 80:104-110. [DOI: 10.1016/j.jmbbm.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
|
44
|
Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves During Scoliosis Correction Maneuvers. Spine Deform 2018; 6:12-19. [PMID: 29287811 DOI: 10.1016/j.jspd.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/02/2017] [Accepted: 04/15/2017] [Indexed: 11/23/2022]
Abstract
STUDY DESIGN Biomechanical analysis of the spinal cord and nerves during scoliosis correction maneuvers through numerical simulations. OBJECTIVE To assess the biomechanical effects of scoliosis correction maneuvers and stresses generated on the spinal nervous structures. BACKGROUND DATA Important forces are applied during scoliosis correction surgery, which could potentially lead to neurologic complications due to stresses exerted on the nervous structures. The biomechanical impact of the different types of stresses applied on the nervous structures during correction maneuvers is not well understood. METHODS Three correction techniques were simulated using a hybrid computer modeling approach, personalized to a right thoracic adolescent idiopathic scoliotic case (Cobb angle: 63°): (1) Harrington-type distraction; (2) segmental translation technique; and a (3) segmental rotation-based procedure. A multibody model was used to simulate the kinematics of the instrumentation maneuvers; a second comprehensive finite element model was used to analyze the local stresses and strains on the spinal cord and nerves. Average values of the internal medullar pressure (IMP), shear stresses, nerve compression, and strain were computed over three regions and compared between techniques. RESULTS Harrington distraction maneuver generated high stresses and strains over the thoracolumbar region. In the main thoracic region, the segmental translation maneuver technique induced 15% more shear stress, 25% more strain, and 62% lower nerve compression than Harrington distraction maneuver. The segmental rotation-based procedure induced 25% lower shear stresses and 18% more strain, respectively, at the apical level, as well as 72%, 57%, and 7% lower IMP, nerve compression, and strain in the upper thoracic region, compared with Harrington distraction maneuver. CONCLUSION This study quantified the relative stress induced on the spinal cord and spinal nerves for different correction maneuvers using a novel hybrid patient-specific model. Of the three maneuvers studied, the Harrington distraction maneuver induced the most important stresses over the thoracolumbar region.
Collapse
|
45
|
Germaneau A, Vendeuvre T, Saget M, Doumalin P, Dupré JC, Brémand F, Hesser F, Brèque C, Maxy P, Roulaud M, Monlezun O, Rigoard P. Development of an experimental model of burst fracture with damage characterization of the vertebral bodies under dynamic conditions. Clin Biomech (Bristol, Avon) 2017; 49:139-144. [PMID: 28938147 DOI: 10.1016/j.clinbiomech.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Burst fractures represent a significant proportion of fractures of the thoracolumbar junction. The recent advent of minimally invasive techniques has revolutionized the surgical treatment of this type of fracture. However mechanical behaviour and primary stability offered by these solutions have to be proved from experimental validation tests on cadaveric specimens. Therefore, the aim of this study was to develop an original and reproducible model of burst fracture under dynamic impact. METHODS Experimental tests were performed on 24 cadaveric spine segments (T11-L3). A system of dynamic loading was developed using a modified Charpy pendulum. The mechanical response of the segments (strain measurement on vertebrae and discs) was obtained during the impact by using an optical method with a high-speed camera. The production of burst fracture was validated by an analysis of the segments by X-ray tomography. FINDINGS Burst fracture was systematically produced on L1 for each specimen. Strain analysis during impact highlighted the large deformation of L1 due to the fracture and small strains in adjacent vertebrae. The mean reduction of the vertebral body of L1 assessed for all the specimens was around 15%. No damage was observed in adjacent discs or vertebrae. INTERPRETATION With this new, reliable and replicable procedure for production and biomechanical analysis of burst fractures, comparison of different types of stabilization systems can be envisaged. The loading system was designed so as to be able to produce loads leading to other types of fractures and to provide data to validate finite element modelling.
Collapse
Affiliation(s)
- A Germaneau
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France.
| | - T Vendeuvre
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - M Saget
- Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - P Doumalin
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - J C Dupré
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - F Brémand
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - F Hesser
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France
| | - C Brèque
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; ABS Lab, Université de Poitiers, France
| | - P Maxy
- Medtronic International Trading Sarl, Tolochenaz, Switzerland
| | - M Roulaud
- Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| | - O Monlezun
- Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| | - P Rigoard
- Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, France; Department of Neurosurgery, Prismatics Lab, CHU, Poitiers, France
| |
Collapse
|
46
|
Wagnac E, Aubin CÉ, Chaumoître K, Mac-Thiong JM, Ménard AL, Petit Y, Garo A, Arnoux PJ. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression. PLoS One 2017; 12:e0186779. [PMID: 29065144 PMCID: PMC5655488 DOI: 10.1371/journal.pone.0186779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures.
Collapse
Affiliation(s)
- Eric Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, Montréal, Québec, Canada
- Research Center, Sacré-Cœur Hospital, Montreal, Quebec, Canada
- iLAB-Spine, Associated International Laboratory on Spine Biomechanics and Imagery, Montreal, Canada
- * E-mail:
| | - Carl-Éric Aubin
- iLAB-Spine, Associated International Laboratory on Spine Biomechanics and Imagery, Montreal, Canada
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montreal, Canada
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| | - Kathia Chaumoître
- Department of medical imaging, North Hospital, Aix Marseille Université, Marseille, France
- Laboratoire d’Anthropologie Biologique, Aix Marseille Université, Marseille, France
| | - Jean-Marc Mac-Thiong
- Research Center, Sacré-Cœur Hospital, Montreal, Quebec, Canada
- Research Center, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
- Department of Surgery, Faculty of medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Laure Ménard
- Department of Mechanical Engineering, École de technologie supérieure, Montréal, Québec, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de technologie supérieure, Montréal, Québec, Canada
- Research Center, Sacré-Cœur Hospital, Montreal, Quebec, Canada
- iLAB-Spine, Associated International Laboratory on Spine Biomechanics and Imagery, Montreal, Canada
| | - Anaïs Garo
- Department of Mechanical Engineering, École Polytechnique de Montréal, Montreal, Canada
- Laboratoire de Biomécanique Appliquée, IFSTTAR Aix Marseille Université, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, IFSTTAR Aix Marseille Université, Marseille, France
- iLAB-Spine, Associated International Laboratory on Spine Biomechanics and Imagery, Marseille, France
| |
Collapse
|
47
|
Couvertier M, Germaneau A, Saget M, Dupré JC, Doumalin P, Brémand F, Hesser F, Brèque C, Roulaud M, Monlezun O, Vendeuvre T, Rigoard P. Biomechanical analysis of the thoracolumbar spine under physiological loadings: Experimental motion data corridors for validation of finite element models. Proc Inst Mech Eng H 2017; 231:975-981. [PMID: 28707505 DOI: 10.1177/0954411917719740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomechanical studies that involve normal, injured or stabilized human spines are sometimes difficult to perform on large samples due to limited access to cadaveric human spines and biological variability. Finite element models alleviate these limitations due to the possibility of reusing the same model, whereas cadaveric spines can be damaged during testing, or have their mechanicals behaviour modified by fatigue, permanent deformation or structural failure. Finite element models need to be validated with experimental data to make sure that they represent the complex mechanical and physiological behaviour of normal, injured and stabilized spinal segments. The purpose of this study is to characterize the mechanical response of thoracolumbar spine segments with an analytical approach drawn from experimental measurements. A total of 24 normal and fresh cadaveric thoracolumbar spine segments (T11-L3), aged between 53 and 91 years, were tested in pure flexion/extension, lateral bending and axial torsion using a specific experimental setup. Measurements of global and intervertebral angle variations were performed using three-dimensional mark tracking methods. Load/angle curves for each loading were fitted by a logarithmic approach with two coefficients. The coefficients for the functions describing the response of the spinal segments are given and constitute predictive models from experimental data. This work provides data corridors of human thoracolumbar spine motion segments subjected to pure bending in the three physiological planes. These data could be very useful to validate finite element models of the human spine.
Collapse
Affiliation(s)
- Marien Couvertier
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Arnaud Germaneau
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Mathieu Saget
- 2 Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - Jean-Christophe Dupré
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Pascal Doumalin
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Fabrice Brémand
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Franck Hesser
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France
| | - Cyril Brèque
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France.,3 ABS Lab, Université de Poitiers, Poitiers, France
| | - Manuel Roulaud
- 4 Department of Neurosurgery, Spine & Neuromodulation Functional Unit, Prismatics Lab, CHU, Poitiers, France
| | - Olivier Monlezun
- 4 Department of Neurosurgery, Spine & Neuromodulation Functional Unit, Prismatics Lab, CHU, Poitiers, France
| | - Tanguy Vendeuvre
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France.,2 Department of Orthopaedic Surgery and Traumatology, CHU, Poitiers, France
| | - Philippe Rigoard
- 1 Institut Pprime UPR 3346, CNRS - Université de Poitiers - ISAE-ENSMA, Futuroscope-Chasseneuil, France.,4 Department of Neurosurgery, Spine & Neuromodulation Functional Unit, Prismatics Lab, CHU, Poitiers, France
| |
Collapse
|
48
|
Takano H, Yonezawa I, Todo M, Hazli Mazlan M, Sato T, Kaneko K. Biomechanical Study of Vertebral Compression Fracture Using Finite Element Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jamp.2017.54084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements. Sci Rep 2016; 6:38107. [PMID: 27905508 PMCID: PMC5131487 DOI: 10.1038/srep38107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022] Open
Abstract
Spinal manipulative therapy (SMT) creates health benefits for some while for others, no benefit or even adverse events. Understanding these differential responses is important to optimize patient care and safety. Toward this, characterizing how loads created by SMT relate to those created by typical motions is fundamental. Using robotic testing, it is now possible to make these comparisons to determine if SMT generates unique loading scenarios. In 12 porcine cadavers, SMT and passive motions were applied to the L3/L4 segment and the resulting kinematics tracked. The L3/L4 segment was removed, mounted in a parallel robot and kinematics of SMT and passive movements replayed robotically. The resulting forces experienced by L3/L4 were collected. Overall, SMT created both significantly greater and smaller loads compared to passive motions, with SMT generating greater anterioposterior peak force (the direction of force application) compared to all passive motions. In some comparisons, SMT did not create significantly different loads in the intact specimen, but did so in specific spinal tissues. Despite methodological differences between studies, SMT forces and loading rates fell below published injury values. Future studies are warranted to understand if loading scenarios unique to SMT confer its differential therapeutic effects.
Collapse
|
50
|
Fradet L, Wang X, Lenke LG, Aubin CE. Biomechanical analysis of proximal junctional failure following adult spinal instrumentation using a comprehensive hybrid modeling approach. Clin Biomech (Bristol, Avon) 2016; 39:122-128. [PMID: 27750079 DOI: 10.1016/j.clinbiomech.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Proximal junctional failure is a severe proximal junctional complication following adult spinal instrumentation and involving acute proximal junctional kyphotic deformity, mechanical failure at the upper instrumented vertebra or just above, and/or proximal junctional osseoligamentous disruption. Clinical studies have identified potential risk factors, but knowledge on their biomechanics is still lacking for addressing the proximal junctional failure issues. The objective of this study was to develop comprehensive computational modeling and simulation techniques to investigate proximal junctional failure. METHODS A 3D multibody biomechanical model based on a 47year old lumbar scoliosis surgical case that subsequently had traumatic proximal junctional failure was first developed to simulate patient-specific spinal instrumentation (from T11 to S1), compute the postoperative geometry of the instrumented spine, simulate different physiological loads and movements. Then, a highly detailed finite element model of the proximal junctional spinal segment was created using as input the geometry and displacements from the multibody model. It enabled to perform detailed stress and failure analysis across the anatomical structures. FINDINGS The simulated postoperative correction and traumatic failure (wedge fracture at upper instrumented vertebra) agreed well with the clinical report (within 2° difference). Simulated stresses around the screw threads (up to 4.7MPa) generated during the instrumentation and the buckling effect of post-operative functional loads on the proximal junctional spinal segment, were identified as potential mechanical proximal junctional failure risk factors. INTERPRETATION Overall, we demonstrated the feasibility of the developed hybrid modeling technique, which realistically allowed the simulation of the spinal instrumentation and postoperative loads, which constitutes an effective tool to further investigate proximal junctional failure pathomechanisms.
Collapse
Affiliation(s)
- Leo Fradet
- Polytechnique Montréal, Department of Mechanical Engineering, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada; iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France
| | - Xiaoyu Wang
- Polytechnique Montréal, Department of Mechanical Engineering, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| | - Lawrence G Lenke
- The Spine Hospital, New York-Presbyterian/Allen Hospital, 5141 Broadway, 3 Field West, New York, NY 10034, USA
| | - Carl-Eric Aubin
- Polytechnique Montréal, Department of Mechanical Engineering, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Sainte-Justine University Hospital Center, 3175, Cote Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada; iLab-Spine (International Laboratory - Spine Imaging and Biomechanics), Montreal, Canada and Marseille, France.
| |
Collapse
|