1
|
Nowacka A, Śniegocki M, Smuczyński W, Bożiłow D, Ziółkowska E. Angiogenesis in Glioblastoma-Treatment Approaches. Cells 2025; 14:407. [PMID: 40136656 PMCID: PMC11941181 DOI: 10.3390/cells14060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/27/2025] Open
Abstract
Glioblastoma, the most common primary malignant brain tumor in adults, carries a poor prognosis, with a median survival of just 15 months, significantly impacting patients' quality of life. The aggressive growth of these highly vascularized tumors relies heavily on angiogenesis, driven primarily by vascular endothelial growth factor-A. Therefore, VEGF signaling pathway has become a prime therapeutic target in GBM treatment over the past decade. While anti-angiogenic treatment showed promise, agents like bevacizumab have ultimately failed to improve overall survival. This highlights the presence of compensatory angiogenic mechanisms that bypass VEGF inhibition, necessitating further investigation into resistance mechanisms and the development of more effective therapeutic strategies. This review examined the current landscape of anti-angiogenic agents for GBM, analyzed the mechanisms driving resistance to these therapies, and explored potential strategies for enhancing their effectiveness.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
2
|
Buzatu IM, Tataranu LG, Duta C, Stoian I, Alexandru O, Dricu A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. Int J Mol Sci 2025; 26:2192. [PMID: 40076810 PMCID: PMC11899917 DOI: 10.3390/ijms26052192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. This is partly because tumors cleverly use alternative growth factor pathways, other than VEGF signaling, to restore angiogenesis. Multi-target inhibitors have been developed to inhibit several receptor kinases that play a role in the development of angiogenesis. By simultaneously affecting various receptor kinases, these treatments can potentially obstruct various angiogenic pathways that are involved in brain cancer advancement, often offering a more holistic strategy than treatments focusing on just one kinase. Since 2009, the FDA has approved a number of multi-kinase inhibitors that target angiogenic growth factor receptors (e.g., VEGFR, PDGFR, FGFR, RET, c-KIT, MET, AXL and others) for treatment of malignant diseases, including brain cancer. Here, we present some recent results from the literature regarding the preclinical and clinical effects of these inhibitors on brain tumors.
Collapse
Affiliation(s)
- Iuliana Mihaela Buzatu
- Department of Microbiology, “Fundeni” Clinical Institute, Șoseaua Fundeni 258, 022328 Bucharest, Romania;
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania;
- Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Duta
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Irina Stoian
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania; (C.D.); (I.S.); (A.D.)
| |
Collapse
|
3
|
Juarez TM, Gill JM, Minev BR, Sharma A, Kesari S. Neoadjuvant clinical trials in adults with newly diagnosed high-grade glioma: A systematic review. Crit Rev Oncol Hematol 2025; 206:104596. [PMID: 39675399 DOI: 10.1016/j.critrevonc.2024.104596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND High-grade gliomas are devastating cancers that remain incurable with standard surgical resection and radiochemotherapy. Although beneficial against neoplasms, radiation lowers lymphocyte counts, weakens immune activation, and recruits suppressive myeloid cells impairing immune responses. Tumor environments treated with radiation experience long-term immunosuppression, reducing immunotherapy effectiveness and contributing to recurrence. Investigating pre-radiation treatments in newly diagnosed patients could identify active agents, assess immunotherapy impact, and enable multiomic analyses without radiation-induced confounding factors. This literature review was conducted to describe the feasibility, safety, and outcomes of postsurgical, pre-radiation clinical trials for adults with newly diagnosed high-grade glioma. METHODS A systematic review was performed of the English-language literature reporting results of clinical trials for adults with newly diagnosed high-grade glioma administered postsurgical treatment prior to radiation therapy. A search was conducted in PubMed and references cited in research and review articles were also considered. RESULTS From 1991 to 2024, 52 clinical trials were identified: 3 phase I, 38 phase II, 4 phase III, and 7 of unknown phase. Nine trials were randomized, 24 were multicenter trials, 21 investigated temozolomide-containing regimens, and 12 focused on inoperable tumors, involving a total of 2737 patients. CONCLUSION Pre-radiation neoadjuvant studies are feasible and may identify active drugs. This is particularly relevant in the era of personalized medicine with brain-penetrant drugs, targeted therapy, and immuno-oncology advancements. Investigating pre-radiation treatments in newly diagnosed high-grade glioma is a viable approach to rapidly identify active and inactive regimens while the immune system and tumor microenvironment remain intact.
Collapse
Affiliation(s)
| | | | - Boris R Minev
- Calidi Biotherapeutics, San Diego, CA, USA; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, CA 92093, USA
| | - Akanksha Sharma
- Pacific Neuroscience Institute, Santa Monica, CA, USA; Department of Translational Neuroscience, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, CA, USA; Department of Translational Neuroscience, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
4
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Berro A, Assi A, Farhat M, Hatoum L, Saad JP, Mohanna R, Bechara AMA, Prince G, Hachem MCR, Zalaquett Z, Kourie HR. Unlocking Hope: Anti-VEGFR inhibitors and their potential in glioblastoma treatment. Crit Rev Oncol Hematol 2024; 198:104365. [PMID: 38677355 DOI: 10.1016/j.critrevonc.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE This systematic review summarizes evidence of VEGFR gene mutations and VEGF/VEGFR protein expression in glioblastoma multiforme (GBM) patients, alongside the efficacy and safety of anti-VEGFR tyrosine kinase inhibitors (TKIs) for GBM treatment. METHODS A comprehensive literature review was conducted using PubMed up to August 2023. Boolean operators and MeSH term "glioma," along with specific VEGFR-related keywords, were utilized following thorough examination of existing literature. RESULTS VEGFR correlates with glioma grade and GBM progression, presenting a viable therapeutic target. Regorafenib and axitinib show promise among studied TKIs. Other multi-targeted TKIs (MTKI) and combination therapies exhibit potential, albeit limited by blood-brain barrier penetration and toxicity. Combining treatments like radiotherapy and enhancing BBB penetration may benefit patients. Further research is warranted in patient quality of life and biomarker-guided selection. CONCLUSION While certain therapies hold promise for GBM, future research should prioritize personalized medicine and innovative strategies for improved treatment outcomes.
Collapse
Affiliation(s)
- Ali Berro
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ahmad Assi
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mohamad Farhat
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Lea Hatoum
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Jean-Pierre Saad
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Rami Mohanna
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Anna Maria Antoun Bechara
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Gilles Prince
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Maria Catherine Rita Hachem
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Ziad Zalaquett
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon.
| | - Hampig-Raphael Kourie
- Hematology-Oncology Department, Hôtel-Dieu de France University Hospital, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Zhao Y, Zhang X, Ding X, Wang Y, Li Z, Zhao R, Cheng HE, Sun Y. Efficacy and safety of FLT3 inhibitors in monotherapy of hematological and solid malignancies: a systemic analysis of clinical trials. Front Pharmacol 2024; 15:1294668. [PMID: 38828446 PMCID: PMC11140126 DOI: 10.3389/fphar.2024.1294668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction: FLT3 mutations are closely associated with the occurrence of hematological and solid malignancies, especially with acute myeloid leukemia. Currently, several FLT3 inhibitors are in clinical trials, and some have been applied in clinic. However, the safety, efficacy and pharmacodynamics of these FLT3 inhibitors have not been systemically analyzed before. Methods: We searched and reviewed clinical trial reports on the monotherapy of 13 FLT3 inhibitors, including sorafenib, lestaurtinib, midostaurin, gilteritinib, quizartinib, sunitinib, crenolanib, tandutinib, cabozantinib, pexidartinib, pacritinib, famitinib, and TAK-659 in patients with hematological and solid malignancies before May 31, 2023. Results: Our results showed the most common adverse events (AEs) were gastrointestinal adverse reactions, including diarrhea, hand-foot syndrome and nausea, while the most common hematological AEs were febrile neutropenia, anemia, and thrombocytopenia. Based on the published data, the mean overall survival (OS) and the mean progression-free survival (PFS) were 9.639 and 5.905 months, respectively. The incidence of overall response rate (ORR), complete remission (CR), partial response (PR), and stable disease (SD) for all these FLT3 inhibitors was 29.0%, 8.7%, 16.0%, and 42.3%, respectively. The ORRs of FLT3 inhibitors in hematologic malignancies and solid tumors were 40.8% and 18.8%, respectively, indicating FLT3 inhibitors were more effective for hematologic malignancies than for solid tumors. In addition, time to maximum plasma concentration (Tmax) in these FLT3 inhibitors ranged from 0.7-12.0 hours, but the elimination half-life (T1/2) range was highly variable, from 6.8 to 151.8 h. Discussion: FLT3 inhibitors monotherapy has shown significant anti-tumor effect in clinic, and the effectiveness may be further improved through combination medication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hai-En Cheng
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| | - Yanli Sun
- School of Medical Laboratory, Shandong Second Medical University, Weifang, China
| |
Collapse
|
7
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
8
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
9
|
Régnier P, Vetillard M, Bansard A, Pierre E, Li X, Cagnard N, Gautier EL, Guermonprez P, Manoury B, Podsypanina K, Darrasse-Jèze G. FLT3L-dependent dendritic cells control tumor immunity by modulating Treg and NK cell homeostasis. Cell Rep Med 2023; 4:101256. [PMID: 38118422 PMCID: PMC10772324 DOI: 10.1016/j.xcrm.2023.101256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/05/2023] [Accepted: 10/02/2023] [Indexed: 12/22/2023]
Abstract
FLT3-L-dependent classical dendritic cells (cDCs) recruit anti-tumor and tumor-protecting lymphocytes. We evaluate cancer growth in mice with low, normal, or high levels of cDCs. Paradoxically, both low or high numbers of cDCs improve survival in mice with melanoma. In low cDC context, tumors are restrained by the adaptive immune system through influx of effector T cells and depletion of Tregs and NK cells. High cDC numbers favor the innate anti-tumor response, with massive recruitment of activated NK cells, despite high Treg infiltration. Anti CTLA-4 but not anti PD-1 therapy synergizes with FLT3-L therapy in the cDCHi but not in the cDCLo context. A combination of cDC boost and Treg depletion dramatically improves survival of tumor-bearing mice. Transcriptomic data confirm the paradoxical effect of cDC levels on survival in several human tumor types. cDCHi-TregLo state in such patients predicts best survival. Modulating cDC numbers via FLT3 signaling may have therapeutic potential in human cancer.
Collapse
Affiliation(s)
- Paul Régnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, DMU3ID, Paris, France
| | - Mathias Vetillard
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Adèle Bansard
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France
| | | | - Xinyue Li
- Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Nicolas Cagnard
- Structure Fédérative de Recherche Necker, Université Paris Descartes, Paris, France
| | - Emmanuel L Gautier
- Inserm, UMR_S1166, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Pierre Guermonprez
- Université de Paris Cité, Centre for Inflammation Research, INSERM U1149, CNRS ERL8252, Paris, France; Dendritic Cells and Adaptive Immunity Unit, Institut Pasteur, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France
| | - Katrina Podsypanina
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664, Paris, France
| | - Guillaume Darrasse-Jèze
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR-8253, Université Paris Cité, Paris, France; Sorbonne Université, INSERM, UMR_S959, Immunology-Immunopathology-Immunotherapy, Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France.
| |
Collapse
|
10
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
11
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
12
|
Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R, Vojtesek B, Hupp TR, Brennan PM. Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 2021; 4:4/12/e202101054. [PMID: 34645618 PMCID: PMC8548209 DOI: 10.26508/lsa.202101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
BTK is a dominant bioactive kinase expressed within both cancer and immune cells of GBM tissue. Complex cell co-cultures might better model the impact of kinase inhibitors as therapeutics in GBM. Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A “functional proteomics” screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Olimpia E Curran
- Department of Neuropathology, Western General Hospital, Edinburgh, UK.,Cardiff University Hospital, Cellular Pathology, Cardiff, UK
| | - Javier A Alfaro
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Faris Naji
- Pamgene International BV, 's-Hertogenbosch, Netherlands
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kathryn L Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Paul M Brennan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 359] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
15
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
16
|
Ho KH, Lee YT, Chen PH, Shih CM, Cheng CH, Chen KC. Guanabenz Sensitizes Glioblastoma Cells to Sunitinib by Inhibiting GADD34-Mediated Autophagic Signaling. Neurotherapeutics 2021; 18:1371-1392. [PMID: 33410111 PMCID: PMC8423979 DOI: 10.1007/s13311-020-00961-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Limited therapeutic efficacy of temozolomide (TMZ) against glioblastomas highlights the importance of exploring new drugs for clinical therapy. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, is currently being tested as therapy for glioblastomas. Unfortunately, sunitinib still has insufficient activity to cure glioblastomas. Our aim was to determine the molecular mechanisms counteracting sunitinib drug sensitivity and find potential adjuvant drugs for glioblastoma therapy. Through in vitro experiments, transcriptome screening by RNA sequencing, and in silico analyses, we found that sunitinib induced glioma apoptotic death, and downregulated genes were enriched in oncogenic genes of glioblastoma. Meanwhile, sunitinib-upregulated genes were highly associated with the protective autophagy process. Blockade of autophagy significantly enhanced sunitinib's cytotoxicity. Growth arrest and DNA damage-inducible protein (GADD) 34 was identified as a candidate involved in sunitinib-promoted autophagy through activating p38-mitogen-activated protein kinase (MAPK) signaling. Higher GADD34 levels predicted poor survival of glioblastoma patients and induced autophagy formation in desensitizing sunitinib cytotoxicity. Guanabenz, an alpha2-selective adrenergic agonist and GADD34 functional inhibitor, was identified to enhance the efficacy of sunitinib by targeting GADD34-induced protective autophagy in glioblastoma cells, TMZ-resistant cells, hypoxic cultured cells, sphere-forming cells, and colony formation abilities. A better combined treatment effect with sunitinib and guanabenz was also observed by using xenograft mice. Taken together, the sunitinib therapy combined with guanabenz in the inhibition of GADD34-enhanced protective autophagy may provide a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
17
|
Identification of a Dexamethasone Mediated Radioprotection Mechanism Reveals New Therapeutic Vulnerabilities in Glioblastoma. Cancers (Basel) 2021; 13:cancers13020361. [PMID: 33478100 PMCID: PMC7836009 DOI: 10.3390/cancers13020361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Despite the indisputable effectiveness of dexamethasone (DEXA) to reduce inflammation in glioblastoma (GBM) patients, its influence on tumour progression and radiotherapy response remains controversial. (2) Methods: We analysed patient data and used expression and cell biological analyses to assess effects of DEXA on GBM cells. We tested the efficacy of tyrosine kinase inhibitors in vitro and in vivo. (3) Results: We confirm in our patient cohort that administration of DEXA correlates with worse overall survival and shorter time to relapse. In GBM cells and glioma stem-like cells (GSCs) DEXA down-regulates genes controlling G2/M and mitotic-spindle checkpoints, and it enables cells to override the spindle assembly checkpoint (SAC). Concurrently, DEXA up-regulates Platelet Derived Growth Factor Receptor (PDGFR) signalling, which stimulates expression of anti-apoptotic regulators BCL2L1 and MCL1, required for survival during extended mitosis. Importantly, the protective potential of DEXA is dependent on intact tyrosine kinase signalling and ponatinib, sunitinib and dasatinib, all effectively overcome the radio-protective and pro-proliferative activity of DEXA. Moreover, we discovered that DEXA-induced signalling creates a therapeutic vulnerability for sunitinib in GSCs and GBM cells in vitro and in vivo. (4) Conclusions: Our results reveal a novel DEXA-induced mechanism in GBM cells and provide a rationale for revisiting the use of tyrosine kinase inhibitors for the treatment of GBM.
Collapse
|
18
|
Sunitinib-Containing Carborane Pharmacophore with the Ability to Inhibit Tyrosine Kinases Receptors FLT3, KIT and PDGFR-β, Exhibits Powerful In Vivo Anti-Glioblastoma Activity. Cancers (Basel) 2020; 12:cancers12113423. [PMID: 33218150 PMCID: PMC7698965 DOI: 10.3390/cancers12113423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Glioblastoma is one of the most aggressive central nervous system tumors. Combinations of therapies, such as tyrosine kinase receptor inhibition and boron neutron capture therapy (BNCT), could offer greater patients benefits over single-therapies. The aim of our study was to assess the potential of sunitinib-carborane hybrid compound 1 as an anti-glioblastoma agent. We confirmed for 1 the ability to inhibit tyrosine kinase receptors, which could promote canonical and non-canonical effects, absence of mutagenicity, ability to cross the blood–brain barrier, and powerful in vivo anti-glioblastoma activity. The overall attractive profile of 1 makes it an interesting compound for a bimodal therapeutic strategy against high grade gliomas. Abstract Malignant gliomas are the most common malignant and aggressive primary brain tumors in adults, the prognosis being—especially for glioblastomas—extremely poor. There are no effective treatments yet. However, tyrosine kinase receptor (TKR) inhibitors and boron neutron capture therapy (BNCT), together, have been proposed as future therapeutic strategies. In this sense in our ongoing project of developing new anti-glioblastoma drugs, we identified a sunitinib-carborane hybrid agent, 1, with both in vitro selective cytotoxicity and excellent BNCT-behavior. Consequently, we studied the ability of compound 1 to inhibit TKRs, its promotion of cellular death processes, and its effects on the cell cycle. Moreover, we analyzed some relevant drug-like properties of 1, i.e., mutagenicity and ability to cross the blood–brain barrier. These results encouraged us to perform an in vivo anti-glioblastoma proof of concept assay. It turned out to be a selective FLT3, KIT, and PDGFR-β inhibitor and increased the apoptotic glioma-cell numbers and arrested sub-G1-phase cell cycle. Its in vivo activity in immunosuppressed mice bearing U87 MG human glioblastoma evidenced excellent anti-tumor behavior.
Collapse
|
19
|
Couto M, Alamón C, Nievas S, Perona M, Dagrosa MA, Teixidor F, Cabral P, Viñas C, Cerecetto H. Bimodal Therapeutic Agents Against Glioblastoma, One of the Most Lethal Forms of Cancer. Chemistry 2020; 26:14335-14340. [PMID: 32738078 DOI: 10.1002/chem.202002963] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Indexed: 12/17/2022]
Abstract
About 95 % of people diagnosed with glioblastoma die within five years. Glioblastoma is the most aggressive central nervous system tumour. It is necessary to make progress in the glioblastoma treatment so that advanced chemotherapy drugs or radiation therapy or, ideally, two-in-one hybrid systems should be implemented. Tyrosine kinase receptors-inhibitors and boron neutron capture therapy (BNCT), together, could provide a therapeutic strategy. In this work, sunitinib decorated-carborane hybrids were prepared and biologically evaluated identifying excellent antitumoral- and BNCT-agents. One of the selected hybrids was studied against glioma-cells and found to be 4 times more cytotoxic than sunitinib and 1.7 times more effective than 10 B-boronophenylalanine fructose complex when the cells were irradiated with neutrons.
Collapse
Affiliation(s)
- Marcos Couto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Catalina Alamón
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Nievas
- Department of Boron Neutron Capture Therapy, National Atomic Energy Commission (CNEA), Buenos Aires, Argentina
| | - Marina Perona
- Department of Radiobiology, CNEA, Buenos Aires, Argentina
| | | | - Francesc Teixidor
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Pablo Cabral
- Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciències dels Materials de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB, 08193, Bellaterra, Spain
| | - Hugo Cerecetto
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica (IQB), Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.,Área de Radiofarmacia, Centro de Investigaciones Nucleares (CIN), Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400, Montevideo, Uruguay
| |
Collapse
|
20
|
Zhang X, Zhang W, Mao XG, Cao WD, Zhen HN, Hu SJ. Malignant Intracranial High Grade Glioma and Current Treatment Strategy. Curr Cancer Drug Targets 2020; 19:101-108. [PMID: 29848277 DOI: 10.2174/1568009618666180530090922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Malignant high-grade glioma (HGG) is the most common and extremely fatal type of primary intracranial tumor. These tumors recurred within 2 to 3 cm of the primary region of tumor resection in the majority of cases. Furthermore, the blood-brain barrier significantly limited the access of many systemically administered chemotherapeutics to the tumor, pointing towards a stringent need for new therapeutic patterns. Therefore, targeting therapy using local drug delivery for HGG becomes a priority for the development of novel therapeutic strategies. The main objectives to the effective use of chemotherapy for HGG include the drug delivery to the tumor region and the infusion of chemotherapeutic agents into the vascular supply of a tumor directly, which could improve the pharmacokinetic profile by enhancing drug delivery to the neoplasm tissue. Herein, we reviewed clinical and molecular features, different methods of chemotherapy application in HGGs, especially the existing and promising targeting therapies using local drug delivery for HGG which could effectively inhibit tumor invasion, proliferation and recurrence of HGG to combat the deadly disease. Undoubtedly, novel chemical medicines targeting these HGG may represent one of the most important directions in the Neuro-oncology.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Dong Cao
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing, 100048, China
| | - Hai-Ning Zhen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Jie Hu
- Department of Neuro-oncology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
Cao H, Li X, Wang F, Zhang Y, Xiong Y, Yang Q. Phytochemical-Mediated Glioma Targeted Treatment: Drug Resistance and Novel Delivery Systems. Curr Med Chem 2020; 27:599-629. [PMID: 31400262 DOI: 10.2174/0929867326666190809221332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 03/15/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023]
Abstract
Glioma, especially its most malignant type, Glioblastoma (GBM), is the most common and the most aggressive malignant tumour in the central nervous system. Currently, we have no specific therapies that can significantly improve its dismal prognosis. Recent studies have reported promising in vitro experimental results of several novel glioma-targeting drugs; these studies are encouraging to both researchers and patients. However, clinical trials have revealed that novel compounds that focus on a single, clear glioma genetic alteration may not achieve a satisfactory outcome or have side effects that are unbearable. Based on this consensus, phytochemicals that exhibit multiple bioactivities have recently attracted much attention. Traditional Chinese medicine and traditional Indian medicine (Ayurveda) have shown that phytocompounds inhibit glioma angiogenesis, cancer stem cells and tumour proliferation; these results suggest a novel drug therapeutic strategy. However, single phytocompounds or their direct usage may not reverse comprehensive malignancy due to poor histological penetrability or relatively unsatisfactory in vivo efficiency. Recent research that has employed temozolomide combination treatment and Nanoparticles (NPs) with phytocompounds has revealed a powerful dual-target therapy and a high blood-brain barrier penetrability, which is accompanied by low side effects and strong specific targeting. This review is focused on major phytocompounds that have contributed to glioma-targeting treatment in recent years and their role in drug resistance inhibition, as well as novel drug delivery systems for clinical strategies. Lastly, we summarize a possible research strategy for the future.
Collapse
Affiliation(s)
- Hang Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Feiyifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yueqi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [PMID: 31466051 DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
23
|
Chatziathanasiadou MV, Stylos EK, Giannopoulou E, Spyridaki MH, Briasoulis E, Kalofonos HP, Crook T, Syed N, Sivolapenko GB, Tzakos AG. Development of a validated LC-MS/MS method for the in vitro and in vivo quantitation of sunitinib in glioblastoma cells and cancer patients. J Pharm Biomed Anal 2019; 164:690-697. [DOI: 10.1016/j.jpba.2018.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
|
24
|
Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á, Castillo-Rodríguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Nájera A, Cruz-Salgado A, Sotelo J. Autophagic and Apoptotic Pathways as Targets for Chemotherapy in Glioblastoma. Int J Mol Sci 2018; 19:ijms19123773. [PMID: 30486451 PMCID: PMC6320836 DOI: 10.3390/ijms19123773] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme is the most malignant and aggressive type of brain tumor, with a mean life expectancy of less than 15 months. This is due in part to the high resistance to apoptosis and moderate resistant to autophagic cell death in glioblastoma cells, and to the poor therapeutic response to conventional therapies. Autophagic cell death represents an alternative mechanism to overcome the resistance of glioblastoma to pro-apoptosis-related therapies. Nevertheless, apoptosis induction plays a major conceptual role in several experimental studies to develop novel therapies against brain tumors. In this review, we outline the different components of the apoptotic and autophagic pathways and explore the mechanisms of resistance to these cell death pathways in glioblastoma cells. Finally, we discuss drugs with clinical and preclinical use that interfere with the mechanisms of survival, proliferation, angiogenesis, migration, invasion, and cell death of malignant cells, favoring the induction of apoptosis and autophagy, or the inhibition of the latter leading to cell death, as well as their therapeutic potential in glioma, and examine new perspectives in this promising research field.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Norma Serrano-Garcia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Ángel Escamilla-Ramírez
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
- Hospital Regional de Alta Especialidad de Oaxaca, Secretaria de Salud, C.P. 71256 Oaxaca, Mexico.
| | | | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, Mexico.
| | - Guadalupe Palencia
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Minerva Calvillo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Mayra A Alvarez-Lemus
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, C.P. 86040 Tabasco, Mexico.
| | - Athenea Flores-Nájera
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Secretaria de Salud, 14000 Ciudad de México, Mexico.
| | - Arturo Cruz-Salgado
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| | - Julio Sotelo
- Departamento de Neuroinmunología, Laboratorio de Neurobiología Molecular y Celular, Laboratorio Experimental de Enfermedades Neurodegenerativas del Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", C.P. 14269 Ciudad de México, Mexico.
| |
Collapse
|
25
|
Balaña C, Estival A, Teruel I, Hardy-Werbin M, Sepulveda J, Pineda E, Martinez-García M, Gallego O, Luque R, Gil-Gil M, Mesia C, Del Barco S, Herrero A, Berrocal A, Perez-Segura P, De Las Penas R, Marruecos J, Fuentes R, Reynes G, Velarde JM, Cardona A, Verger E, Panciroli C, Villà S. Delay in starting radiotherapy due to neoadjuvant therapy does not worsen survival in unresected glioblastoma patients. Clin Transl Oncol 2018; 20:1529-1537. [PMID: 29737461 DOI: 10.1007/s12094-018-1883-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE We retrospectively examined the potential effect on overall survival (OS) of delaying radiotherapy to administer neoadjuvant therapy in unresected glioblastoma patients. PATIENTS AND METHODS We compared OS in 119 patients receiving neoadjuvant therapy followed by standard treatment (NA group) and 96 patients receiving standard treatment without neoadjuvant therapy (NoNA group). The MaxStat package of R identified the optimal cut-off point for waiting time to radiotherapy. RESULTS OS was similar in the NA and NoNA groups. Median waiting time to radiotherapy after surgery was 13 weeks for the NA group and 4.2 weeks for the NoNA group. The longest OS was attained by patients who started radiotherapy after 12 weeks and the shortest by patients who started radiotherapy within 4 weeks (12.3 vs 6.6 months) (P = 0.05). OS was 6.6 months for patients who started radiotherapy before the optimal cutoff of 6.43 weeks and 19.1 months for those who started after this time (P = 0.005). Patients who completed radiotherapy had longer OS than those who did not, in all 215 patients and in the NA and NoNA groups (P = 0.000). In several multivariate analyses, completing radiotherapy was a universally favorable prognostic factor, while neoadjuvant therapy was never identified as a negative prognostic factor. CONCLUSION In our series of unresected patients receiving neoadjuvant treatment, in spite of the delay in starting radiotherapy, OS was not inferior to that of a similar group of patients with no delay in starting radiotherapy.
Collapse
Affiliation(s)
- C Balaña
- Medical Oncology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Ctra Canyet, s/n, 08916, Badalona (Barcelona), Spain.
| | - A Estival
- Medical Oncology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Ctra Canyet, s/n, 08916, Badalona (Barcelona), Spain
| | - I Teruel
- Medical Oncology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Ctra Canyet, s/n, 08916, Badalona (Barcelona), Spain
| | - M Hardy-Werbin
- Cancer Research Programm, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - J Sepulveda
- Medical Oncology Service, Hospital Universitario, 12 de Octubre, Madrid, Spain
| | - E Pineda
- Medical Oncology Service, Hospital Clinic Provincial, Barcelona, Spain
| | | | - O Gallego
- Medical Oncology Service, Hospital de Sant Pau, Barcelona, Spain
| | - R Luque
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - M Gil-Gil
- Medical Oncology Service, Institut Català d'Oncologia-IDIBELL, Hospitalet de Llobregat, Spain
| | - C Mesia
- Medical Oncology Service, Institut Català d'Oncologia-IDIBELL, Hospitalet de Llobregat, Spain
| | - S Del Barco
- Medical Oncology Service, Institut Català d'Oncologia, Hospital Josep Trueta, Girona, Spain
| | - A Herrero
- Medical Oncology Service, Hospital Miguel Servet, Saragossa, Spain
| | - A Berrocal
- Medical Oncology Service, Hospital General Universitario de Valencia, Valencia, Spain
| | - P Perez-Segura
- Medical Oncology Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - R De Las Penas
- Medical Oncology Service, Hospital Provincial de Castellón, Castellón, Spain
| | - J Marruecos
- Radiation Oncology Service, Institut Català d'Oncologia, Hospital Josep Trueta, Girona, Spain
| | - R Fuentes
- Radiation Oncology Service, Institut Català d'Oncologia, Hospital Josep Trueta, Girona, Spain
| | - G Reynes
- Medical Oncology Service, Hospital Universitario La Fe, Valencia, Spain
| | - J M Velarde
- Institut Investigació Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - A Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia.,Biology Systems Department, Universidad el Bosque, Bogotá, Colombia
| | - E Verger
- Radiation Oncology Service, Hospital Clinic Provincial, Barcelona, Spain
| | - C Panciroli
- Institut Investigació Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Badalona, Spain
| | - S Villà
- Radiation Oncology Service, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
26
|
Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017; 2:17040. [PMID: 29263927 PMCID: PMC5661637 DOI: 10.1038/sigtrans.2017.40] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a debilitating disease that is associated with poor prognosis, short median patient survival and a very limited response to therapies. GBM has a very complex pathogenesis that involves mutations and alterations of several key cellular pathways that are involved in cell proliferation, survival, migration and angiogenesis. Therefore, efforts that are directed toward better understanding of GBM pathogenesis are essential to the development of efficient therapies that provide hope and extent patient survival. In this review, we outline the alterations commonly associated with GBM pathogenesis and summarize therapeutic strategies that are aimed at targeting aberrant cellular pathways in GBM.
Collapse
|
27
|
Abstract
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
28
|
Huang RY, Wen PY. Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magn Reson Imaging Clin N Am 2016; 24:705-718. [PMID: 27742111 DOI: 10.1016/j.mric.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Response Assessment in Neuro-Oncology (RANO) Working Group is an international multidisciplinary group whose goal is to improve response criteria and define endpoints for neuro-oncology trials. The RANO criteria for high-grade gliomas attempt to address the issues of pseudoprogression, pseudoresponse, and nonenhancing tumor progression. Incorporation of advanced MR imaging may eventually help improve the ability of these criteria to define enhancing and nonenhancing disease better. The RANO group has also developed criteria for neurologic response and evaluation of patients receiving immunologic therapies. RANO criteria have been developed for brain metastases and are in progress for meningiomas, leptomeningeal disease, spinal tumors, and pediatric tumors.
Collapse
Affiliation(s)
- Raymond Y Huang
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Patrick Y Wen
- Division of Neuro-Oncology, Department of Neurology, Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
29
|
Royer-Perron L, Idbaih A, Sanson M, Delattre JY, Hoang-Xuan K, Alentorn A. Precision medicine in glioblastoma therapy. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1241128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Abstract
INTRODUCTION Despite substantial improvements in standards of care, the most common aggressive pediatric and adult high-grade gliomas (HGG) carry uniformly fatal diagnoses due to unique treatment limitations, high recurrence rates and the absence of effective treatments following recurrence. Recent advancements in our understanding of the pathophysiology, genetics and epigenetics as well as mechanisms of immune surveillance during gliomagenesis have created new knowledge to design more effective and target-directed therapies to improve patient outcomes. AREAS COVERED In this review, the authors discuss the critical genetic, epigenetic and immunologic aberrations found in gliomas that appear rational and promising for therapeutic developments in the presence and future. The current state of the latest therapeutic developments including tumor-specific targeted drug therapies, metabolic targeting, epigenetic modulation and immunotherapy are summarized and suggestions for future directions are offered. Furthermore, they highlight contemporary issues related to the clinical development, such as challenges in clinical trials and toxicities. EXPERT OPINION The commitment to understanding the process of gliomagenesis has created a catalogue of aberrations that depict multiple mechanisms underlying this disease, many of which are suitable to therapeutic inhibition and are currently tested in clinical trials. Thus, future treatment endeavors will employ multiple treatment modalities that target disparate tumor characteristics personalized to the patient's individual tumor.
Collapse
Affiliation(s)
- Verena Staedtke
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - Ren-Yuan Bai
- b Department of Neurosurgery , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| | - John Laterra
- a Department of Neurology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,c Department of Oncology , Johns Hopkins Medical Institutions , Baltimore , MD , USA.,d Department of Neuroscience , Johns Hopkins Medical Institutions , Baltimore , MD , USA
| |
Collapse
|
31
|
Areeb Z, Stylli SS, Ware TMB, Harris NC, Shukla L, Shayan R, Paradiso L, Li B, Morokoff AP, Kaye AH, Luwor RB. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib. Med Oncol 2016; 33:53. [DOI: 10.1007/s12032-016-0767-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
|
32
|
Carlisle B, Demko N, Freeman G, Hakala A, MacKinnon N, Ramsay T, Hey S, London AJ, Kimmelman J. Benefit, Risk, and Outcomes in Drug Development: A Systematic Review of Sunitinib. J Natl Cancer Inst 2016; 108:djv292. [PMID: 26547927 PMCID: PMC5943825 DOI: 10.1093/jnci/djv292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/19/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Little is known about the total patient burden associated with clinical development and where burdens fall most heavily during a drug development program. Our goal was to quantify the total patient burden/benefit in developing a new drug. METHODS We measured risk using drug-related adverse events that were grade 3 or higher, benefit by objective response rate, and trial outcomes by whether studies met their primary endpoint with acceptable safety. The differences in risk (death rate) and benefit (overall response rate) between industry and nonindustry trials were analyzed with an inverse-variance weighted fixed effects meta-analysis implemented as a weighted regression analysis. All statistical tests were two-sided. RESULTS We identified 103 primary publications of sunitinib monotherapy, representing 9092 patients and 3991 patient-years of involvement over 10 years and 32 different malignancies. In total, 1052 patients receiving sunitinib monotherapy experienced objective tumor response (15.7% of intent-to-treat population, 95% confidence interval [CI] = 15.3% to 16.0%), 98 died from drug-related toxicities (1.08%, 95% CI = 1.02% to 1.14%), and at least 1245 experienced grade 3-4 drug-related toxicities (13.7%, 95% CI = 13.3% to 14.1%). Risk/benefit worsened as the development program matured, with several instances of replicated negative studies and almost no positive trials after the first responding malignancies were discovered. CONCLUSIONS Even for a successful drug, the risk/benefit balance of trials was similar to phase I cancer trials in general. Sunitinib monotherapy development showed worsening risk/benefit, and the testing of new indications responded slowly to evidence that sunitinib monotherapy would not extend to new malignancies. Research decision-making should draw on evidence from whole research programs rather than a narrow band of studies in the same indication.
Collapse
Affiliation(s)
- Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nadine Demko
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Georgina Freeman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Amanda Hakala
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Nathalie MacKinnon
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Tim Ramsay
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Spencer Hey
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Alex John London
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL)
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, QC, Canada (BC, ND, GF, AH, NM, SH, JK); University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada (TR); Program On Regulation, Therapeutics, And Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (SH); Department of Philosophy and Center for Ethics and Policy, Carnegie Mellon University, Pittsburgh, PA (AJL).
| |
Collapse
|
33
|
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12:223-37. [PMID: 26487967 PMCID: PMC4607828 DOI: 10.7497/j.issn.2095-3941.2015.0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a type of tumor that is highly lethal despite maximal therapy. Standard therapeutic approaches provide modest improvement in progression-free and overall survival, necessitating the investigation of novel therapies. Oncologic therapy has recently experienced a rapid evolution toward "targeted therapy", with drugs directed against specific targets which play essential roles in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Inhibitors of these molecules have already entered or are undergoing clinical trials. However, significant challenges in their development remain because several preclinical and clinical studies present conflicting results. In this article, we will provide an up-to-date review of the current targeted therapies in GBM.
Collapse
Affiliation(s)
- Yuan-Yuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - You-Rong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
34
|
Kleibeuker EA, Ten Hooven MA, Verheul HM, Slotman BJ, Thijssen VL. Combining radiotherapy with sunitinib: lessons (to be) learned. Angiogenesis 2015. [PMID: 26202788 PMCID: PMC4596900 DOI: 10.1007/s10456-015-9476-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To improve the efficacy of radiotherapy (RTx), there is a growing interest in combining RTx with drugs that inhibit angiogenesis, i.e., the process of neo-vessel formation out of preexisting capillaries. A frequently used drug to inhibit angiogenesis is sunitinib (Sutent, SU11248), a receptor tyrosine kinase inhibitor that is currently FDA approved for the treatment of several cancer types. The current review presents an overview of the preclinical studies and clinical trials that combined sunitinib with RTx. We discuss the findings from preclinical and clinical observations with a focus on dose scheduling and commonly reported toxicities. In addition, the effects of combination therapy on tumor response and patient survival are described. Finally, the lessons learned from preclinical and clinical studies are summarized and opportunities and pitfalls for future clinical trials are presented.
Collapse
Affiliation(s)
- Esther A Kleibeuker
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Matthijs A Ten Hooven
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands. .,Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|