1
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
2
|
IFIT2 Depletion Promotes Cancer Stem Cell-like Phenotypes in Oral Cancer. Biomedicines 2023; 11:biomedicines11030896. [PMID: 36979874 PMCID: PMC10045464 DOI: 10.3390/biomedicines11030896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: Cancer stem cells (CSCs) are a small cell population associated with chemoresistance, metastasis and increased mortality rate in oral cancer. Interferon-induced proteins with tetratricopeptide repeats 2 (IFIT2) depletion results in epithelial to mesenchymal transition, invasion, metastasis, and chemoresistance in oral cancer. To date, no study has demonstrated the effect of IFIT2 depletion on the CSC-like phenotype in oral cancer cells. (2) Methods: Q-PCR, sphere formation, Hoechst 33,342 dye exclusion, immunofluorescence staining, and flow cytometry assays were performed to evaluate the expression of the CSC markers in IFIT2-depleted cells. A tumorigenicity assay was adopted to assess the tumor formation ability. Immunohistochemical staining was used to examine the protein levels of IFIT2 and CD24 in oral cancer patients. (3) Results: The cultured IFIT2 knockdown cells exhibited an overexpression of ABCG2 and CD44 and a downregulation of CD24 and gave rise to CSC-like phenotypes. Clinically, there was a positive correlation between IFIT2 and CD24 in the patients. IFIT2high/CD24high/CD44low expression profiles predicted a better prognosis in HNC, including oral cancer. The TNF-α blockade abolished the IFIT2 depletion-induced sphere formation, indicating that TNF-α may be involved in the CSC-like phenotypes in oral cancer. (4) Conclusions: The present study demonstrates that IFIT2 depletion promotes CSC-like phenotypes in oral cancer.
Collapse
|
3
|
Yang R, Liu B, Yang M, Xu F, Wu S, Zhao S. Lumiflavin Reduces Cisplatin Resistance in Cancer Stem-Like Cells of OVCAR-3 Cell Line by Inducing Differentiation. Front Oncol 2022; 12:859275. [PMID: 35669418 PMCID: PMC9163659 DOI: 10.3389/fonc.2022.859275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer stem-like cells (CSCs) play a vital role in drug resistance and recurrence of ovarian cancer. Inducing phenotypic differentiation is an important strategy to enhance the effects of chemotherapy and reduce the drug resistance of CSCs. This study found that lumiflavin, a riboflavin decomposition product, reduced the development of CSC resistance and enhanced the chemotherapy effect of cisplatin (DDP) on CSCs in DDP-resistant ovarian cancer OVCAR-3 cell line (CSCs/DDP) and was related to the induction of CSC phenotypic differentiation. Results showed that the development of DDP-resistant OVCAR-3 cells was related to the increase in the proportion of CSCs/DDP, and the treatment with lumiflavin reduced the DDP-resistance levels of OVCAR-3 cells and proportion of CSCs/DDP. Further investigation found that lumiflavin synergistic with DDP increased apoptosis, decreased mitochondrial membrane potential, and inhibited the clonal formation of CSCs/DDP. Meanwhile, in vivo experiments showed that lumiflavin dose-dependently enhanced the chemotherapy effect of DDP on tumor-bearing nude mice inoculated by CSCs/DDP. Lumiflavin treatment also reduced the ratio of CD133+/CD177+ to CD44+/CD24 cells, which is the identification of CSCs, in CSCs/DDP. In addition, transcriptome sequencing results suggested that the role of lumiflavin was related to the notch and stem cell pathway, and Western blot analysis showed that lumiflavin inhibited the protein expression of notch signaling pathway in CSCs/DDP. In conclusion, lumiflavin reduces the development of the drug resistance of OVCAR-3 cell and increases the sensitivity of CSCs/DDP to DDP by inducing phenotypic differentiation, which may have a potential role in the chemotherapy treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
- Department of Pharmacology, Lishui University School of Medicine, Lishui, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Mingyue Yang
- Clinical Department, China Medical University, Shenyang, China
| | - Feng Xu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui, China
| | - Shufang Zhao
- Molecular Biology Laboratory, Lishui University School of Medicine, Lishui, China
| |
Collapse
|
4
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
5
|
Lee LD, Pozios I, Liu V, Nachbichler SB, Böhmer D, Kamphues C, Beyer K, Bruns CJ, Kreis ME, Seeliger H. Thymidine phosphorylase induction by ionizing radiation antagonizes 5-fluorouracil resistance in human ductal pancreatic adenocarcinoma. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:255-262. [PMID: 35084511 PMCID: PMC9021112 DOI: 10.1007/s00411-022-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Chemoresistance in pancreatic ductal adenocarcinoma (PDAC) frequently contributes to failure of systemic therapy. While the radiosensitizing properties of 5-fluorouracil (FU) are well known, it is unknown whether ionizing radiation (IR) sensitizes towards FU cytotoxicity. Here, we hypothesize that upregulation of thymidine phosphorylase (TP) by IR reverses FU chemoresistance in PDAC cells. The FU resistant variant of the human PDAC cell line AsPC-1 (FU-R) was used to determine the sensitizing effects of IR. Proliferation rates of FU sensitive parental (FU-S) and FU-R cells were determined by WST-1 assays after low (0.05 Gy) and intermediate dose (2.0 Gy) IR followed by FU treatment. TP protein expression in PDAC cells before and after IR was assessed by Western blot. To analyze the specificity of the FU sensitizing effect, TP was ablated by siRNA. FU-R cells showed a 2.7-fold increase of the half maximal inhibitory concentration, compared to FU-S parental cells. Further, FU-R cells showed a concomitant IR resistance towards both doses applied. When challenging both cell lines with FU after IR, FU-R cells had lower proliferation rates than FU-S cells, suggesting a reversal of chemoresistance by IR. This FU sensitizing effect was abolished when TP was blocked by anti-TP siRNA before IR. An increase of TP protein expression was seen after both IR doses. Our results suggest a TP dependent reversal of FU-chemoresistance in PDAC cells that is triggered by IR. Thus, induction of TP expression by low dose IR may be a therapeutic approach to potentially overcome FU chemoresistance in PDAC.
Collapse
Affiliation(s)
- Lucas D Lee
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Ioannis Pozios
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Verena Liu
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Silke B Nachbichler
- Department of Radiotherapy and Radiation Oncology, Klinikum der Universität München, 81377, Munich, Germany
| | - Dirk Böhmer
- Department of Radiation Oncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Carsten Kamphues
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Christiane J Bruns
- Department of Surgery, University Hospital of Cologne, 50937, Cologne, Germany
| | - Martin E Kreis
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany
| | - Hendrik Seeliger
- Department of General and Visceral Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12200, Berlin, Germany.
- IU Health University, 10243, Berlin, Germany.
| |
Collapse
|
6
|
microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms23031275. [PMID: 35163198 PMCID: PMC8835847 DOI: 10.3390/ijms23031275] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer (PCa) with a low survival rate. microRNAs (miRs) are endogenous, non-coding RNAs that moderate numerous biological processes. miRs have been associated with the chemoresistance and metastasis of PDAC and the presence of a subpopulation of highly plastic "stem"-like cells within the tumor, known as cancer stem cells (CSCs). In this study, we investigated the role of miR-21, which is highly expressed in Panc-1 and MiaPaCa-2 PDAC cells in association with CSCs. Following miR-21 knockouts (KO) from both MiaPaCa-2 and Panc-1 cell lines, reversed expressions of epithelial-mesenchymal transition (EMT) and CSCs markers were observed. The expression patterns of key CSC markers, including CD44, CD133, CX-C chemokine receptor type 4 (CXCR4), and aldehyde dehydrogenase-1 (ALDH1), were changed depending on miR-21 status. miR-21 (KO) suppressed cellular invasion of Panc-1 and MiaPaCa-2 cells, as well as the cellular proliferation of MiaPaCa-2 cells. Our data suggest that miR-21 is involved in the stemness of PDAC cells, may play roles in mesenchymal transition, and that miR-21 poses as a novel, functional biomarker for PDAC aggressiveness.
Collapse
|
7
|
Zhou R, Hu Z, Pan J, Wang J, Pei Y. Current research status of alkaloids against breast cancer. CHINESE J PHYSIOL 2022; 65:12-20. [DOI: 10.4103/cjp.cjp_89_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
8
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
9
|
Nimmakayala RK, Rauth S, Venkata RC, Marimuthu S, Nallasamy P, Vengoji R, Lele SM, Rachagani S, Mallya K, Malafa MP, Ponnusamy MP, Batra SK. PGC1α-Mediated Metabolic Reprogramming Drives the Stemness of Pancreatic Precursor Lesions. Clin Cancer Res 2021; 27:5415-5429. [PMID: 34172498 PMCID: PMC8709878 DOI: 10.1158/1078-0432.ccr-20-5020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Metabolic reprogramming and cancer stem cells drive the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). However, the metabolic and stemness programs of pancreatic precursor lesions (PPL), considered early PDAC development events, have not been thoroughly explored. EXPERIMENTAL DESIGN Meta-analyses using gene expression profile data from NCBI Gene Expression Omnibus and IHC on tissue microarrays (TMA) were performed. The following animal and cellular models were used: cerulean-induced KrasG12D; Pdx1 Cre (KC) acinar-to-ductal metaplasia (ADM) mice, KrasG12D; Smad4Loss; Pdx-1 Cre (KCSmad4-) intraductal papillary mucinous neoplasm (IPMN) mice, LGKC1 cell line derived from the doxycycline-inducible Gnas IPMN model, and human IPMN organoids. Flow cytometry, Seahorse extracellular flux analyzer, qRT-PCR, and sphere assay were used to analyze metabolic and stemness features. SR18292 was used to inhibit PGC1α, and short hairpin RNA was used to knockdown (KD) PGC1α. RESULTS The meta-analysis revealed a significant upregulation of specific stemness genes in ADM-mediated pancreatic intraepithelial neoplasms (PanIN) and IPMN. Meta- and TMA analyses followed by in vitro and in vivo validation revealed that ADM/PanIN exhibit increased PGC1α and oxidative phosphorylation (OXPhos) but reduced CPT1A. IPMN showed elevated PGC1α, fatty acid β-oxidation (FAO) gene expression, and FAO-OXPhos. PGC1α was co-overexpressed with its coactivator NRF1 in ADM/PanINs and with PPARγ in IPMN. PGC1α KD or SR18292 inhibited the specific metabolic and stemness features of PPLs and repressed IPMN organoid growth. CONCLUSIONS ADM/PanINs and IPMNs show specific stemness signatures with unique metabolisms. Inhibition of PGC1α using SR18292 diminishes the specific stemness by targeting FAO-independent and FAO-dependent OXPhos of ADM/PanINs and IPMNs, respectively.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ramakanth Chirravuri Venkata
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Subodh M. Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
10
|
Su C, Zhang J, Yarden Y, Fu L. The key roles of cancer stem cell-derived extracellular vesicles. Signal Transduct Target Ther 2021; 6:109. [PMID: 33678805 PMCID: PMC7937675 DOI: 10.1038/s41392-021-00499-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), the subpopulation of cancer cells, have the capability of proliferation, self-renewal, and differentiation. The presence of CSCs is a key factor leading to tumor progression and metastasis. Extracellular vesicles (EVs) are nano-sized particles released by different kinds of cells and have the capacity to deliver certain cargoes, such as nucleic acids, proteins, and lipids, which have been recognized as a vital mediator in cell-to-cell communication. Recently, more and more studies have reported that EVs shed by CSCs make a significant contribution to tumor progression. CSCs-derived EVs are involved in tumor resistance, metastasis, angiogenesis, as well as the maintenance of stemness phenotype and tumor immunosuppression microenvironment. Here, we summarized the molecular mechanism by which CSCs-derived EVs in tumor progression. We believed that the fully understanding of the roles of CSCs-derived EVs in tumor development will definitely provide new ideas for CSCs-based therapeutic strategies.
Collapse
Affiliation(s)
- Chaoyue Su
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China ,grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jianye Zhang
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Liwu Fu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Panina Y, Yamane J, Kobayashi K, Sone H, Fujibuchi W. Human ES and iPS cells display less drug resistance than differentiated cells, and naïve-state induction further decreases drug resistance. J Toxicol Sci 2021; 46:131-142. [PMID: 33642519 DOI: 10.2131/jts.46.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pluripotent stem cells (PSCs) possess unique characteristics that distinguish them from other cell types. Human embryonic stem (ES) cells are recently gaining attention as a powerful tool for human toxicity assessment without the use of experimental animals, and an embryonic stem cell test (EST) was introduced for this purpose. However, human PSCs have not been thoroughly investigated in terms of drug resistance or compared with other cell types or cell states, such as naïve state, to date. Aiming to close this gap in research knowledge, we assessed and compared several human PSC lines for their resistance to drug exposure. Firstly, we report that RIKEN-2A human induced pluripotent stem (iPS) cells possessed approximately the same sensitivity to selected drugs as KhES-3 human ES cells. Secondly, both ES and iPS cells were several times less resistant to drug exposure than other non-pluripotent cell types. Finally, we showed that iPS cells subjected to naïve-state induction procedures exhibited a sharp increase in drug sensitivity. Upon passage of these naïve-like cells in non-naïve PSC culture medium, their sensitivity to drug exposure decreased. We thus revealed differences in sensitivity to drug exposure among different types or states of PSCs and, importantly, indicated that naïve-state induction could increase this sensitivity.
Collapse
Affiliation(s)
- Yulia Panina
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Kenta Kobayashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Hideko Sone
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| |
Collapse
|
12
|
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, Gupta R, Mallya K, Prajapati DR, Lele SM, C Caffrey T, L Grem J, Grandgenett PM, Hollingsworth MA, Murry DJ, Batra SK, Ponnusamy MP. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 2021; 40:215-231. [PMID: 33110235 PMCID: PMC10041665 DOI: 10.1038/s41388-020-01518-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes to distant organs, which is the primary cause of mortality; however, specific features mediating organ-specific metastasis remain unexplored. Emerging evidence demonstrates that cancer stem cells (CSCs) and cellular metabolism play a pivotal role in metastasis. Here we investigated the role of distinct subtypes of pancreatic CSCs and their metabolomic signatures in organ-specific metastatic colonization. We found that PDAC consists of ALDH+/CD133+ and drug-resistant (MDR1+) subtypes of CSCs with specific metabolic and stemness signatures. Human PDAC tissues with gemcitabine treatment, autochthonous mouse tumors from KrasG12D; Pdx1-Cre (KC) and KrasG12D; Trp53R172H; Pdx-1 Cre (KPC) mice, and KPC- Liver/Lung metastatic cells were used to evaluate the CSC, EMT (epithelial-to-mesenchymal transition), and metabolic profiles. A strong association was observed between distinct CSC subtypes and organ-specific colonization. The liver metastasis showed drug-resistant CSC- and EMT-like phenotype with aerobic glycolysis and fatty acid β-oxidation-mediated oxidative (glyco-oxidative) metabolism. On the contrary, lung metastasis displayed ALDH+/CD133+ and MET-like phenotype with oxidative metabolism. These results were obtained by evaluating FACS-based side population (SP), autofluorescence (AF+) and Alde-red assays for CSCs, and Seahorse-based oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and fatty acid β-oxidation (FAO)-mediated OCR assays for metabolic features along with specific gene signatures. Further, we developed in vitro human liver and lung PDAC metastasis models by using a combination of liver or lung decellularized scaffolds, a co-culture, and a sphere culture methods. PDAC cells grown in the liver-mimicking model showed the enrichment of MDR1+ and CPT1A+ populations, whereas the PDAC cells grown in the lung-mimicking environment showed the enrichment of ALDH+/CD133+ populations. In addition, we observed significantly elevated expression of ALDH1 in lung metastasis and MDR1/LDH-A expression in liver metastasis compared to human primary PDAC tumors. Our studies elucidate that distinct CSCs adapt unique metabolic signatures for organotropic metastasis, which will pave the way for the development of targeted therapy for PDAC metastasis.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gautam K Shailendra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L Grem
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Sinomenine inhibits hypoxia induced breast cancer side population cells metastasis by PI3K/Akt/mTOR pathway. Bioorg Med Chem 2020; 31:115986. [PMID: 33412412 DOI: 10.1016/j.bmc.2020.115986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Sinomenine is an alkaloid derived from Chinese medicinal plant Sinomenium acutum. Our previous studies suggested that sinomenine can inhibit the metastasis of breast cancer. However, whether sinomenine can inhibit the metastasis characteristics of breast cancer side population (SP) cells is still unknown. In present study, we isolated the side population (SP) cells from MDA-MB-231 cells by fluorescence-activated cell sorting (FACS). MDA-MB-231 SP cells were treated with different concentrations of sinomenine at the absence or presence of hypoxia, and cell viability were measured by CCK-8 assay. The transwell invasive assay were conducted to assess of the effect of sinomenine on the invasion of hypoxic MDA-MB-231 SP cells. The protein expression was detected by Western blot assay. Sinomenine inhibited the cell viability and invasion of hypoxic MDA-MB-231 SP cells. Western blot assay results showed that the upregulation of MMP-2 and MMP-9 by hypoxia was inversed by sinomenine. Additionally, it was found that sinomenine suppressed the activation of PI3K/Akt/mTOR pathway under hypoxia in MDA-MB-231 SP cells. Moreover, the inhibiton of sinomenine on metastasis of hypoxic MDA-MB-231SP cells and PI3K/Akt/mTOR pathway could be rescued by PI3K activator IGF-1. Our study suggested that sinomenine inhibits invasion of breast cancer SP cells under hypoxia through PI3K/Akt/mTOR pathway.
Collapse
|
14
|
Guo Q, Li X, Cui MN, Sun JL, Ji HY, Ni BB, Yan MX. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res 2020; 28:533-540. [PMID: 32532363 PMCID: PMC7751223 DOI: 10.3727/096504020x15919605976853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is one of the most serious diseases that are harmful to human health. Systemic chemotherapy is an optimal therapeutic strategy for the treatment of cancer, but great difficulty has been encountered in its administration in the form of multidrug resistance (MDR). As an enzyme on the outer cell surface, CD13 is documented to be involved in the MDR development of tumor cells. In this review, we will focus on the role of CD13 in MDR generation based on the current evidence.
Collapse
Affiliation(s)
- Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Meng-Na Cui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Jia-Lin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Hong-Yan Ji
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Bei-Bei Ni
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao UniversityQingdao, ShandongP.R. China
| | - Mei-Xing Yan
- Department of Pharmacy, Qingdao Women and Childrens HospitalQingdao, ShandongP.R. China
| |
Collapse
|
15
|
SAHA Overcomes 5-FU Resistance in IFIT2-Depleted Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12123527. [PMID: 33256074 PMCID: PMC7761248 DOI: 10.3390/cancers12123527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary IFIT2 depletion is associated with increased epithelial-mesenchymal transition and metastasis. The main aim of our study was to understand the link between drug resistance and IFIT2 depletion. In this study, we confirmed resistance to multiple common therapeutic drugs, particularly 5-FU, which showed especially high resistance in IFIT2-depleted cells. Interestingly, combination of SAHA and 5-FU overcame 5-FU resistance in IFIT2-depleted cells. Hence, our findings suggest that IFIT2 expression may be used as a biomarker to decide whether to undergo 5-FU treatment, but also the SAHA and 5-FU combination may be a potential new treatment regimen to augment 5-FU therapy in patients with thymidylate synthase-mediated drug-resistant oral squamous cell carcinoma. Abstract Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is a member of the interferon-stimulated gene family that contains tetratricopeptide repeats (TPRs), which mediate protein–protein interactions in various biological systems. We previously showed the depletion of IFIT2 enhanced cell migration and metastatic activity in oral squamous cell carcinoma (OSCC) cells via the activation of atypical PKC signaling. In this study, we found that IFIT2-knockdown cells displayed higher resistance to 5-fluorouracil (5-FU) than control cells. The comet assay and annexin V analysis showed decreased DNA damage and cell death in IFIT2-knockdown cells compared to control cells treated with 5-FU. Cell cycle progression was also perturbed by 5-FU treatment, with the accumulation of IFIT2-depleted cells in S phase in a time-dependent manner. We further observed the overexpression of thymidylate synthase (TS) and thymidine kinase (TK) in IFIT2-knockdown cells. Inhibition of TS alone or double inhibition of TS and TK1 using the siRNA technique increased susceptibility to 5-FU in IFIT2-knockdown cells. We further identified that suberanilohydroxamic acid (SAHA) treatment decreased the expression of TS in IFIT2-knockdown cells and demonstrated that pretreatment with SAHA sensitized IFIT2-knockdown cells to 5-FU in vitro and in vivo. In conclusion, IFIT2 knockdown enhances TS expression, which mediates 5-FU resistance, and SAHA pretreatment suppresses TS expression and hence sensitizes cells to 5-FU. SAHA will be an effective strategy for the treatment of OSCC patients with 5-FU resistance.
Collapse
|
16
|
Arisan ED, Rencuzogullari O, Keskin B, Grant GH, Uysal-Onganer P. Inhibition on JNK Mimics Silencing of Wnt-11 Mediated Cellular Response in Androgen-Independent Prostate Cancer Cells. BIOLOGY 2020; 9:biology9070142. [PMID: 32605008 PMCID: PMC7407974 DOI: 10.3390/biology9070142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers among men, and one of the leading causes of cancer death for men. The c-Jun N-terminal kinase (JNK) pathway is required for several cellular functions, such as survival, proliferation, differentiation, and migration. Wnt-11, a member of the Wnt family, has been identified for its upregulation in PCa; however, downstream signalling of Wnt-11 remains to be fully characterized. In this study, we investigated the role of the JNK pathway as a potential downstream factor for Wnt-11 signalling. For this purpose, LNCaP, DU145, and PC-3 PCa cells and normal epithelial PNT1A cells were treated with a specific JNK kinase inhibitor: JNKVIII. Our results showed that JNK inhibition decreased mitochondrial membrane potential and promoted cell death in a cell type-dependent manner. We found that JNK inhibition led to an increase in autophagy and prevented epithelial–mesenchymal transition (EMT) in independently growing androgen cells. JNK inhibition and the silencing of Wnt-11 showed similar responses in DU145 and PC-3 cells and decreased metastasis-related biomarkers, cell migration, and invasion. Overall, our results suggest that JNK signalling plays a significant role in the pathophysiology of PCa by mediating Wnt-11 induced signals. Our data highlights that both the JNK pathway and Wnt-11 could be a useful therapeutic target for the combinatory application of current PCa.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze-Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Buse Keskin
- Istanbul Kultur University, Department of Molecular Biology and Genetics, Atakoy Campus, 34156 Istanbul, Turkey; (O.R.); (B.K.)
| | - Guy H. Grant
- School of Life Sciences, University of Bedfordshire, Park Square, Luton LU1 3JU, UK;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
17
|
Gao Y, Li H, Han Q, Li Y, Wang T, Huang C, Mao Y, Wang X, Zhang Q, Tian J, Irwin DM, Tan H, Guo H. Overexpression of DUSP6 enhances chemotherapy-resistance of ovarian epithelial cancer by regulating the ERK signaling pathway. J Cancer 2020; 11:3151-3164. [PMID: 32231719 PMCID: PMC7097933 DOI: 10.7150/jca.37267] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: DUSP6 is a negative regulator of the ERK signaling pathway and plays an important role in chemotherapy-resistance. Previously we showed that DUSP6 is overexpressed in ovarian cancer side population (SP) cells that possess cancer stem cell-like properties and are quiescent and chemotherapy-resistant. Here, we explore the effects of DUSP6 on chemotherapy-resistance by examining its regulation of the ERK signaling pathway and G0/G1 cell cycle arrest. Methods: mRNA and protein expression of DUSP6 and G0/G1 cell cycle checkpoint regulating proteins (CyclinD1, CyclinD3 and CyclinE2) was evaluated among ovarian cancer cell lines and tissue samples. Ovarian cancer cells were transiently transfected to overexpress DUSP6. After treatment with cisplatin, cell viability was measured by the MTS assay at 48 hours and the half maximal inhibitory concentration (IC50) for each cell line was calculated. Subcellular localization and cell cycle analysis were determined by using immunofluorescence and FACS, respectively. Results: SKOV3 and OVCAR8 SP cells were shown to express higher levels of DUSP6 and lower levels of CyclinD3 compared with non-SP (NSP) cells (P<0.001). Among 39 ovarian cancer tissue samples, expression of DUSP6 in the chemotherapy-resistant group (12 samples) was higher than in the chemotherapy-sensitive group (27 samples) (P<0.05). While a lower level of expression of CyclinD3 was seen in the chemotherapy-resistant group, it was not statistically different from the chemotherapy-sensitive group. HO8910 cells where shown to have higher IC50 to cisplatin than SKOV3 or OVCAR8 cells, and this correlated with higher levels of DUSP6 expression. Overexpression of DUSP6 in SKOV3 cells led to an increase in cisplatin IC50 values (P<0.05), and also markedly reduced the expression levels of phospho-ERK1/2 and CyclinD3 and to the predominance of cells in the G0/G1 phase. Conclusion: Our findings reveal an enhancement of chemotherapy-resistance and a predominance of cells in G1 cell cycle arrest in DUSP6-overexpressing ovarian cancer cells. This suggests that overexpression of DUSP6 promotes chemotherapy-resistance through the negative regulation of the ERK signaling pathway, increasing the G0/G1 phase ratio among ovarian cancer cells, and leading to cellular quiescence.
Collapse
Affiliation(s)
- Yan Gao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Qing Han
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing
| | - Tongxia Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing
| | - Cuiyu Huang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing
| | - Yiqing Mao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Xi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Qun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Junrui Tian
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing
| |
Collapse
|
18
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
19
|
Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L, Yang H. lncRNA SLC7A11-AS1 Promotes Chemoresistance by Blocking SCF β-TRCP-Mediated Degradation of NRF2 in Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:974-985. [PMID: 32036249 PMCID: PMC7013141 DOI: 10.1016/j.omtn.2019.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Drug resistance is the major obstacle of gemcitabine-based chemotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC). Many long non-coding RNAs (lncRNAs) are reported to play vital roles in cancer initiation and progression. Here, we report that lncRNA SLC7A11-AS1 is involved in gemcitabine resistance of PDAC. SLC7A11-AS1 is overexpressed in PDAC tissues and gemcitabine-resistant cell lines. Knockdown of SLC7A11-AS1 weakens the PDAC stemness and potentiates the sensitivity of resistant PDAC cells toward gemcitabine in vitro and in vivo. SLC7A11-AS1 promotes chemoresistance through reducing intracellular reactive oxygen species (ROS) by stabilizing nuclear factor erythroid-2-related factor 2 (NRF2), the key regulator in antioxidant defense. Mechanically, SLC7A11-AS1 is co-localized with β-TRCP1 in the nucleus. The exon 3 of SLC7A11-AS1 interacts with the F-box motif of β-TRCP1, the critical domain that recruits β-TRCP1 to the SCFβ-TRCP E3 complex. This interaction prevents the consequent ubiquitination and proteasomal degradation of NRF2 in the nucleus. Our results demonstrate that the overexpression of SLC7A11-AS1 in gemcitabine-resistant PDAC cells can scavenge ROS by blocking SCFβ-TRCP-mediated ubiquitination and degradation of NRF2, leading to a low level of intracellular ROS, which is required for the maintenance of cancer stemness. These findings suggest SLC7A11-AS1 as a therapeutic target to overcome gemcitabine resistance for PDAC treatment.
Collapse
Affiliation(s)
- Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chen Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyuan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lin Jiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
20
|
Akbarzadeh M, Maroufi NF, Tazehkand AP, Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati HR, Nouri M, Samadi N. Current approaches in identification and isolation of cancer stem cells. J Cell Physiol 2019; 234:14759-14772. [PMID: 30741412 DOI: 10.1002/jcp.28271] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassification of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.
Collapse
Affiliation(s)
- Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moloud Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safdari
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Farzane
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Fattahi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Ram Makena M, Gatla H, Verlekar D, Sukhavasi S, K Pandey M, C Pramanik K. Wnt/β-Catenin Signaling: The Culprit in Pancreatic Carcinogenesis and Therapeutic Resistance. Int J Mol Sci 2019; 20:E4242. [PMID: 31480221 PMCID: PMC6747343 DOI: 10.3390/ijms20174242] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is responsible for 7.3% of all cancer deaths. Even though there is a steady increase in patient survival for most cancers over the decades, the patient survival rate for pancreatic cancer remains low with current therapeutic strategies. The Wnt/β-catenin pathway controls the maintenance of somatic stem cells in many tissues and organs and is implicated in pancreatic carcinogenesis by regulating cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, tumor immune microenvironment, etc. Further, dysregulated Wnt has been shown to cause drug resistance in pancreatic cancer. Although different Wnt antagonists are effective in pancreatic patients, limitations remain that must be overcome to increase the survival benefits associated with this emerging therapy. In this review, we have summarized the role of Wnt signaling in pancreatic cancer and suggested future directions to enhance the survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Himavanth Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Dattesh Verlekar
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam 530045, India
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Kartick C Pramanik
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA.
| |
Collapse
|
22
|
MicroRNA-192-5p Promote the Proliferation and Metastasis of Hepatocellular Carcinoma Cell by Targeting SEMA3A. Appl Immunohistochem Mol Morphol 2019; 25:251-260. [PMID: 26580097 DOI: 10.1097/pai.0000000000000296] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Side population (SP) cells are a small subset of cells isolated from a cultured cancer cell line with characteristics similar to those of cancer stem cells, such as high metastatic and tumorigenic potentials. However, the molecular mechanisms remain unclear for the malignant properties of SP cells. In this study, SP cells were isolated by staining cultured HCCLM3 cells with fluorescent DNA-binding dye Hoechst 33342 and sorted by flow cytometry. The proportion of SP cells was 2.79%±0.19% in the HCCLM3 cell line. Compared with non-SP cells, SP cells possessed stronger capability of sphere formation and tumorigenicity, and expressed higher levels of CD133 and CD90. Then, we found that SP cells possessed 25 upregulated and 34 downregulated microRNAs with differences of >3-fold. As one of the upregulated microRNAs, miR-192-5p was computationally predicted to target semaphorin 3A (SEMA3A), a potent suppressor of tumor angiogenesis in various cancer models. Luciferase reporter assay showed that SEMA3A was a direct target of miR-192-5p. Overexpression of miR-192-5p promoted cell proliferation and metastasis targeting SEMA3A in HCCLM3 cells. Immunohistochemical staining revealed that SEMA3A expression was significantly reverse associated with metastasis in hepatocellular carcinoma tissues. The results indicate that miR-192-5p contributes to targeting SEMA3A in HCCLM3 cells, and this may be used as a target in targeted therapy and a marker for cancer behavior and prognosis.
Collapse
|
23
|
Domenichini A, Edmands JS, Adamska A, Begicevic RR, Paternoster S, Falasca M. Pancreatic cancer tumorspheres are cancer stem-like cells with increased chemoresistance and reduced metabolic potential. Adv Biol Regul 2019; 72:63-77. [PMID: 30853342 DOI: 10.1016/j.jbior.2019.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells are a population of slow-cycling cells within the tumour bulk, with self-renewal capacity that attracts interest as a therapeutic target. In highly heterogeneous tumours, like pancreatic ductal adenocarcinoma (PDAC) however, the characterisation of cancer stem cells has led to controversial results due to the lack of consensus on specific markers. Here we investigated the characteristics of a population of pancreatic cancer tumorspheres derived from different human pancreatic cancer cell lines and a primary line from a genetically engineered KPC mouse model, using flow cytometry and western blotting to analyse surface and stemness markers. We analysed tumorspheres tumorigenic potential using anchorage-independent soft agar assay as well as their metabolic plasticity and chemoresistance. Pancreatic cancer tumorspheres display a heterogeneous pattern of surface and stemness markers, nevertheless they are characterised by an increased tumorigenic potential and higher chemoresistance. In addition, we have shown that pancreatic cancer tumorspheres have a unique metabolic profile with reduced metabolic potential. Together our results indicate that, despite the heterogeneity characterising pancreatic cancer tumorspheres, we can identify a functional vulnerability that represents a window for pharmacological intervention and development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alice Domenichini
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Jeanne S Edmands
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Romana-Rea Begicevic
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Silvano Paternoster
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
24
|
Dhar D, Deep G, Kumar S, Wempe MF, Raina K, Agarwal C, Agarwal R. Bitter melon juice exerts its efficacy against pancreatic cancer via targeting both bulk and cancer stem cells. Mol Carcinog 2018; 57:1166-1180. [PMID: 29727019 PMCID: PMC6118209 DOI: 10.1002/mc.22833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PanC) is one of the deadliest malignancies worldwide and frontline treatment with gemcitabine becomes eventually ineffective due to increasing PanC resistance, suggesting additional approaches are needed to manage PanC. Recently, we have shown the efficacy of bitter melon juice (BMJ) against PanC cells, including those resistant to gemcitabine. As cancer stem cells (CSCs) are actively involved in PanC initiation, progression, relapse and drug-resistance, here we assessed BMJ ability in targeting pancreatic cancer-associated cancer stem cells (PanC-CSCs). We found BMJ efficacy against CD44+ /CD24+ /EpCAMhigh enriched PanC-CSCs in spheroid assays; BMJ also increased the sensitivity of gemcitabine-resistant PanC-CSCs. Exogenous addition of BMJ to PanC-CSC generated spheroids (not pre-exposed to BMJ) also significantly reduced spheroid number and size. Mechanistically, BMJ effects were associated with a decrease in the expression of genes and proteins involved in PanC-CSC renewal and proliferation. Specifically, immunofluorescence staining showed that BMJ decreases protein expression/nuclear localization of CSC-associated transcription factors SOX2, OCT4 and NANOG, and CSC marker CD44. Immunohistochemical analysis of MiaPaCa2 xenografts from BMJ treated animals also showed a significant decrease in the levels of CSC-associated transcription factors. Together, these results show BMJ potential in targeting PanC-CSC pool and associated regulatory pathways, suggesting the need for further investigation of its efficacy against PanC growth and progression including gemcitabine-resistant PanC.
Collapse
Affiliation(s)
- Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, Aurora, CO
- University of Colorado Cancer Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
25
|
The Function of SDF-1-CXCR4 Axis in SP Cells-Mediated Protective Role for Renal Ischemia/Reperfusion Injury by SHH/GLI1-ABCG2 Pathway. Shock 2018; 47:251-259. [PMID: 27454381 DOI: 10.1097/shk.0000000000000694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Renal ischemia-reperfusion (I/R) injury ranks as the primary cause of acute renal injury with severe morbidity and mortality. Side population (SP) cells have recently drawn increasing attention due to their critical role in injury repair and regeneration. Unfortunately, the underlying mechanism involved in renal I/R remains poorly elucidated. Here, pronounced increases of stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) were substantiated in I/R kidneys from C57BL/6 mice subjected to clamp the bilateral renal pedicles to mimic renal ischemia. Similar up-regulation of them was also determined in SP cells upon simulated ischemia/reperfusion (SI/R). In contrast to non-SP cells, SP cells exhibited higher viability, apoptosis resistance, chemotaxis, and paracrine actions following SI/R treatment, and these were further enhanced after SDF-1 stimulation. Interestingly, blocking CXCR4 signaling with AMD3100 notably ameliorated the above effects. Mechanism analysis corroborated that SDF-1/CXCR4 further induced the expression of ATP-binding cassette transporter ABCG2, an essential element for SP-mediated kidney regeneration after renal I/R injury. Moreover, AMD3100 pretreatment strikingly attenuated ABCG2 elevation in SP cells. Additionally, sonic hedgehog (SHH)-Gli 1 signaling was involved in SDF-1/CXCR4-mediated ABCG2 expression. When SP cells pretreated with AMD3100 were intravenously injected into I/R mice, SP cell-mediated decreases in blood urea nitrogen, serum creatinine, and histological score of kidney were noticeably attenuated, indicating that blocking CXCR4 pathway mitigated the therapeutic function of SP cells in renal I/R injury. Together, this research suggests that SDF-1/CXCR4 axis might act, via Shh-Gli1-ABCG2 signaling, as a positive regulator of SP cell-based therapies for renal I/R by Shh-Gli 1-ABCG2 signaling.
Collapse
|
26
|
Abstract
OBJECTIVES The side population (SP) contains cells with stem cell/progenitor properties. Previously, we observed that the mouse pancreas SP expanded after pancreatic injury. We aimed to characterize the SP in human pancreas as a potential source of stem cells. METHODS Human organ donor pancreata were fractionated into islets and exocrine tissue, enriched by tissue culture and dispersed into single cells. Cells were phenotyped by flow cytometry, and the SP was defined by efflux of fluorescent dye Hoechst 33342 visualized by ultraviolet excitation. Cells were flow sorted, and their colony-forming potential measured on feeder cells in culture. RESULTS An SP was identified in islet and exocrine cells from human organ donors: 2 with type 1 diabetes, 3 with type 2 diabetes, and 28 without diabetes. Phenotyping revealed that exocrine SP cells had an epithelial origin, were enriched for carbohydrate antigen 19-9 ductal cells expressing stem cell markers CD133 and CD26, and had greater colony-forming potential than non-SP cells. The exocrine SP was increased in a young adult with type 1 diabetes and ongoing islet autoimmunity. CONCLUSIONS The pancreatic exocrine SP is a potential reservoir of adult stem/progenitor cells, consistent with previous evidence that such cells are duct-derived and express CD133.
Collapse
|
27
|
Zhao J, Li J, Schlößer HA, Popp F, Popp MC, Alakus H, Jauch KW, Bruns CJ, Zhao Y. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer. Stem Cells Int 2017; 2017:6012810. [PMID: 28845161 PMCID: PMC5563426 DOI: 10.1155/2017/6012810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Jiangang Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jiahui Li
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans A Schlößer
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Cologne Interventional Immunology, University of Cologne, Cologne, Germany
| | - Felix Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Marie Christine Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
28
|
Gao Y, Zhang Z, Li K, Gong L, Yang Q, Huang X, Hong C, Ding M, Yang H. Linc-DYNC2H1-4 promotes EMT and CSC phenotypes by acting as a sponge of miR-145 in pancreatic cancer cells. Cell Death Dis 2017; 8:e2924. [PMID: 28703793 PMCID: PMC5550858 DOI: 10.1038/cddis.2017.311] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
The acquisition of epithelial-mesenchymal transition (EMT) and/or existence of a sub-population of cancer stem-like cells (CSC) are associated with malignant behavior and chemoresistance. To identify which factor could promote EMT and CSC formation and uncover the mechanistic role of such factor is important for novel and targeted therapies. In the present study, we found that the long intergenic non-coding RNA linc-DYNC2H1-4 was upregulated in pancreatic cancer cell line BxPC-3-Gem with acquired gemcitabine resistance. Knockdown of linc-DYNC2H1-4 decreased the invasive behavior of BxPC-3-Gem cells while ectopic expression of linc-DYNC2H1-4 promoted the acquisition of EMT and stemness of the parental sensitive cells. Linc-DYNC2H1-4 upregulated ZEB1, the EMT key player, which led to upregulation and downregulation of its targets vimentin and E-cadherin respectively, as well as enhanced the expressions of CSC makers Lin28, Nanog, Sox2 and Oct4. Linc-DYNC2H1-4 is mainly located in the cytosol. Mechanically, it could sponge miR-145 that targets ZEB1, Lin28, Nanog, Sox2, Oct4 to restore these EMT and CSC-associated genes expressions. We proved that MMP3, the nearby gene of linc-DYNC2H1-4 in the sense strand, was also a target of miR-145. Downregulation of MMP3 by miR-145 was reverted by linc-DYNC2H1-4, indicating that competing with miR-145 is one of the mechanisms for linc-DYNC2H1-4 to regulate MMP3. In summary, our results explore the important role of linc-DYNC2H1-4 in the acquisition of EMT and CSC, and the impact it has on gemcitabine resistance in pancreatic cancer cells.
Collapse
Affiliation(s)
- Yuran Gao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhicheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Liying Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qingzhu Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chengcheng Hong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mingfeng Ding
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
29
|
Zhao Y, Altendorf-Hofmann A, Pozios I, Camaj P, Däberitz T, Wang X, Niess H, Seeliger H, Popp F, Betzler C, Settmacher U, Jauch KW, Bruns C, Knösel T. Elevated interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) is a poor prognostic marker in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2017; 143:1061-1068. [PMID: 28210844 DOI: 10.1007/s00432-017-2351-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) gene from IFITs family is one gene among hundreds of IFN-stimulated genes. The potential role of IFIT3 in cancer is scarcely understood. In addition, the clinical relevance of IFIT3 is not yet known in pancreatic ductal adenocarcinoma (PDAC). We evaluated the prognostic significance of this gene in PDAC patients. METHODS The expression of IFIT3 was analyzed in pancreatic cancer cell lines with different metastatic potential (FG and L3.6pl) and one established gemcitabine resistant cell variant-L3.6plGres. Second, we analyzed the protein expression in tissue microarrays (TMA) from specimens of 254 radically resected patients with pancreatic adenocarcinoma. The prognostic relevance of IFIT3 was evaluated by the Kaplan-Meier and Cox regression analysis. RESULTS L3.6pl cells with an aggressive capacity showed a significant higher expression of IFIT3 as compared to FG cells. IFIT3 was accumulated in gemcitabine resistant cells. Overexpression of IFIT3 increased the resistance of apoptosis against gemcitabine treatment. Patients who had high expression of IFIT3 (32%) and received chemotherapy had a statistically significant reduced survival in multivariate analysis. CONCLUSIONS High expression of IFIT3 enhances anti-apoptotic activity and chemotherapy resistance of PDAC cells. High expression of IFIT3 was independently correlated to shorter patients' survival and may serve as a prognostic marker.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | | | - Ioannis Pozios
- Department of General, Visceral und Vascular Surgery, Charite ́University Medical Center, Berlin, Germany
| | - Peter Camaj
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Therese Däberitz
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany
| | - Xiaoyan Wang
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hanno Niess
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hendrik Seeliger
- Department of General, Visceral und Vascular Surgery, Charite ́University Medical Center, Berlin, Germany
| | - Felix Popp
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christopher Betzler
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Utz Settmacher
- Department of General, Visceral und Vascular Surgery, Friedrich-Schiller University, Jena, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christiane Bruns
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg, 39120, Germany.
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilian-University (LMU), Thalkirchnerstr. 36, Munich, 80337, Germany.
| |
Collapse
|
30
|
Hu J, Li J, Yue X, Wang J, Liu J, Sun L, Kong D. Expression of the cancer stem cell markers ABCG2 and OCT-4 in right-sided colon cancer predicts recurrence and poor outcomes. Oncotarget 2017; 8:28463-28470. [PMID: 28212529 PMCID: PMC5438664 DOI: 10.18632/oncotarget.15307] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
Abstract
Right-sided colon cancer (RCC) has a poorer prognosis and a higher relapse rate than left-sided colon cancer (LCC). Like cancer stem cells (CSCs), RCC cells cannot be fully eradicated and are often involved in relapse or metastasis. Because CSCs may be linked with poor outcomes, CSC markers may have prognostic value in RCC. ATP-binding cassette sub-family G member 2 (ABCG2) and OCT-4 (also known as POU5F1) are among the most useful markers for CSC identification. We therefore examined the malignant behavior of ABCG2 and OCT-4 in vitro and in vivo, and their expression was assessed in pathology tissues obtained from clinicopathologically recurrent and non-recurrent cases. Our survey suggested associations between ABCG2 and OCT-4 expression and RCC clinicopathological variables. No correlations were detected between ABCG2 or OCT-4 expression and age, gender, tumor size, or tumor shape, but ABCG2 expression correlated with TNM stage, tumor differentiation, and lymphovascular invasion. Additionally, expression of both ABCG2 and OCT-4 correlated with RCC recurrence and poor outcomes.
Collapse
Affiliation(s)
- Jun Hu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jian Li
- Department of Lymphoma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Xin Yue
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jiacang Wang
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jianzhong Liu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lin Sun
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dalu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
31
|
Hu J, Li J, Yue X, Wang JC, Wang JF, Liu JZ, Kong DL. Targeting BCRP/ABCG2 by RNA interference enhances the chemotherapy sensitivity of human colon cancer side population cells. ACTA ACUST UNITED AC 2017; 37:231-236. [PMID: 28397046 DOI: 10.1007/s11596-017-1720-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/20/2017] [Indexed: 12/27/2022]
Abstract
Relapse and metastasis are frequent in colon cancer and may be linked to stem cell characteristics. This study isolated side population (SP) cells from a colon cancer cell line (Colo-320) and examined their self-renewal and differentiation abilities. Compared to non-SP (NSP) cells, SP colon cancer cells were more tumorigenic in vivo and exhibited more invasive characteristics and a greater ability to form colonies. Additionally, more cells were in G0/G1 phase and more highly expressed the multidrug resistance protein BCRP/ABCG2. We achieved enhanced chemotherapy sensitivity by transfecting SP cells with a hairpin-like, small interfering RNA (siRNA) eukaryotic expression plasmid targeting BCRP/ABCG2.
Collapse
Affiliation(s)
- Jun Hu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jian Li
- Department of Lymphoma, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Xin Yue
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jia-Cang Wang
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jun-Feng Wang
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jian-Zhong Liu
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Da-Lu Kong
- Department of Colorectal Cancer Surgery, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
32
|
Zhou P, Li B, Liu F, Zhang M, Wang Q, Liu Y, Yao Y, Li D. The epithelial to mesenchymal transition (EMT) and cancer stem cells: implication for treatment resistance in pancreatic cancer. Mol Cancer 2017; 16:52. [PMID: 28245823 PMCID: PMC5331747 DOI: 10.1186/s12943-017-0624-9] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanical properties of epithelial to mesenchymal transition (EMT) and a pancreatic cancer subpopulation with stem cell properties have been increasingly recognized as potent modulators of the effective of therapy. In particular, pancreatic cancer stem cells (PCSCs) are functionally important during tumor relapse and therapy resistance. In this review we have surveyed recent advances in the role of EMT and PCSCs in tumor progression, metastasis and treatment resistance, and the mechanisms of integrated with biochemical signals and the underlying pathways involved in treatment resistance of pancreatic cancer. These findings highlight the importance of confirming stem-cells markers and complex molecular signaling pathways controlling EMT and cancer stem cells in pancreatic cancer during tumor formation, progression, and response to therapy.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Furao Liu
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Munakata K, Uemura M, Tanaka S, Kawai K, Kitahara T, Miyo M, Kano Y, Nishikawa S, Fukusumi T, Takahashi Y, Hata T, Nishimura J, Takemasa I, Mizushima T, Ikenaga M, Kato T, Murata K, Carethers JM, Yamamoto H, Doki Y, Mori M. Cancer Stem-like Properties in Colorectal Cancer Cells with Low Proteasome Activity. Clin Cancer Res 2016; 22:5277-5286. [PMID: 27166395 DOI: 10.1158/1078-0432.ccr-15-1945] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE One of the main reasons for cancer treatment resistance is the existence of cancer stem-like cells (CSCs). Here, we elucidated the relationship between low proteasome activity cells (LPACs) and CSCs. EXPERIMENTAL DESIGN The human colorectal cancer cell lines HCT116, SW480, DLD1, and KM12SM were engineered to stably express a green fluorescent molecule fused to the degron of ornithine decarboxylase, resulting in an accumulation of the fluorescence in LPACs. LPACs were isolated by flow cytometry. Treatment resistance (radio- and chemotherapy) and the capacity of LPACs to act as CSCs were analyzed. Microarray analysis was performed to reveal genes related to treatment resistance. The prognostic impact of potent genes was examined in 190 patients with colorectal cancer. RESULTS LPACs had a significantly increased capacity for radioresistance and chemoresistance (5-fluorouracil and oxaliplatin), significantly lower reactive oxygen species activity, and significantly increased sphere formation capacity compared with non-LPACs. The number of cells in the G0-G1 phase was significantly higher among LPACs. Subcutaneous injection of as few as 20 LPACs led to tumor formation in immunologically incompetent mice. Microarray analysis revealed that the expression of EP300-interacting inhibitor of differentiation 3 (EID3) was significantly increased in LPACs. In vitro assay revealed that EID3 positively controlled cell proliferation and treatment resistance. The high expression of EID3 was an adverse prognostic indicator in patients with colorectal cancer (P = 0.0400). CONCLUSIONS LPACs have characteristic treatment resistance and act as CSCs in colorectal cancer. In addition, EID3 is one of the potential regulators of treatment resistance in colorectal cancer and may be a potential therapeutic target. Clin Cancer Res; 22(21); 5277-86. ©2016 AACR.
Collapse
Affiliation(s)
- Koji Munakata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan.
- Department of Surgery, National Hospital Organization, Osaka National Hospital, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Japan
| | - Kenji Kawai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Tomohiro Kitahara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Masaaki Miyo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yoshihiro Kano
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Japan
| | - Shinpei Nishikawa
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Japan
| | - Takahito Fukusumi
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Japan
| | - Yusuke Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | | | - Takeshi Kato
- Department of Surgery, Kansai Rosai Hospital, Japan
| | - Kohei Murata
- Department of Surgery, Suita Municipal Hospital, Japan
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
34
|
S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. In vitro models of cancer stem cells and clinical applications. BMC Cancer 2016; 16:738. [PMID: 27766946 PMCID: PMC5073996 DOI: 10.1186/s12885-016-2774-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells, stem cells and cancer stem cells have for a long time played a significant role in the biomedical sciences. Though cancer therapy is more effective than it was a few years ago, the truth is that still none of the current non-surgical treatments can cure cancer effectively. The reason could be due to the subpopulation called “cancer stem cells” (CSCs), being defined as those cells within a tumour that have properties of stem cells: self-renewal and the ability for differentiation into multiple cell types that occur in tumours. The phenomenon of CSCs is based on their resistance to many of the current cancer therapies, which results in tumour relapse. Although further investigation regarding CSCs is still needed, there is already evidence that these cells may play an important role in the prognosis of cancer, progression and therapeutic strategy. Therefore, long-term patient survival may depend on the elimination of CSCs. Consequently, isolation of pure CSC populations or reprogramming of cancer cells into CSCs, from cancer cell lines or primary tumours, would be a useful tool to gain an in-depth knowledge about heterogeneity and plasticity of CSC phenotypes and therefore carcinogenesis. Herein, we will discuss current CSC models, methods used to characterize CSCs, candidate markers, characteristic signalling pathways and clinical applications of CSCs. Some examples of CSC-specific treatments that are currently in early clinical phases will also be presented in this review.
Collapse
Affiliation(s)
- Sara S Franco
- Szent István University, Gödöllö, Hungary.,Biotalentum Ltd., Gödöllö, Hungary
| | | | - Maria S Iliou
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ali Mobasheri
- Center of Excellence in Genomic Medicine Research (CEGMR), King AbdulAziz University, Jeddah, Kingdom of Saudi Arabia.,Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - András Dinnyés
- Szent István University, Gödöllö, Hungary. .,Biotalentum Ltd., Gödöllö, Hungary. .,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Lan J, Li J, Ju X, Zhou Y, Qi Y, Ren Y, Zou H, Wang L, Li M, Pang L. Relationship between microvessel density and cancer stem cells in tumor angiogenesis: a meta-analysis. Biomark Med 2016; 10:919-32. [DOI: 10.2217/bmm-2016-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Several studies have shown that cancer stem cells (CSCs) promote tumor angiogenesis and are involved in tumor growth. A meta-analysis was conducted to evaluate the association between cancer stem cell markers expression and microvessel density (MVD). Methods: Relevant literature was identified from diverse databases. The Stata 12.0 and Review Manager 5.3 software were used to performed meta-analysis. Results: Sixteen studies investigating the correlation between CSCs and tumor angiogenesis were included in a total of 1409 cases. The result showed that positive CSC markers expression were associated with increased MVD count in human tumors and CSC-transplanted mouse tumor models (p < 0.0001). Conclusion: CSCs may be associated with angiogenesis during the growth and development of tumors.
Collapse
Affiliation(s)
- Jiaojiao Lan
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Li
- Department of Ultrasonic Medicine, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xinxin Ju
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yang Zhou
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yan Qi
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yan Ren
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hong Zou
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Man Li
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lijuan Pang
- Department of Pathology & Key Laboratory for Xinjiang Endemic & Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
36
|
Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis 2015; 2:299-306. [PMID: 30258872 PMCID: PMC6150077 DOI: 10.1016/j.gendis.2015.07.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Gemcitabine is the first-line treatment for pancreatic ductual adenocarcinoma (PDAC) as well as acts against a wide range of other solid tumors. Patients usually have a good initial response to gemcitabine-based chemotherapy but would eventually develop resistance. To improve survival and prognosis of cancer patients, better understanding of the mechanisms responsible for gemcitabine resistance and discovery of new therapeutic strategies are in great need. Amounting evidence indicate that the developmental pathways, such as Hedgehog (Hh), Wnt and Notch, become reactivated in gemcitabine-resistant cancer cells. Thus, the strategies for targeting these pathways may sensitize cancer cells to gemcitabine treatment. In this review, we will summarize recent development in this area of research and discuss strategies to overcome gemcitabine resistance. Given the cross-talk between these three developmental signaling pathways, designing clinical trials using a cocktail of inhibitory agents targeting all these pathways may be more effective. Ultimately, our hope is that targeting these developmental pathways may be an effective way to improve the gemcitabine treatment outcome in cancer patients.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, China
| | - Jingwu Xie
- Division of Hematology and Oncology, Department of Pediatrics, Wells Center for Pediatric Research, Indiana University Simon Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Zhan HX, Xu JW, Wu D, Zhang TP, Hu SY. Pancreatic cancer stem cells: new insight into a stubborn disease. Cancer Lett 2015; 357:429-37. [PMID: 25499079 DOI: 10.1016/j.canlet.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Resistance to conventional therapy and early distant metastasis contribute to the unsatisfactory prognosis of patients with pancreatic cancer. The concept of cancer stem cells (CSCs) brings new insights into cancer biology and therapy. Many studies have confirmed the important role of these stem cells in carcinogenesis and the development of hematopoietic and solid cancers. Recent studies have shown that CSCs regulate aggressive behavior, recurrence, and drug resistance in pancreatic cancer. Here, we review recent advances in pancreatic cancer stem cells (PCSCs) research. Particular attention is paid to the regulation mechanisms of pancreatic cancer stem cell functions, such as stemness-related signaling pathways, microRNAs, the epithelial-mesenchymal transition (EMT), and the tumor microenvironment, and the development of novel PCSCs targeted therapy. We seek to further understand PCSCs and explore potential therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Han-xiang Zhan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jian-wei Xu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Dong Wu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Tai-ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - San-yuan Hu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
38
|
Zhao Y, Zhao L, Ischenko I, Bao Q, Schwarz B, Nieß H, Wang Y, Renner A, Mysliwietz J, Jauch KW, Nelson PJ, Ellwart JW, Bruns CJ, Camaj P. Antisense inhibition of microRNA-21 and microRNA-221 in tumor-initiating stem-like cells modulates tumorigenesis, metastasis, and chemotherapy resistance in pancreatic cancer. Target Oncol 2015; 10:535-48. [PMID: 25639539 DOI: 10.1007/s11523-015-0360-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Our preliminary studies identified a small population side population (SP) cells in pancreatic cancer cells with stem cell-like properties, which were able to induce fast and aggressive tumor formation in nude mice. Gene expression analysis showed a significant difference in the expression of more than 1,300 genes in SP cells, among which a highly significant difference in microRNA expression of miR-21 and miR-221 between SP and NSP cells was identified. SP cells were identified and characterized by flow cytometry using Hoechst 33342 dye staining from a highly metastatic human pancreatic cancer cell line (L3.6pl). Antagomir transfection was performed using miRNA-21 and miRNA-221 antisense oligonucleotides (ASOs) and followed by detection of cell apoptosis, cell cycle progression, chemosensitivity, and invasion. Sorted SP cells from gemcitabine-resistant L3.6pl cells (L3.6pl(Gres)-SP) cells were orthotopically implanted in nude mice with or without miRNA-21 and miRNA-221 ASOs mono- and combination therapy. The administration of antagomir-21 and antagomir-221 significantly reduced the SP cell fraction, decreased SP cell differentiation, and downstream gene regulation, and thereby induced reduction of L3.6pl cell proliferation, invasion, and chemoresistance against gemcitabine and 5-Fluorouracil. Combination of ASOs therapy against miRNA-21 and miRNA-221 significantly inhibited primary tumor growth and metastasis compared to single antagomir treatment, especially, in L3.6plGres-SP-induced pancreatic tumor growth in vivo. These findings further indicate that the inhibition of miR-21 and miR-221 appear particularly suitable to target stem-like subpopulations and address their specific biological function to promote tumor progression in pancreatic cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| | - Lu Zhao
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Ivan Ischenko
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Qi Bao
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Bettina Schwarz
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Hanno Nieß
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Yan Wang
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Andrea Renner
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Josef Mysliwietz
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, University of Munich, Campus Grosshadern, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany
| | - Joachim W Ellwart
- Institute of Molecular Immunology, Helmholtz Center Munich, Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter Camaj
- Department of General, Visceral und Vascular Surgery, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
39
|
Romney E, Nagaraj VJ. <i>In Vitro</i> Model Systems to Investigate Drug Resistance Mechanisms in Pancreatic Cancer Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abc.2015.57026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Bera A, VenkataSubbaRao K, Manoharan MS, Hill P, Freeman JW. A miRNA signature of chemoresistant mesenchymal phenotype identifies novel molecular targets associated with advanced pancreatic cancer. PLoS One 2014; 9:e106343. [PMID: 25184537 PMCID: PMC4153643 DOI: 10.1371/journal.pone.0106343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/06/2014] [Indexed: 01/24/2023] Open
Abstract
In this study a microRNA (miRNA) signature was identified in a gemcitabine resistant pancreatic ductal adenocarcinoma (PDAC) cell line model (BxPC3-GZR) and this signature was further examined in advanced PDAC tumor specimens from The Cancer Genome Atlas (TCGA) database. BxPC3-GZR showed a mesenchymal phenotype, expressed high levels of CD44 and showed a highly significant deregulation of 17 miRNAs. Based on relevance to cancer, a seven-miRNA signature (miR-100, miR-125b, miR-155, miR-21, miR-205, miR-27b and miR-455-3p) was selected for further studies. A strong correlation was observed for six of the seven miRNAs in 43 advanced tumor specimens compared to normal pancreas tissue. To assess the functional relevance we initially focused on miRNA-125b, which is over-expressed in both the BxPC3-GZR model and advanced PDAC tumor specimens. Knockdown of miRNA-125b in BxPC3-GZR and Panc-1 cells caused a partial reversal of the mesenchymal phenotype and enhanced response to gemcitabine. Moreover, RNA-seq data from each of 40 advanced PDAC tumor specimens from the TCGA data base indicate a negative correlation between expression of miRNA-125b and five of six potential target genes (BAP1, BBC3, NEU1, BCL2, STARD13). Thus far, two of these target genes, BBC3 and NEU1, that are tumor suppressor genes but not yet studied in PDAC, appear to be functional targets of miR-125b since knockdown of miR125b caused their up regulation. These miRNAs and their molecular targets may serve as targets to enhance sensitivity to chemotherapy and reduce metastatic spread.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kolaparthi VenkataSubbaRao
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Muthu Saravanan Manoharan
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas, United States of America
| | - Ping Hill
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - James W. Freeman
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, Texas, United States of America
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|