1
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Kim DY, Jang BS, Kim E, Chie EK. Integrating Deep Learning-Based Dose Distribution Prediction with Bayesian Networks for Decision Support in Radiotherapy for Upper Gastrointestinal Cancer. Cancer Res Treat 2025; 57:186-197. [PMID: 39091147 PMCID: PMC11729311 DOI: 10.4143/crt.2024.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Selecting the better techniques to harbor optimal motion management, either a stereotactic linear accelerator delivery using TrueBeam (TBX) or magnetic resonance-guided gated delivery using MRIdian (MRG), is time-consuming and costly. To address this challenge, we aimed to develop a decision-supporting algorithm based on a combination of deep learning-generated dose distributions and clinical data. MATERIALS AND METHODS We retrospectively analyzed 65 patients with liver or pancreatic cancer who underwent both TBX and MRG simulations and planning process. We trained three-dimensional U-Net deep learning models to predict dose distributions and generated dose volume histograms (DVHs) for each system. We integrated predicted DVH metrics into a Bayesian network (BN) model incorporating clinical data. RESULTS The MRG prediction model outperformed the TBX model, demonstrating statistically significant superiorities in predicting normalized dose to the planning target volume (PTV) and liver. We developed a final BN prediction model integrating the predictive DVH metrics with patient factors like age, PTV size, and tumor location. This BN model an area under the receiver operating characteristic curve index of 83.56%. The decision tree derived from the BN model showed that the tumor location (abutting vs. apart of PTV to hollow viscus organs) was the most important factor to determine TBX or MRG. It provided a potential framework for selecting the optimal radiation therapy (RT) system based on individual patient characteristics. CONCLUSION We demonstrated a decision-supporting algorithm for selecting optimal RT plans in upper gastrointestinal cancers, incorporating both deep learning-based dose prediction and BN-based treatment selection. This approach might streamline the decision-making process, saving resources and improving treatment outcomes for patients undergoing RT.
Collapse
Affiliation(s)
- Dong-Yun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Chung-Ang University Hospital, Seoul, Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Eunji Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eui Kyu Chie
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Bonaparte I, Di Guglielmo FC, Fragnoli F, Cuscito R, Indellicati C, De Pascali C, Surgo A, Carbonara R, Davì V, Gentile MA, Calbi R, Caliandro M, Sanfrancesco G, Aga A, Cardetta P, Antonicelli M, Ciocia A, Curci D, Ciliberti MP, Fiorentino A. Inter-Fraction Motion and Dosimetric Analysis of Volumetric Modulated Arc Therapy for Craniospinal Irradiation in Adult Medulloblastoma Patients. J Pers Med 2024; 14:1134. [PMID: 39728047 DOI: 10.3390/jpm14121134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives. Adult medulloblastoma (AMB) patients should receive postoperative craniospinal irradiation (CSI) as a standard treatment. Volumetric intensity-modulated arc therapy (VMAT) is a promising method for CSI. This report summarizes the repositioning and dosimetric data outcomes for six AMB patients. Methods. Complete CSI and posterior cranial fossa irradiation, or tumor bed boost irradiation with Linac-based VMAT, was performed and evaluated. Patients were immobilized in the supine position with two thermoplastic masks (head-neck and abdomen). To ensure inter-fraction reproducibility during radiotherapy (RT), a single cone-beam CT (CBCT) scan for each isocenter and real-time surface-guided RT using AlignRT® were performed daily before and during the RT session. Match values of all three translational axes (x = lateral, y = longitudinal, z = vertical) were recorded. Results. From August 2022 to September 2023, six AMB patients were treated with CSI: three women and three men with a median age of 32 (22-42). All cases were classical MB, four were low risk, and two were defined as high risk due to the metastatic disease. All patients underwent surgery; two received a gross total resection. Low-risk patients received 36 Gy for CSI and a 54 Gy boost, while high-risk patients received 39 Gy for CSI. No significant toxicities greater than G2 were observed during RT, and only two cases reported decreased platelet counts. The dose to the organs at risk was low and acceptable. The mean dose to the heart, lungs, eyes, stomach, and thyroid were 4.4 Gy, 8.5 Gy, 12 Gy, 8.7 Gy, and 11 Gy, respectively. In terms of repositioning data, 124 CBCT scans were analyzed. Inter-fraction CBCT mean values for the study population in all translational directions were inferior to 2 mm in more than 90% of cases. Conclusions. VMAT is a convenient and effective treatment for AMB. Positioning and immobilization with masks (head and neck plus abdomen) reduce inter-fraction motion.
Collapse
Affiliation(s)
- Ilaria Bonaparte
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | | | - Federica Fragnoli
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Rosilda Cuscito
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Chiara Indellicati
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Christian De Pascali
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Valerio Davì
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Maria Annunziata Gentile
- Department of Radiology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Roberto Calbi
- Department of Radiology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Morena Caliandro
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Giuseppe Sanfrancesco
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Alberto Aga
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Pietro Cardetta
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Michele Antonicelli
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Annarita Ciocia
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Domenico Curci
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Maria Paola Ciliberti
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
| | - Alba Fiorentino
- Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, 70021 Bari, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
4
|
Guo Z, Lei L, Zhang Z, Du M, Chen Z. The potential of vascular normalization for sensitization to radiotherapy. Heliyon 2024; 10:e32598. [PMID: 38952362 PMCID: PMC11215263 DOI: 10.1016/j.heliyon.2024.e32598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Radiotherapy causes apoptosis mainly through direct or indirect damage to DNA via ionizing radiation, leading to DNA strand breaks. However, the efficacy of radiotherapy is attenuated in malignant tumor microenvironment (TME), such as hypoxia. Tumor vasculature, due to the imbalance of various angiogenic and anti-angiogenic factors, leads to irregular morphology of tumor neovasculature, disordered arrangement of endothelial cells, and too little peripheral coverage. This ultimately leads to a TME characterized by hypoxia, low pH and high interstitial pressure. This deleterious TME further exacerbates the adverse effects of tumor neovascularization and weakens the efficacy of conventional radiotherapy. Whereas normalization of blood vessels improves TME and thus the efficacy of radiotherapy. In addition to describing the research progress of radiotherapy sensitization and vascular normalization, this review focuses on the strategy and application prospect of modulating vascular normalization to improve the efficacy of radiotherapy sensitization.
Collapse
Affiliation(s)
- Zhili Guo
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Lingling Lei
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zenan Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
5
|
Zhang J, Qing C, Li Y, Wang Y. BCSwinReg: A cross-modal attention network for CBCT-to-CT multimodal image registration. Comput Biol Med 2024; 171:107990. [PMID: 38377717 DOI: 10.1016/j.compbiomed.2024.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024]
Abstract
Computed tomography (CT) and cone beam computed tomography (CBCT) registration plays an important role in radiotherapy. However, the poor quality of CBCT makes CBCT-CT multimodal registration challenging. Effective feature fusion and mapping often lead to better registration results for multimodal registration. Therefore, we proposed a new backbone network BCSwinReg and a cross-modal attention module CrossSwin. Specifically, a cross-modal attention CrossSwin is designed to promote multi-modal feature fusion, map the multi-modal domain to the common domain, and thus helping the network learn the correspondence between images better. Furthermore, a new network, BCSwinReg, is proposed to discover correspondence through cross-attention exchange information, obtain multi-level semantic information through a multi-resolution strategy, and finally integrate the deformation of multi-resolutions by the divide-conquer cascade method. We performed experiments on the publicly available 4D-Lung dataset to demonstrate the effectiveness of CrossSwin and BCSwinReg. Compared with VoxelMorph, the BCSwinReg has obtained performance improvements of 3.3% in Dice Similarity Coefficient (DSC) and 0.19 in the average 95% Hausdorff distance (HD95).
Collapse
Affiliation(s)
- Jieming Zhang
- The East China University of Science and Technology, Shanghai, 200237, China
| | - Chang Qing
- The East China University of Science and Technology, Shanghai, 200237, China.
| | - Yu Li
- The East China University of Science and Technology, Shanghai, 200237, China
| | - Yaqi Wang
- The East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Zefrei FJ, Shormij M, Dastranj L, Alvandi M, Shaghaghi Z, Farzipour S, Zarei-Polgardani N. Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy. Curr Radiopharm 2024; 17:14-29. [PMID: 37974441 DOI: 10.2174/0118744710262369231110065230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Radiotherapy (RT) failure has historically been mostly attributed to radioresistance. Ferroptosis is a type of controlled cell death that depends on iron and is caused by polyunsaturated fatty acid peroxidative damage. Utilizing a ferroptosis inducer may be a successful tactic for preventing tumor growth and radiotherapy-induced cell death. A regulated form of cell death known as ferroptosis is caused by the peroxidation of phospholipids containing polyunsaturated fatty acids in an iron-dependent manner (PUFA-PLs). The ferroptosis pathway has a number of important regulators. By regulating the formation of PUFA-PLs, the important lipid metabolism enzyme ACSL4 promotes ferroptosis, whereas SLC7A11 and (glutathione peroxidase 4) GPX4 prevent ferroptosis. In addition to introducing the ferroptosis inducer chemicals that have recently been demonstrated to have a radiosensitizer effect, this review highlights the function and methods by which ferroptosis contributes to RT-induced cell death and tumor suppression in vitro and in vivo.
Collapse
Affiliation(s)
- Fatemeh-Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammd Shormij
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences-Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasim Zarei-Polgardani
- Department of Animal Sciences and Marine Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C, Evin, Tehran, Iran
| |
Collapse
|
7
|
Fu Z, Li K, Wang H, Li Y, Zhang J, Zhou J, Hu J, Xie D, Ni D. Spectral computed tomography-guided radiotherapy of osteosarcoma utilizing BiOI nanosheets. Acta Biomater 2023; 166:615-626. [PMID: 37209977 DOI: 10.1016/j.actbio.2023.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
As an aggressive malignant bone tumor, osteosarcoma (OS) is usually found in children and adolescents. Computed tomography (CT) is an important tool for the clinical evaluation of osteosarcoma, but limits to low diagnostic specificity due to single parameters of traditional CT and modest signal-to-noise ratio of clinical iodinated contrast agents. As one kind of spectral CT, dual-energy CT (DECT), with the advantage of a provision of multi-parameter information, makes it possible to acquire the best signal-to-noise ratio image, accurate detection, as well as imaging-guided therapy of bone tumors. Hereby, we synthesized BiOI nanosheets (BiOI NSs) as a DECT contrast agent with superior imaging capability compared to iodine agents for clinical detection of OS. Meanwhile, the synthesized BiOI NSs with great biocompatibility is able to achieve effective radiotherapy (RT) by enhancing X-ray dose deposition at the tumor site, leading to DNA damage, which in turn inhibits tumor growth. This study offers a promising new avenue for DECT imaging-guided treatment of OS. STATEMENT OF SIGNIFICANCE: Osteosarcoma (OS) is a common primary malignant bone tumor. Traditional surgical procedures and conventional CT scans are often used for the treatment and monitoring of OS, but the effects are generally unsatisfactory. In this work, BiOI nanosheets (NSs) was reported for dual-energy CT (DECT) imaging-guided OS radiotherapy. The powerful and constant X-ray absorption of BiOI NSs at any energy guarantees excellent enhanced DECT imaging performance, allowing detailed visualization of OS through images with a better signal-to-noise ratio and guiding radiotherapy process. The deposition of X-rays could be greatly enhanced by Bi atoms to induce serious DNA damage in radiotherapy. Taken together, the BiOI NSs for DECT-guided radiotherapy will greatly improve the current treatment status of OS.
Collapse
Affiliation(s)
- Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuhan Li
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, PR China.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
8
|
Hinojosa J, Vega SLH, De Oca RHM, Bayardo LH. Image-guided radiation therapy (IGRT) in prostate cancer in México, survey of SOMERA (Sociedad Mexicana de Radioterapeutas/Mexican Society of Radiation Oncologists) with recommendations on its implementation and process. Rep Pract Oncol Radiother 2023; 28:198-206. [PMID: 37456698 PMCID: PMC10348338 DOI: 10.5603/rpor.a2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Prostate cancer is one of the main tumors worldwide, its treatment is multidisciplinary, includes radiotherapy in all stages: curative, radical, adjuvant, salvage and palliative. Technological advances in planning systems, image acquisition and treatment equipment have allowed the delivery of higher doses limiting toxicity in healthy tissues, distributing radiation optimally and ensuring reproducibility of conditions. Image-guided radiotherapy (IGRT) is not standard in guidelines, only recommended with heterogeneity in its own process. Materials and methods A survey was conducted to members of the Mexican Society of Radiation Oncologists (SOMERA), to know the current status and make recommendations about its implementation and use, taking into account existing resources. Results Responses of 541 patients were evaluated, 85% belonged to the intermediate-high risk group, 65% received adjuvant or salvage radiotherapy (RT), 80% received intensity-modulated radiation therapy (IMRT) using doses up to 80 Gy/2 Gy. Cone beam computed tomography (CBCT) was performed on 506 (93.5%), (100% IMRT) and 90% at a periodicity of 3-5/week. 3D treatment with 42% portal images 1/week. Online correction strategies (36% changes before treatment), following a diet and bladder and rectal control. Evidence and recommendations are reviewed. Conclusions IGRT should be performed in patients with prostate cancer. In Mexico, despite limitations in the distribution of human and technological resources, it is routinely applied. More information is still needed on clinical evidence of its benefits and the process should be implemented according to infrastructure, following institutional guidelines, recommending to report the initial experience that helps to standardize national conduct.
Collapse
Affiliation(s)
- Jose Hinojosa
- American British Cowdray Medical Center IAP, Radiation Unit, Mexico City, Mexico
- Instituto Nacional de Cancerologia, Radioterapia, Ciudad de Mexico, Mexico
| | | | | | - Luis Hector Bayardo
- Hospital de Especialidades del Centro Medico Nacional de Occidente IMSS, Guadalajara, Mexico
| |
Collapse
|
9
|
Pedretti S, De Santis MC, Vavassori V, Bortolato B, Colciago RR, Cagna E, Doino DP, Cocchi A, Gerardi MA, Alterio D, Magrini SM, Tonoli S. Image-guided radiotherapy (IGRT) in Lombardy, Italy: a survey by the Lombardy section of the Italian Association of Radiotherapy and Clinical Oncology (AIRO-Lombardy). Expert Rev Anticancer Ther 2023; 23:661-667. [PMID: 37129314 DOI: 10.1080/14737140.2023.2208864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Image-guided radiation therapy (IGRT) has changed clinical practice. We proposed a survey to radiotherapy centers in Lombardy to picture the current clinical practice of its use. RESEARCH DESIGN AND METHODS The survey consisted of 32 multiple-choice questions, divided into five topics: type of hospital, patients treated in 2019, number of LINACs; presence of protocols and staff involved in IGRT; IGRT in stereotaxis; IGRT in non-stereotactic treatments; availability of medical and technical staff. RESULTS Twenty-seven directors answered (77%). Most centers (74%) have produced protocols to ensure uniformity in the IGRT process. The most widely used IGRT modality (92%) is cone-beam CT. Daily IGRT control is favored for prostate (100%), head and neck (87%), and lung (78%) neoplasms. The resident doctors can always perform supervised IGRT matching in only six centers. Radiation therapists perform IGRT controls only for some sites in 12 cases (44%) and always in 9 cases (33%). Radiation oncologists are present in real time, in most cases. CONCLUSIONS Today, IGRT can be considered standard practice but at the price of more time-consuming procedures. A balance between a fully physician-controlled process and an increased role for specifically trained RTTs is actively being sought.
Collapse
Affiliation(s)
- Sara Pedretti
- Radiation Oncology Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Carmen De Santis
- Radiation Oncology Department, Istituto Nazionale per lo Studio e la cura dei tumori, Milano, Italy
| | - Vittorio Vavassori
- Humanitas Gavazzeni Hospital, Radiation Oncology Department, Bergamo, Italy
| | - Barbara Bortolato
- Radiation Oncology Department, ASST della Valle Olona, Busto Arsizio, Italy
| | - Riccardo Ray Colciago
- Radiation Oncology Department, Istituto Nazionale per lo Studio e la cura dei tumori, Milano, Italy
| | - Emanuela Cagna
- Radiation Oncology Department, ASST Lariana, Como, Italy
| | | | | | | | - Daniela Alterio
- Radiation Oncology Department, European Institue of Oncology, Milno, Italy
| | | | - Sandro Tonoli
- Radiation Oncology Department, ASST Cremona, Cremona, Italy
| |
Collapse
|
10
|
Guerini AE, Nici S, Magrini SM, Riga S, Toraci C, Pegurri L, Facheris G, Cozzaglio C, Farina D, Liserre R, Gasparotti R, Ravanelli M, Rondi P, Spiazzi L, Buglione M. Adoption of Hybrid MRI-Linac Systems for the Treatment of Brain Tumors: A Systematic Review of the Current Literature Regarding Clinical and Technical Features. Technol Cancer Res Treat 2023; 22:15330338231199286. [PMID: 37774771 PMCID: PMC10542234 DOI: 10.1177/15330338231199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristian Toraci
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Cozzaglio
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-last author
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-last author
| |
Collapse
|
11
|
Malicki J, Piotrowski T, Guedea F, Krengli M. Treatment-integrated imaging, radiomics, and personalised radiotherapy: the future is at hand. Rep Pract Oncol Radiother 2022; 27:734-743. [PMID: 36196410 PMCID: PMC9521689 DOI: 10.5603/rpor.a2022.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Since the introduction of computed tomography for planning purposes in the 1970s, we have been observing a continuous development of different imaging methods in radiotherapy. The current achievements of imaging technologies in radiotherapy enable more than just improvement of accuracy on the planning stage. Through integrating imaging with treatment machines, they allow advanced control methods of dose delivery during the treatment. This article reviews how the integration of existing and novel forms of imaging changes radiotherapy and how these advances can allow a more individualised approach to cancer therapy. We believe that the significant challenge for the next decade is the continued integration of a range of different imaging devices into linear accelerators. These imaging modalities should show intra-fraction changes in body morphology and inter-fraction metabolic changes. As the use of these more advanced, integrated machines grows, radiotherapy delivery will become more accurate, thus resulting in better clinical outcomes: higher cure rates with fewer side effects.
Collapse
Affiliation(s)
- Julian Malicki
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Ferran Guedea
- Department of Radiation Oncology, Catalan Institute of Oncology, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Marco Krengli
- Radiation Oncology Unit, University Hospital “Maggiore della Carità”, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
12
|
Cao Y, Fu T, Duan L, Dai Y, Gong L, Cao W, Liu D, Yang X, Ni X, Zheng J. CDFRegNet: A cross-domain fusion registration network for CT-to-CBCT image registration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107025. [PMID: 35872383 DOI: 10.1016/j.cmpb.2022.107025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Computer tomography (CT) to cone-beam computed tomography (CBCT) image registration plays an important role in radiotherapy treatment placement, dose verification, and anatomic changes monitoring during radiotherapy. However, fast and accurate CT-to-CBCT image registration is still very challenging due to the intensity differences, the poor image quality of CBCT images, and inconsistent structure information. METHODS To address these problems, a novel unsupervised network named cross-domain fusion registration network (CDFRegNet) is proposed. First, a novel edge-guided attention module (EGAM) is designed, aiming at capturing edge information based on the gradient prior images and guiding the network to model the spatial correspondence between two image domains. Moreover, a novel cross-domain attention module (CDAM) is proposed to improve the network's ability to guide the network to effectively map and fuse the domain-specific features. RESULTS Extensive experiments on a real clinical dataset were carried out, and the experimental results verify that the proposed CDFRegNet can register CT to CBCT images effectively and obtain the best performance, while compared with other representative methods, with a mean DSC of 80.01±7.16%, a mean TRE of 2.27±0.62 mm, and a mean MHD of 1.50±0.32 mm. The ablation experiments also proved that our EGAM and CDAM can further improve the accuracy of the registration network and they can generalize well to other registration networks. CONCLUSION This paper proposed a novel CT-to-CBCT registration method based on EGAM and CDAM, which has the potential to improve the accuracy of multi-domain image registration.
Collapse
Affiliation(s)
- Yuzhu Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Tianxiao Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Luwen Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yakang Dai
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Lun Gong
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Weiwei Cao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Desen Liu
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, China
| | - Xiaodong Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xinye Ni
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China.
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Jinan Guoke Medical Technology Development Co., Ltd, Jinan, 250101, China.
| |
Collapse
|
13
|
Clinical Efficacy of Image-Guided Radiation Therapy for Cervical Cancer and Its Impact on Patients’ Serum Tumor Markers and KPS Scores. JOURNAL OF ONCOLOGY 2022; 2022:8536554. [PMID: 35874637 PMCID: PMC9300355 DOI: 10.1155/2022/8536554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Objective To assess the clinical efficacy of image-guided radiation therapy (IGRT) for cervical cancer and its impact on patients' serum tumor markers and Karnofsky Performance Status (KPS) scores. Methods Between August 2018 and July 2020, 94 patients with cervical cancer diagnosed and treated in our hospital were recruited and assigned via the random number table method to receive either IGRT (study group) or conventional radiotherapy (control group), with 47 cases to each group. The primary endpoint was clinical efficacy, and secondary endpoints included serum tumor markers levels and KPS scores. Results IGRT was associated with a significantly higher efficacy (97.87%) versus convention radiotherapy (74.46%) (P < 0.05). IGRT resulted in significantly lower levels of squamous cell carcinoma antigen (SCC-Ag), carcinoembryonic antigen (CEA), carbohydrate antigen 50 (CA50), and carbohydrate antigen 724 (CA724) versus conventional radiotherapy (P < 0.05). The eligible patients after IGRT showed significantly higher KPS scores versus conventional radiotherapy (P < 0.05). Conclusion IGRT enhances the survival of patients with cervical cancer, lowers their serum tumor marker levels, and elevates the KPS scores. Further clinical trials are, however, required prior to clinical promotion.
Collapse
|
14
|
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021; 16:1083-1102. [PMID: 33603370 PMCID: PMC7886779 DOI: 10.2147/ijn.s290438] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that can enhance the killing effect on tumor cells by accelerating DNA damage and producing free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In recent years, several strategies have been exploited to develop radiosensitizers that are highly effective and have low toxicity. In this review, we first summarized the applications of radiosensitizers including small molecules, macromolecules, and nanomaterials, especially those that have been used in clinical trials. Second, the development states of radiosensitizers and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the challenges and prospects for clinical translation of radiosensitizers in oncotherapy are presented.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Chengcheng Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
15
|
Evaluation of the influence of susceptibility-induced magnetic field distortions on the precision of contouring intracranial organs at risk for stereotactic radiosurgery. Phys Imaging Radiat Oncol 2021; 15:91-97. [PMID: 33458332 PMCID: PMC7807629 DOI: 10.1016/j.phro.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022] Open
Abstract
45 data sets (18 on a 1.5 T MR and 27 on a 3 T MR) were evaluated for susceptibility induced distortions. Maximum distortions of up to 1.7 mm were found for organs at risk in standard diagnostic settings. Median distortions ranged between 0.1 and 0.2 mm for all organs at risk. Active shimming was estimated to reduce distortions by a factor of 2.3 to 2.9. A safety margin of 1 mm would have encompassed 99.8% of the distortions.
Background and purpose Magnetic resonance imaging (MRI) is a crucial factor in optimal treatment planning for stereotactic radiosurgery. To further the awareness of possible errors in MRI, this work aimed to investigate the magnitude of susceptibility induced MRI distortions for intracranial organs at risk (OARs) and test the effectiveness of actively shimming these distortions. Materials and methods Distortion maps for 45 exams of 42 patients (18 on a 1.5 T MRI scanner, 27 on a 3 T MRI scanner) were calculated based on a high-bandwidth double-echo gradient echo sequence. The investigated OARs were brainstem, chiasm, eyes, and optic nerves. The influence of active shimming was investigated by comparing unshimmed 1.5 T data with shimmed 3 T data and comparing the results to a model based prediction. Results The median distortion for the different OARs was found to be between 0.13 and 0.18 mm for 1.5 T and between 0.11 and 0.13 mm for 3 T. The maximum distortion was found to be between 1.3 and 1.7 mm for 1.5 T and between 1.1 and 1.4 mm for 3 T. The variation of values was much higher for 1.5 T than for 3 T across all investigated OARs. Active shimming was found to reduce distortions by a factor of 2.3 to 2.9 compared to the expected values. Conclusions Using a safety margin for OARs of 1 mm would have encompassed 99.8% of the distortions. Since distortions are inversely proportional to the readout bandwidth, they can be further reduced by increasing the bandwidth. Additional error sources like gradient nonlinearities need to be addressed separately.
Collapse
|
16
|
Piliero MA, Casiraghi M, Bosetti DG, Cima S, Deantonio L, Leva S, Martucci F, Tettamanti M, Pupillo F, Bellesi L, Richetti A, Presilla S. Patient-based low dose cone beam CT acquisition settings for prostate image-guided radiotherapy treatments on a Varian TrueBeam linear accelerator. Br J Radiol 2020; 93:20200412. [PMID: 32822249 PMCID: PMC8519649 DOI: 10.1259/bjr.20200412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To evaluate the performance of low dose cone beam CT (CBCT) acquisition protocols for image-guided radiotherapy of prostate cancer. METHODS CBCT images of patients undergoing prostate cancer radiotherapy were acquired with the settings currently used in our department and two low dose settings at 50% and 63% lower exposure. Four experienced radiation oncologists and two radiation therapy technologists graded the images on five image quality characteristics. The scores were analysed through Visual Grading Regression, using the acquisition settings and the patient size as covariates. RESULTS The low dose acquisition settings have no impact on the image quality for patients with body profile length at hip level below 100 cm. CONCLUSIONS A reduction of about 60% of the dose is feasible for patients with size below 100 cm. The visibility of low contrast features can be compromised if using the low dose acquisition settings for patients with hip size above 100 cm. ADVANCES IN KNOWLEDGE Low dose CBCT acquisition protocols for the pelvis, based on subjective evaluation of patient images.
Collapse
Affiliation(s)
- Maria Antonietta Piliero
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Margherita Casiraghi
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Davide Giovanni Bosetti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Simona Cima
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Stefano Leva
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Francesco Martucci
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Marino Tettamanti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Francesco Pupillo
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Luca Bellesi
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Antonella Richetti
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Stefano Presilla
- Medical Physics Division, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
17
|
Chu C, Davis CM, Lan X, Hienz RD, Jablonska A, Thomas AM, Velarde E, Li S, Janowski M, Kai M, Walczak P. Neuroinflammation After Stereotactic Radiosurgery-Induced Brain Tumor Disintegration Is Linked to Persistent Cognitive Decline in a Mouse Model of Metastatic Disease. Int J Radiat Oncol Biol Phys 2020; 108:745-757. [PMID: 32470502 PMCID: PMC8758056 DOI: 10.1016/j.ijrobp.2020.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/20/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE Improved efficacy of anticancer therapy and a growing pool of survivors give rise to a question about their quality of life and return to premorbid status. Radiation is effective in brain metastasis eradication, although the optimal approach and long-term effects on brain function are largely unknown. We studied the effects of radiosurgery on brain function. METHODS AND MATERIALS Adult C57BL/6J mice with or without brain metastases (rat 9L gliosarcoma) were treated with cone beam single-arc stereotactic radiosurgery (SRS; 40 Gy). Tumor growth was monitored using bioluminescence, whereas longitudinal magnetic resonance imaging, behavioral studies, and histologic analysis were performed to evaluate brain response to the treatment for up to 18 months. RESULTS Stereotactic radiosurgery (SRS) resulted in 9L metastases eradication within 4 weeks with subsequent long-term survival of all treated animals, whereas all nontreated animals succumbed to the brain tumor. Behavioral impairment, as measured with a recognition memory test, was observed earlier in mice subjected to radiosurgery of tumors (6 weeks) in comparison to SRS of healthy brain tissue (10 weeks). Notably, the deficit resolved by 18 weeks only in mice not bearing a tumor, whereas tumor eradication was complicated by the persistent cognitive deficits. In addition, the results of magnetic resonance imaging were unremarkable in both groups, and histopathology revealed changes. SRS-induced tumor eradication triggered long-lasting and exacerbated neuroinflammatory response. No demyelination, neuronal loss, or hemorrhage was detected in any of the groups. CONCLUSIONS Tumor disintegration by SRS leads to exacerbated neuroinflammation and persistent cognitive deficits; therefore, methods aiming at reducing inflammation after tumor eradication or other therapeutic methods should be sought.
Collapse
Affiliation(s)
- Chengyan Chu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine M Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaoyan Lan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert D Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mihoko Kai
- Department of Radiation Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland.
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Fiorentino A, Gregucci F, Bonaparte I, Vitulano N, Surgo A, Mazzola R, Di Monaco A, Carbonara R, Alongi F, Langialonga T, Grimaldi M. Stereotactic Ablative radiation therapy (SABR) for cardiac arrhythmia: A new therapeutic option? Radiol Med 2020; 126:155-162. [PMID: 32405924 DOI: 10.1007/s11547-020-01218-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
AIM Stereotactic ablative radiation therapy (SABR) is used in non-oncologic indications, recently even for cardiac arrhythmias. Thus, aim of this analysis is to review preclinical, early clinical evidences and future direction of the latter new treatment approach. METHOD A collection of available data regarding SABR and cardiac arrhythmias was made, by Pubmed research and 2 independent researchers, including preclinical and clinical data. A review of ongoing trials was conducted on ClinicalTrials.gov. RESULTS Preclinical research conducted in animal models showed that a safe and effective noninvasive treatment approach for cardiac arrhythmias could be represented by SABR with a median time of response around 2-3 months. The treatment dose plays a crucial role: the atrioventricular node would seem more radiosensitive than the other cardiac electric zones. Clinical data, such as published case series, case reports and early prospective studies, have already suggested the feasibility, efficacy and safety of SABR (25 Gy in one session) for refractory ventricular arrhythmias. CONCLUSION Considering the ongoing trials of SABR and new technological improvements in radiotherapy (e.g. hybrid magnetic resonance) and in arrhythmias noninvasive mapping systems, the future analyses will improve the reliability of those preliminary results.
Collapse
Affiliation(s)
- Alba Fiorentino
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Fabiana Gregucci
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy.
| | - Ilaria Bonaparte
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Nicola Vitulano
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Rosario Mazzola
- Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Antonio Di Monaco
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Roberta Carbonara
- Department of Radiation Oncology, General Regional Hospital "F. Miulli", Strada Prov 127, 70021, Acquaviva delle Fonti, Bari, Italy
| | - Filippo Alongi
- Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Tommaso Langialonga
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital "F. Miulli", Acquaviva delle Fonti, Bari, Italy
| |
Collapse
|
19
|
Vaccara E, Gho A, Belgioia L, Vagge S, Marcenaro M, Corvò R, Levrero F. 147. Setup accuracy in Lung Stereotactic Body Radiation Therapy (SBRT): Single lesion versus multiple lesions. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
20
|
Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R. Recent advances in radiation oncology. Ecancermedicalscience 2017; 11:785. [PMID: 29225692 PMCID: PMC5718253 DOI: 10.3332/ecancer.2017.785] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.
Collapse
Affiliation(s)
- Cristina Garibaldi
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giulia Marvaso
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Samantha Dicuonzo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Damaris Patricia Rojas
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 80–211 Gdańsk, Poland
| | - Delia Ciardo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | - Rosalinda Ricotti
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
21
|
Moderate Hypofractionated Postprostatectomy Volumetric Modulated Arc Therapy With Daily Image Guidance (VMAT-IGRT): A Mono-institutional Report on Feasibility and Acute Toxicity. Clin Genitourin Cancer 2017; 15:e667-e673. [DOI: 10.1016/j.clgc.2017.01.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/13/2017] [Accepted: 01/28/2017] [Indexed: 11/17/2022]
|