1
|
Curcean S, Curcean A, Martin D, Fekete Z, Irimie A, Muntean AS, Caraiani C. The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer. Cancers (Basel) 2024; 16:3111. [PMID: 39272969 PMCID: PMC11394290 DOI: 10.3390/cancers16173111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The role of magnetic resonance imaging (MRI) in rectal cancer management has significantly increased over the last decade, in line with more personalized treatment approaches. Total neoadjuvant treatment (TNT) plays a pivotal role in the shift from traditional surgical approach to non-surgical approaches such as 'watch-and-wait'. MRI plays a central role in this evolving landscape, providing essential morphological and functional data that support clinical decision-making. Key MRI-based biomarkers, including circumferential resection margin (CRM), extramural venous invasion (EMVI), tumour deposits, diffusion-weighted imaging (DWI), and MRI tumour regression grade (mrTRG), have proven valuable for staging, response assessment, and patient prognosis. Functional imaging techniques, such as dynamic contrast-enhanced MRI (DCE-MRI), alongside emerging biomarkers derived from radiomics and artificial intelligence (AI) have the potential to transform rectal cancer management offering data that enhance T and N staging, histopathological characterization, prediction of treatment response, recurrence detection, and identification of genomic features. This review outlines validated morphological and functional MRI-derived biomarkers with both prognostic and predictive significance, while also exploring the potential of radiomics and artificial intelligence in rectal cancer management. Furthermore, we discuss the role of rectal MRI in the 'watch-and-wait' approach, highlighting important practical aspects in selecting patients for non-surgical management.
Collapse
Affiliation(s)
- Sebastian Curcean
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Andra Curcean
- Department of Imaging, Affidea Center, 15c Ciresilor Street, 400487 Cluj-Napoca, Romania
| | - Daniela Martin
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Zsolt Fekete
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Oncological Surgery and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
- Department of Oncological Surgery, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alina-Simona Muntean
- Department of Radiation Oncology, 'Prof. Dr. Ion Chiricuta' Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Surov A, Diallo-Danebrock R, Radi A, Kröger JR, Niehoff JH, Michael AE, Gerdes B, Elhabash S, Wienke A, Borggrefe J. Photon Counting Computed Tomography in Rectal Cancer: Associations Between Iodine Concentration, Histopathology and Treatment Response: A Pilot Study. Acad Radiol 2024; 31:3620-3626. [PMID: 38418345 DOI: 10.1016/j.acra.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/01/2024]
Abstract
RATIONALE AND OBJECTIVES Common computed tomography (CT) investigation plays a limited role in characterizing and assessing the response of rectal cancer (RC) to neoadjuvant radiochemotherapy (NARC). Photon counting computed tomography (PCCT) improves the imaging quality and can provide multiparametric spectral image information including iodine concentration (IC). Our purpose was to analyze associations between IC and histopathology in RC and to evaluate the role of IC in response prediction to NARC. MATERIALS AND METHODS Overall, 41 patients were included into the study, 14 women and 27 men, mean age, 65.5 years. PCCT in a portal venous phase of the abdomen was performed. In every case, a polygonal region of interest (ROI) was manually drawn on iodine maps. Normalized IC (NIC) was also calculated. Tumor stage, grade, lymphovascular invasion, circumferential resection margin, and tumor markers were analyzed. Tumor regression grade (absence/presence of tumor cells) after NARC was analyzed. NIC values in groups were compared to Mann-Whitney-U tests. Sensitivity, specificity, and area under the curve values were calculated. Intraclass correlation coefficient (ICC) was calculated. RESULTS ICC was 0.93, 95%CI= (0.88; 0.96). Tumors with lymphovascular invasion showed higher NIC values in comparison to those without (p = 0.04). Tumors with response grade 2-4 showed higher pretreatment NIC values in comparison to lesions with response grade 0-1 (p = 0.01). A NIC value of 0.36 and higher can predict response grade 2-4 (sensitivity, 73.9%; specificity, 91.7%; area under the curve, 0.85). CONCLUSION NIC values showed an excellent interreader agreement in RC. NIC can predict treatment response to NARC.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany.
| | - Raihanatou Diallo-Danebrock
- Department of Pathology, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Amin Radi
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Jan Robert Kröger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Julius Henning Niehoff
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Arwed Elias Michael
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Berthold Gerdes
- Department of General Surgery, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Saleem Elhabash
- Department of General Surgery, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital Minden, Ruhr University Bochum, Hans-Nolte-Str. 1, Minden 32429, Germany
| |
Collapse
|
3
|
De Felice F, Miccini M, Botticelli A, Roberto M, Petrucciani N. The multidisciplinary management of locally advanced rectal cancer. Expert Rev Anticancer Ther 2024; 24:581-587. [PMID: 38676281 DOI: 10.1080/14737140.2024.2349137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION The classic paradigm for the management of locally advanced rectal cancer (LARC) consists of (chemo)radiotherapy (C)RT), total mesorectal excision, and adjuvant chemotherapy (CHT). At present, due to the high rate of distant metastasis (up to 30%), the total neoadjuvant therapy (TNT) with the administration of systemic CHT in the neoadjuvant setting has gained acceptance as standard of care.Our aim is to critically review the current literature on LARC management and summarize the different approaches recently proposed to improve clinical outcomes. It represents a starting step to develop an effective strategy that ultimately could harmonize the standard of care in daily clinical practice. AREAS COVERED Studies reporting the impact of TNT approaches were deemed eligible. De-escalation strategies, including non-operative management (NOM) after TNT, as well as RT omission or systemic therapy alone, were also investigated. EXPERT OPINION The year 2020 has seen promising new data from randomized phase III trials in the field of LARC management. Nowadays, TNT strategy has been accepted as the primary treatment for LARC. The role of de-escalation strategies is still unknown. The goal is to achieve better survival outcomes with improving quality of life. Only selected patients are likely to benefit from NOM or immunotherapy alone.
Collapse
Affiliation(s)
- Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | | | - Andrea Botticelli
- Department of Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Michela Roberto
- Department of Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Niccolò Petrucciani
- Department of Medical and Surgical Sciences and Translational Medicine, St Andrea University Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
4
|
Wang D, Liu S, Fu J, Zhang P, Zheng S, Qiu B, Liu H, Ye Y, Guo J, Zhou Y, Jiang H, Yin S, He H, Xie C, Liu H. Correlation of K trans derived from dynamic contrast-enhanced MRI with treatment response and survival in locally advanced NSCLC patients undergoing induction immunochemotherapy and concurrent chemoradiotherapy. J Immunother Cancer 2024; 12:e008574. [PMID: 38910009 PMCID: PMC11328668 DOI: 10.1136/jitc-2023-008574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE This study aimed to investigate the prognostic significance of pretreatment dynamic contrast-enhanced (DCE)-MRI parameters concerning tumor response following induction immunochemotherapy and survival outcomes in patients with locally advanced non-small cell lung cancer (NSCLC) who underwent immunotherapy-based multimodal treatments. MATERIAL AND METHODS Unresectable stage III NSCLC patients treated by induction immunochemotherapy, concurrent chemoradiotherapy (CCRT) with or without consolidative immunotherapy from two prospective clinical trials were screened. Using the two-compartment Extend Tofts model, the parameters including Ktrans, Kep, Ve, and Vp were calculated from DCE-MRI data. The apparent diffusion coefficient was calculated from diffusion-weighted-MRI data. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to assess the predictive performance of MRI parameters. The Cox regression model was used for univariate and multivariate analysis. RESULTS 111 unresectable stage III NSCLC patients were enrolled. Patients received two cycles of induction immunochemotherapy and CCRT, with or without consolidative immunotherapy. With the median follow-up of 22.3 months, the median progression-free survival (PFS) and overall survival (OS) were 16.3 and 23.8 months. The multivariate analysis suggested that Eastern Cooperative Oncology Group score, TNM stage and the response to induction immunochemotherapy were significantly related to both PFS and OS. After induction immunochemotherapy, 67 patients (59.8%) achieved complete response or partial response and 44 patients (40.2%) had stable disease or progressive disease. The Ktrans of primary lung tumor before induction immunochemotherapy yielded the best performance in predicting the treatment response, with an AUC of 0.800. Patients were categorized into two groups: high-Ktrans group (n=67, Ktrans>164.3×10-3/min) and low-Ktrans group (n=44, Ktrans≤164.3×10-3/min) based on the ROC analysis. The high-Ktrans group had a significantly higher objective response rate than the low-Ktrans group (85.1% (57/67) vs 22.7% (10/44), p<0.001). The high-Ktrans group also presented better PFS (median: 21.1 vs 11.3 months, p=0.002) and OS (median: 34.3 vs 15.6 months, p=0.035) than the low-Ktrans group. CONCLUSIONS Pretreatment Ktrans value emerged as a significant predictor of the early response to induction immunochemotherapy and survival outcomes in unresectable stage III NSCLC patients who underwent immunotherapy-based multimodal treatments. Elevated Ktrans values correlated positively with enhanced treatment response, leading to extended PFS and OS durations.
Collapse
Affiliation(s)
- DaQuan Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - SongRan Liu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Jia Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - PengXin Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - ShiYang Zheng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Bo Qiu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui Liu
- United Imaging Healthcare, ShangHai, China
| | - YongQuan Ye
- United Imaging of Healthcare America, Houston, Texas, USA
| | - JinYu Guo
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Yin Zhou
- SuZhou TongDiao Company, Suzhou, China
| | | | - ShaoHan Yin
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - HaoQiang He
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - ChuanMiao Xie
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ari A, Sevik H, Sevinc MM, Tatar C, Buyukasik K, Surel AA, Idiz UO. Predicting the Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Using Soluble Immune Checkpoints. Cancer Biother Radiopharm 2024; 39:247-254. [PMID: 38010745 DOI: 10.1089/cbr.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Introduction: Personalizing neoadjuvant therapy for locally advanced rectal cancer (LARC) requires identifying biomarkers that predict treatment response. This study evaluates soluble immune checkpoints (sICPs) as predictive markers for neoadjuvant treatment response in LARC patients located in the middle and lower rectum. Materials and Methods: This prospective study included patients diagnosed with clinical stage T3 or T4 rectal cancer (RC) based on pelvic magnetic resonance imaging, with or without pelvic lymph node involvement. The modified Ryan scoring system was used to assess the response to neoadjuvant chemoradiotherapy (nCRT). Blood samples were collected from all RC patients before initiating nCRT. Various sICPs (sCD25, 4-1BB, B7.2, free active TGF-β1, CTLA-4, PD-L1, PD-1, Tim-3, LAG-3, galectin-9), along with age, gender, stage, blood cell counts, and biochemical variables, were recorded and compared based on tumor regression grade (TRG). Results: Among 38 participants, lymphocyte count was higher, and platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and platelet count were lower in patients with complete/near-complete response (TRG 0/1). In addition, TRG 0/1 patients had significantly lower levels of soluble galectin-9 than TRG 2/3 patients. Furthermore, platelet count was the only parameter that showed a significant difference among the three groups (TRG 0/1, TRG 2, and TRG 3). PLR demonstrated the highest sensitivity and specificity, with >80% for both measures. Conclusions: Lymphocyte count, PLR, NLR, platelet count, and galectin-9 may help predict favorable neoadjuvant treatment response in LARC patients, although without providing a definitive outcome. Personalized therapy based on these markers could enhance treatment decision making in LARC management.
Collapse
Affiliation(s)
- Aziz Ari
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Husnu Sevik
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Mert Mahsuni Sevinc
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Cihad Tatar
- Department of General Surgery, Acibadem Taksim Hospital, Istanbul, Turkey
| | - Kenan Buyukasik
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Aziz Ahmet Surel
- Department of General Surgery, Ankara Bilkent City Hospital, Cankaya, Turkey
| | - Ufuk Oguz Idiz
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Cai Z, Wang S, Zhou H, Cao D. Low expression of ZHX3 is associated with progression and poor prognosis in colorectal cancer. Transl Oncol 2024; 39:101829. [PMID: 37979559 PMCID: PMC10656720 DOI: 10.1016/j.tranon.2023.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
Accumulating studies suggest that ZHX3, the member of ZHX family, is involved in a variety of biological functions such as development and differentiation. Recently, ZHX3 may also be involved in the progression of several cancer types including renal cancer, gastric cancer, liver cancer and breast cancer. However, the potential role of ZHX3 in colorectal cancer (CRC) is still unknown. In this study, we analyzed the protein levels of ZHX3 by immunohistochemistry and evaluated its relationship with the clinicopathological features and prognosis in 286 CRC patients. In vitro cell proliferation assay, plate colony formation assay and xenograft model in nude mice were applied to evaluate CRC cell proliferative ability. Our results showed that the expression of ZHX3 was significantly downregulated in CRC tissues compared with paired adjacent nontumor tissues. Furthermore, the ZHX3 expression was found to have a strong correlation with tumor size, tumor invasion depth and TNM stage. Kaplan-Meier analysis demonstrated that low ZHX3 expression was related to a poorer overall survival and disease-free survival in CRC patients. In addition, cox's proportional hazards analysis indicated that low ZHX3 expression was an independent prognostic indicator of poor prognosis. Functionally, reduced expression of ZHX3 promotes the proliferation of CRC cells both in vitro and in vivo. Conversely, overexpression of ZHX3 inhibited the growth of CRC cells, indicated that ZHX3 was significantly correlated with CRC progression. Our results indicate for the first time that ZHX3 may be a potential marker of cancer prognosis and CRC recurrence.
Collapse
Affiliation(s)
- Zhai Cai
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Songsheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huabin Zhou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ding Cao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Li Y, Zeng C, Du Y. Use of a radiomics-clinical model based on magnetic diffusion-weighted imaging for preoperative prediction of lymph node metastasis in rectal cancer patients. Medicine (Baltimore) 2023; 102:e36004. [PMID: 37960749 PMCID: PMC10637426 DOI: 10.1097/md.0000000000036004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Rectal cancer is the eighth most prevalent malignancy worldwide with a 3.2% mortality rate and 3.9% incidence rate. Radiologists still have difficulty in correctly diagnosing lymph node metastases that have been suspected preoperatively. To assess the effectiveness of a model combining clinical and radiomics features for the preoperative prediction of lymph node metastasis in rectal cancer. We retrospectively analyzed data from 104 patients with rectal cancer. All patients were selected as samples for the training (n = 72) and validation cohorts (n = 32). Lymph nodes (LNs) in diffusion-weighted images were analyzed to obtain 842 radiomic characteristics, which were then used to draw the region of interest. Logistic regression, least absolute shrinkage and selection operator, and between-group and within-group correlation analyses were combined to establish the radiomic score (rad-score). Receiver operating characteristic curves were used to estimate the prediction accuracy of the model. A calibration curve was constructed to test the predictive ability of the model. A decision curve analysis was performed to analyze the model's value in clinical application. The area under the curve for the radiomics-clinical, clinical, and radiomics models was 0.856, 0.810, and 0.781, respectively, in the training cohort and 0.880, 0.849, and 0.827, respectively, in the validation cohort. The calibration curve and DCA showed that the radiomics-clinical prediction model had good prediction accuracy, which was higher than that of the other models. The radiomics-clinical model showed a favorable predictive performance for the preoperative prediction of LN metastasis in patients with rectal cancer.
Collapse
Affiliation(s)
- Yehan Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
- Department of Radiology, Chongqing Cancer Hospital, Chongqing, China
| | - Chen Zeng
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
- Department of Radiology, West China Hospital of Sichuan University, Sichuan, China
| | - Yong Du
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
8
|
Chen M, Ma Y, Song Y, Huang J, Gao Y, Zheng J, He F. Survival outcomes of different neoadjuvant treatment regimens in patients with locally advanced rectal cancer and MRI-detected extramural venous invasion. Cancer Med 2023; 12:20523-20537. [PMID: 37864414 PMCID: PMC10660615 DOI: 10.1002/cam4.6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
PURPOSE MRI-detected extramural venous invasion (mrEMVI) is associated with poor survival outcomes in patients with locally advanced rectal cancer (LARC). An mrEMVI-positive status is considered a strong indication for neoadjuvant treatment, but the optimal regimen is unknown. PATIENTS AND METHODS We retrospectively compared pathological and survival outcomes of 584 patients diagnosed with mrEMVI-positive rectal cancer between January 2013 and October 2021, and receiving either neoadjuvant chemotherapy (NCT) alone, neoadjuvant chemoradiotherapy (nCRT) alone, or nCRT plus NCT, prior to total mesorectal excision. Propensity score matching (PSM) was used to balance clinical bias between groups, which were compared using chi-square testing and Kaplan-Meier curves. RESULTS Median follow-up was 33.9 (range, 10.2-100.4) months. The 3-year overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRFS) rates for all patients were 90.4%, 57.5%, 61.1%, and 85.7%, respectively. Of 584 mrEMVI-positive patients at the time of diagnosis, 457 (78.3%) were EMVI-negative on surgical pathology, and they had significantly better 3-year OS, DMFS, DFS, and LRFS rates (all p < 0.001) than patients who remained EMVI-positive. After PSM was applied, patients receiving nCRT alone had significantly better 3-year OS (96.8% vs. 86.5%, p = 0.005) and DMFS (67.1% vs. 53.5%, p = 0.03) rates than those receiving NCT alone. Patients receiving NCT plus nCRT had higher pathological complete response (PCR) (10.8% vs. 2.7%, p = 0.04) and downstaging (33.8% vs. 5.3%, p < 0.001) rates than those receiving nCRT alone, but survival rates did not differ (all p > 0.05). CONCLUSION Most EMVI-positive patients with LARC converted to EMVI-negative after neoadjuvant treatment, resulting in improved OS and DFS. Patients receiving nCRT had more favorable survival outcomes than those receiving NCT, suggesting the importance of including neoadjuvant radiotherapy. Patients receiving NCT in addition to nCRT had higher rates of PCR and downstaging, but their survival rates were not better.
Collapse
Affiliation(s)
- Mo Chen
- Department of Genitourinary OncologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yan Ma
- Department of Radiation Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yi‐wen Song
- Department of Radiation Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jinhua Huang
- Department of Minimal Invasive Interventional TherapySun Yat‐sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongChina
| | - Yuan‐hong Gao
- Department of Radiation OncologySun Yat‐sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongChina
| | - Jian Zheng
- Department of Radiation Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Fang He
- Department of Radiation Oncology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Biomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of Radiation OncologySun Yat‐sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongChina
| |
Collapse
|
9
|
Chan Wah Hak C, Balyasnikova S, Withey S, Tait D, Brown G, Chong I. Radiological Biomarkers in MRI directed Rectal Cancer Radiotherapy Volume Delineation. Cancers (Basel) 2023; 15:5176. [PMID: 37958350 PMCID: PMC10649318 DOI: 10.3390/cancers15215176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Our study evaluated whether an MRI reporting system highlighting areas of contiguous and discontinuous extramural venous invasion (EMVI) can improve the accuracy of gross tumour volume (GTV) delineation. Initially, 27 consecutive patients with locally advanced rectal cancer treated between 2012 and 2014 were evaluated. We used an MRI reporting proforma that documented the position of the primary tumour, lymph nodes and EMVI. The new GTVs delineated were compared with historical radiotherapy treatment volumes to identify the frequency of GTV geographical miss. We observed that the delineation of involved nodes and areas of EMVI was more likely to represent sources of uncertainty wherein nodal GTV geographical miss was evident in 5 out of 27 patients (19%). Complete EMVI GTV geographical miss occurred in two patients (7%). We re-evaluated our radiotherapy practice in a further 27 patients after the implementation of a modified MRI reporting system. An improvement was seen; nodal miss was observed in two patients (7%) and partial EMVI miss in one patient (4%), although these areas were encompassed in the planning target volume (PTV). Our study shows that extramural venous invasion and involved nodes need to be highlighted on MRI to improve the accuracy of rectal cancer GTV delineation.
Collapse
Affiliation(s)
| | | | - Samuel Withey
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Diana Tait
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Gina Brown
- Department of Surgery and Cancer, Hammersmith Campus, Imperial College, London W12 0HS, UK
| | - Irene Chong
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
10
|
Dong WZ, Ni HL, Cai C. Predictive value of a nomogram based on DCE-MRI and DWI quantitative parameters and serum CEA level for risk of postoperative recurrence/metastasis of rectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:773-781. [DOI: 10.11569/wcjd.v31.i18.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND The prognosis of rectal cancer is poor, and early prediction of recurrence and metastasis after radical surgery is of great significance for improving its prognosis. This study integrated multiple influencing factors such as multimodal magnetic resonance imaging (MRI) parameters, tumor markers, and clinicopathological features to develop a nomogram to provide a basis for the development of clinical intervention measures for this malignancy.
AIM To develop a nomogram based on dynamic contrast enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI) quantitative parameters and serum carcinoembryonic antigen (CEA) level, and to analyze the predictive value of this model for the risk of postoperative recurrence and metastasis of rectal cancer, so as to guide the development of clinical intervention measures for this malignancy.
METHODS A total of 120 patients who underwent laparoscopic-assisted radical resection of rectal cancer at our hospital from March 1, 2019 to February 28, 2022 were selected as research subjects. According to the presence of recurrence/metastasis within 1 year after surgery, the patients were divided into a recurrence/metastasis group (n = 29) and a no recurrence/metastasis group (n = 91). The relevant parameters [apparent diffusion coefficient (ADC), transfer rate constant (Ktrans), blood return constant (Kep), and extravascular extracellular space volume fraction (Ve)] of multimodal MRI imaging techniques were compared between the two groups to analyze their predictive value for postoperative recurrence/metastasis. Univariate analysis with Lasso model screening for predictive factors related to postoperative recurrence/metastasis was performed, and logistic regression analysis was used to analyze the influencing factors of postoperative recurrence/metastasis. A nomogram was developed based on the influencing factors identified, and the predictive value of the model for postoperative recurrence/metastasis was assessed. Calibration curve and decision curve analysis (DCA) were used to verify the calibration degree and clinical effectiveness of the model, respectively.
RESULTS ADC in the recurrence/metastasis group was lower than that in the no recurrence/metastasis group, while Ktrans and Kep were higher than those in the no recurrence/metastasis group (P < 0.05). Obstruction, degree of differentiation, clinical stage, lymph node metastasis, postoperative CEA, ADC, Ktrans, and Kep were identified to be independent influencing factors on postoperative recurrence/metastasis (P < 0.05). The area under the curve of the nomogram was higher than that of ADC, Ktrans, and Kep combined (P < 0.05), and the nomogram had good calibration and clinical efficacy.
CONCLUSION The nomogram developed based on DCE-MRI and DWI quantitative parameters and serum CEA level has appreciated predictive value for postoperative recurrence/metastasis of rectal cancer, and clinical intervention measures can be formulated according to these high risk factors to reduce the risk of postoperative recurrence/metastasis.
Collapse
Affiliation(s)
- Wu-Zhen Dong
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Hao-Liang Ni
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| | - Cheng Cai
- Jinhua Central Hospital, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
11
|
Jiang X, Hu Z, Wang S, Zhang Y. Deep Learning for Medical Image-Based Cancer Diagnosis. Cancers (Basel) 2023; 15:3608. [PMID: 37509272 PMCID: PMC10377683 DOI: 10.3390/cancers15143608] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The application of deep learning technology to realize cancer diagnosis based on medical images is one of the research hotspots in the field of artificial intelligence and computer vision. Due to the rapid development of deep learning methods, cancer diagnosis requires very high accuracy and timeliness as well as the inherent particularity and complexity of medical imaging. A comprehensive review of relevant studies is necessary to help readers better understand the current research status and ideas. (2) Methods: Five radiological images, including X-ray, ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), positron emission computed tomography (PET), and histopathological images, are reviewed in this paper. The basic architecture of deep learning and classical pretrained models are comprehensively reviewed. In particular, advanced neural networks emerging in recent years, including transfer learning, ensemble learning (EL), graph neural network, and vision transformer (ViT), are introduced. Five overfitting prevention methods are summarized: batch normalization, dropout, weight initialization, and data augmentation. The application of deep learning technology in medical image-based cancer analysis is sorted out. (3) Results: Deep learning has achieved great success in medical image-based cancer diagnosis, showing good results in image classification, image reconstruction, image detection, image segmentation, image registration, and image synthesis. However, the lack of high-quality labeled datasets limits the role of deep learning and faces challenges in rare cancer diagnosis, multi-modal image fusion, model explainability, and generalization. (4) Conclusions: There is a need for more public standard databases for cancer. The pre-training model based on deep neural networks has the potential to be improved, and special attention should be paid to the research of multimodal data fusion and supervised paradigm. Technologies such as ViT, ensemble learning, and few-shot learning will bring surprises to cancer diagnosis based on medical images.
Collapse
Grants
- RM32G0178B8 BBSRC
- MC_PC_17171 MRC, UK
- RP202G0230 Royal Society, UK
- AA/18/3/34220 BHF, UK
- RM60G0680 Hope Foundation for Cancer Research, UK
- P202PF11 GCRF, UK
- RP202G0289 Sino-UK Industrial Fund, UK
- P202ED10, P202RE969 LIAS, UK
- P202RE237 Data Science Enhancement Fund, UK
- 24NN201 Fight for Sight, UK
- OP202006 Sino-UK Education Fund, UK
- RM32G0178B8 BBSRC, UK
- 2023SJZD125 Major project of philosophy and social science research in colleges and universities in Jiangsu Province, China
Collapse
Affiliation(s)
- Xiaoyan Jiang
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Zuojin Hu
- School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing 210038, China; (X.J.); (Z.H.)
| | - Shuihua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| | - Yudong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester LE1 7RH, UK;
| |
Collapse
|
12
|
Nougaret S, Rousset P, Lambregts DMJ, Maas M, Gormly K, Lucidarme O, Brunelle S, Milot L, Arrivé L, Salut C, Pilleul F, Hordonneau C, Baudin G, Soyer P, Brun V, Laurent V, Savoye-Collet C, Petkovska I, Gerard JP, Cotte E, Rouanet P, Catalano O, Denost Q, Tan RB, Frulio N, Hoeffel C. MRI restaging of rectal cancer: The RAC (Response-Anal canal-CRM) analysis joint consensus guidelines of the GRERCAR and GRECCAR groups. Diagn Interv Imaging 2023; 104:311-322. [PMID: 36949002 DOI: 10.1016/j.diii.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE To develop guidelines by international experts to standardize data acquisition, image interpretation, and reporting in rectal cancer restaging with magnetic resonance imaging (MRI). MATERIALS AND METHODS Evidence-based data and experts' opinions were combined using the RAND-UCLA Appropriateness Method to attain consensus guidelines. Experts provided recommendations for reporting template and protocol for data acquisition were collected; responses were analysed and classified as "RECOMMENDED" versus "NOT RECOMMENDED" (if ≥ 80% consensus among experts) or uncertain (if < 80% consensus among experts). RESULTS Consensus regarding patient preparation, MRI sequences, staging and reporting was attained using the RAND-UCLA Appropriateness Method. A consensus was reached for each reporting template item among the experts. Tailored MRI protocol and standardized report were proposed. CONCLUSION These consensus recommendations should be used as a guide for rectal cancer restaging with MRI.
Collapse
Affiliation(s)
- Stephanie Nougaret
- Department of Radiology IRCM, Montpellier Cancer Research Institute, 34000 Montpellier, France; INSERM, U1194, University of Montpellier, 34295, Montpellier, France.
| | - Pascal Rousset
- Department of Radiology, CHU Lyon-Sud, EMR 3738 CICLY, Université Claude-Bernard Lyon 1, 69495 Pierre-Benite, France
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Kirsten Gormly
- Jones Radiology, Kurralta Park, 5037, Australia; University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Oliver Lucidarme
- Department of Radiology, Pitié-Salpêtrière Hospital, AP-HP, 75013 Paris, France; LIB, INSERM, CNRS, UMR7371-U1146, Sorbonne Université, 75013 Paris, France
| | - Serge Brunelle
- Department of Radiology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Laurent Milot
- Department of Diagnostic and Interventional Radiology, Hôpital Edouard Herriot, Hospices Civils de Lyon, University of Lyon, 69003 Lyon, France
| | - Lionel Arrivé
- Department of Radiology, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France; Sorbonne Université, 75013 Paris, France
| | - Celine Salut
- CHU de Bordeaux, Department of Radiology, Université de Bordeaux, 33000 Bordeaux, France
| | - Franck Pilleul
- Department of Radiology, Centre Léon Bérard, Lyon, France Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621, Lyon, France
| | | | - Guillaume Baudin
- Department of Radiology, Centre Antoine Lacassagne, 06100 Nice, France
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, AP-HP, 75014 Paris, France; Université Paris Cité, 75006 Paris, France
| | - Vanessa Brun
- Department of Radiology, CHU Hôpital Pontchaillou, 35000 Rennes, France
| | - Valérie Laurent
- Department of Radiology, Nancy University Hospital, Université de Lorraine, 54500 Vandoeuvre-lès-Nancy, France
| | | | - Iva Petkovska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jean-Pierre Gerard
- Department of Radiotherapy, Centre Antoine Lacassagne, 06000 Nice, France
| | - Eddy Cotte
- Department of Digestive Surgery, Hospices Civils de Lyon, Lyon Sud University Hospital, 69310 Pierre Bénite, France; Lyon 1 Claude Bernard University, 69100 Villeurbanne, France
| | - Philippe Rouanet
- Department of Surgery, Institut Régional du Cancer de Montpellier, Montpellier Cancer Research Institute, INSERM U1194, University of Montpellier, 34295, Montpellier, France
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Quentin Denost
- Department of Digestive Surgery, Hôpital Haut-Lévèque, Université de Bordeaux, 33000 Bordeaux, France
| | - Regina Beets Tan
- Department of Radiology, The Netherlands Cancer Institute, 1006 BE, Amsterdam, the Netherlands
| | - Nora Frulio
- CHU de Bordeaux, Department of Radiology, Université de Bordeaux, 33000 Bordeaux, France
| | - Christine Hoeffel
- Department of Radiology, Hôpital Robert Debré & CRESTIC, URCA, 51092 Reims, France
| |
Collapse
|
13
|
Han Y, Qi W, Wang S, Cao W, Chen J, Cai G. Identification of patients with locally advanced rectal cancer eligible for neoadjuvant chemotherapy alone: Results of a retrospective study. Cancer Med 2023; 12:13309-13318. [PMID: 37148548 PMCID: PMC10315751 DOI: 10.1002/cam4.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Neoadjuvant chemotherapy (nCT) appears in a few clinical studies as an alternative to neoadjuvant chemoradiation (nCRT) in selected patients with locally advanced rectal cancer (LARC). We aimed to compare the clinical outcomes of nCT with or without nCRT in patients with LARC and to identify patients who may be suitable for nCT alone. MATERIALS AND METHODS A total of 155 patients with LARC who received neoadjuvant treatment (NT) were retrospectively analysed from January 2016 to June 2021. The patients were divided into two groups: nCRT (n = 101) and nCT (n = 54). More patients with locally advanced disease (cT4, cN+ and magnetic resonance imaging-detected mesorectal fascia [mrMRF] positive [+]) were found in the nCRT group. Patients in the nCRT group received a dose of 50 Gy/25 Fx irradiation with concurrent capecitabine, and the median number of nCT cycles was two. In the nCT group, the median number of cycles was four. RESULTS The median follow-up duration was 30 months. The pathologic complete response (pCR) rate in the nCRT group was significantly higher than that in the nCT group (17.5% vs. 5.6%, p = 0.047). A significant difference was observed in the locoregional recurrence rate (LRR); 6.9% in the nCRT group and 16.7% in the nCT group (p = 0.011). Among patients with initial mrMRF (+) status, the LRR in the nCRT group was significantly lower than that in the nCT group (6.1% vs. 20%, p = 0.007), but not in patients with initial mrMRF negative (-) (10.5% in each group, p = 0.647). Compared with the nCT group, a lower LRR was observed in patients in the nCRT group with initial mrMRF (+) converted to mrMRF (-) after NT (5.3% vs. 23%, p = 0.009). No significant difference was observed between the two groups regarding acute toxicity and overall and progression-free survivals. Multivariate analysis showed that nCRT and ypN stage were independent prognostic factors for the development of LRR. CONCLUSION Patients with initial mrMRF (-) may be suitable for nCT alone. However, patients with initial mrMRF (+) converted to mrMRF (-) after nCT are still at high risk of LRR, and radiotherapy is recommended. Prospective studies are required to confirm these findings.
Collapse
Affiliation(s)
- Yi‐min Han
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wei‐xiang Qi
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Shu‐bei Wang
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Wei‐guo Cao
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jia‐yi Chen
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Gang Cai
- Department of Radiation Oncology, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Abe S, Kawai K, Nozawa H, Sasaki K, Murono K, Emoto S, Yokoyama Y, Matsuzaki H, Nagai Y, Yoshioka Y, Shinagawa T, Sonoda H, Yamamoto Y, Oba K, Ishihara S. Preoperative chemoradiotherapy using tegafur/uracil, oral leucovorin, and irinotecan (TEGAFIRI) followed by oxaliplatin-based chemotherapy as total neoadjuvant therapy for locally advanced rectal cancer: the study protocol for a phase II trial. BMC Cancer 2023; 23:450. [PMID: 37198556 DOI: 10.1186/s12885-023-10941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Total neoadjuvant therapy (TNT) is a novel treatment strategy that is an alternative to preoperative chemoradiotherapy (CRT) for locally advanced rectal cancer (LARC). However, an optimal protocol for TNT has not yet been established. The present study will be an open-label, single-arm, single-center trial to develop a new protocol. METHODS Thirty LARC patients at high risk of distant metastasis will receive CRT consisting of long-course radiation, concurrent with tegafur/uracil, oral leucovorin, irinotecan (TEGAFIRI), followed by mFOLFOX-6 or CAPOX before undergoing surgery. DISCUSSION Since previous findings showed a high percentage of grade 3-4 adverse events with the TEGAFIRI regimen for CRT and TNT, the primary outcome of this study will be safety and feasibility. Our regimen for CRT consists of the biweekly administration of irinotecan for good patient compliance. The novel combination approach of this treatment may improve the long-term outcomes of LARC. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs031210660.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kazushige Kawai
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Murono
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichiro Yokoyama
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Matsuzaki
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuzo Nagai
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichiro Yoshioka
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahide Shinagawa
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirofumi Sonoda
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Oba
- Department of Biostatistics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
15
|
Lee HG, Kim CW, Jang JK, Park SH, Kim YI, Lee JL, Yoon YS, Park IJ, Lim SB, Yu CS, Kim JC. Pathologic Implications of Magnetic Resonance Imaging-detected Extramural Venous Invasion of Rectal Cancer. Clin Colorectal Cancer 2023; 22:129-135. [PMID: 36460579 DOI: 10.1016/j.clcc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Extramural venous invasion (EMVI) is a poor prognostic factor in rectal cancer. Recent advances in magnetic resonance imaging (MRI) allow for the detection of EMVI before surgery. This study aimed to analyze the correlations between MRI-detected EMVI (MR-EMVI) and pathologic parameters in patients with rectal cancer. MATERIALS AND METHODS This study retrospectively analyzed 721 patients who underwent radical resection for locally advanced rectal cancer between 2018 and 2019 at the Asan Medical center. All patients underwent an MRI before surgery. The lesions of patients who received neoadjuvant chemoradiation therapy (CRT) were evaluated by MRI before and after the neoadjuvant CRT. RESULTS Of the 721 patients, 118 (16.4%) showed a positive MR-EMVI, which significantly correlated with advanced pathologic T-category and N-category, extranodal extension, poor differentiation, lymphatic invasion, venous invasion, and perineural invasion. In addition, MR-EMVI was an independent factor for predicting the pathologic nodal status (OR 3.476, 95% CI, 2.186-5.527, P < .001). Patients with a positive MR-EMVI had a sensitivity of 28.0% and specificity of 91.9% for predicting regional lymph node metastasis, whereas the MR-N category had a sensitivity of 88.7% and specificity of 30.6%. Patients whose MR-EMVI changed from positive to negative after neoadjuvant CRT had no significant differences in pathologic parameters except for lymphatic invasion with patients who were negative before and after neoadjuvant CRT. CONCLUSION MR-EMVI correlated with aggressive pathologic features, which indicated a poor prognosis. MR-EMVI may be a complementary imaging biomarker for predicting nodal status and evaluating tumor response to neoadjuvant CRT.
Collapse
Affiliation(s)
- Hyun Gu Lee
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Chan Wook Kim
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| | - Jong Keon Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Seong Ho Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Young Il Kim
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jong Lyul Lee
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Yong Sik Yoon
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - In Ja Park
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Seok-Byung Lim
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Chang Sik Yu
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jin Cheon Kim
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| |
Collapse
|
16
|
Editorial for "Pre-Treatment T2-WI Based Radiomics Features for Prediction of Locally Advanced Rectal Cancer Non-Response to Neoadjuvant Chemoradiotherapy: A Preliminary Study". Cancers (Basel) 2023; 15:cancers15030820. [PMID: 36765777 PMCID: PMC9913430 DOI: 10.3390/cancers15030820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer still represents the third most frequent cancer in the world; around one-third of cancers are located in the rectum, with important differences in terms of diagnosis, treatment management, and survival compared to colon cancer [...].
Collapse
|
17
|
Ouyang G, Chen Z, Dou M, Luo X, Wen H, Deng X, Meng W, Yu Y, Wu B, Jiang D, Wang Z, Yao Y, Wang X. Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data. Technol Cancer Res Treat 2023; 22:15330338231186467. [PMID: 37431270 PMCID: PMC10338728 DOI: 10.1177/15330338231186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
PURPOSE To develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods. METHODS Baseline MRI and clinical data were curated from patients with LARC and analyzed using logistic regression (LR) and deep learning (DL) methods to predict TNT response retrospectively. We defined two groups of response to TNT as pathological complete response (pCR) versus non-pCR (Group 1), and high sensitivity [tumor regression grade (TRG) 0 and TRG 1] versus moderate sensitivity (TRG 2 or patients with TRG 3 and a reduction in tumor volume of at least 20% compared to baseline) versus low sensitivity (TRG 3 and a reduction in tumor volume <20% compared to baseline) (Group 2). We extracted and selected clinical and radiomic features on baseline T2WI. Then we built LR models and DL models. Receiver operating characteristic (ROC) curves analysis was performed to assess predictive performance of models. RESULTS Eighty-nine patients were assigned to the training cohort, and 29 patients were assigned to the testing cohort. The area under receiver operating characteristics curve (AUC) of LR models, which were predictive of high sensitivity and pCR, were 0.853 and 0.866, respectively. Whereas the AUCs of DL models were 0.829 and 0.838, respectively. After 10 rounds of cross validation, the accuracy of the models in Group 1 is higher than in Group 2. CONCLUSION There was no significant difference between LR model and DL model. Artificial Intelligence-based radiomics biomarkers may have potential clinical implications for adaptive and personalized therapy.
Collapse
Affiliation(s)
- Ganlu Ouyang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhebin Chen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Dou
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Wen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yao
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Song M, Wang H, Wang L, Li S, Zhang Y, Geng J, Zhu X, Li Y, Cai Y, Wang W. Dentate line invasion as a predictive factor of poor distant relapse-free survival in locally advanced lower rectal cancer with anal sphincter involvement. BMC Cancer 2022; 22:1196. [PMCID: PMC9675199 DOI: 10.1186/s12885-022-10299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background While an important surgical landmark of the dentate line has been established for locally advanced lower rectal cancer (LALRC), the prognostic significance of dentate line invasion (DLI) has not been well defined. This study aimed to explore the impact of DLI on prognosis in LALRC patients with anal sphincter involvement after neoadjuvant chemoradiotherapy followed by surgery. Methods We analyzed 210 LALRC patients and classified them into DLI group (n = 45) or non-DLI group (n = 165). The exact role of DLI in survival and failure patterns was assessed before and after propensity-score matching(PSM). Finally, 50 patients were matched. Results Before matching, patients in the DLI group had poorer 5-year distant relapse-free survival (DRFS) (P < 0.001), disease-free survival (DFS) (P < 0.001), and overall survival (OS) (P = 0.022) than those in the non-DLI group, with the exception of local recurrence-free survival (LRFS) (P = 0.114). After PSM, the 5-year DRFS, DFS, OS, and LRFS were 51.7% vs. 79.8%(P = 0.026), 51.7% vs. 79.8%(P = 0.029), 71.6% vs. 85.4%(P = 0.126), and 85.7% vs. 92.0%(P = 0.253), respectively, between the two groups. DLI was also an independent prognostic factor for poor DRFS with (Hazard ratio [HR] 3.843, P = 0.020) or without matching (HR 2.567, P = 0.001). The DLI group exhibited a higher rate of distant metastasis before (44.4% vs. 19.4%, P < 0.001) and after matching (48.0% vs. 20.0%, P = 0.037) and similar rates of locoregional recurrence before (13.3% vs.7.9%, P = 0.729) and after matching (16.0% vs.12.0%, P = 1.000). Conclusions DLI may portend worse DRFS and distant metastasis in LALRC patients with anal sphincter involvement, and this may be an important variable to guide clinicians. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10299-8.
Collapse
Affiliation(s)
- Maxiaowei Song
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Hongzhi Wang
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Lin Wang
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department 3 of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Shuai Li
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Yangzi Zhang
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Jianhao Geng
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Xianggao Zhu
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Yongheng Li
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Yong Cai
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| | - Weihu Wang
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142 People’s Republic of China
| |
Collapse
|
19
|
Albano D, Bruno F, Agostini A, Angileri SA, Benenati M, Bicchierai G, Cellina M, Chianca V, Cozzi D, Danti G, De Muzio F, Di Meglio L, Gentili F, Giacobbe G, Grazzini G, Grazzini I, Guerriero P, Messina C, Micci G, Palumbo P, Rocco MP, Grassi R, Miele V, Barile A. Dynamic contrast-enhanced (DCE) imaging: state of the art and applications in whole-body imaging. Jpn J Radiol 2022; 40:341-366. [PMID: 34951000 DOI: 10.1007/s11604-021-01223-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Dynamic contrast-enhanced (DCE) imaging is a non-invasive technique used for the evaluation of tissue vascularity features through imaging series acquisition after contrast medium administration. Over the years, the study technique and protocols have evolved, seeing a growing application of this method across different imaging modalities for the study of almost all body districts. The main and most consolidated current applications concern MRI imaging for the study of tumors, but an increasing number of studies are evaluating the use of this technique also for inflammatory pathologies and functional studies. Furthermore, the recent advent of artificial intelligence techniques is opening up a vast scenario for the analysis of quantitative information deriving from DCE. The purpose of this article is to provide a comprehensive update on the techniques, protocols, and clinical applications - both established and emerging - of DCE in whole-body imaging.
Collapse
Affiliation(s)
- Domenico Albano
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Andrea Agostini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Clinical, Special and Dental Sciences, Department of Radiology, University Politecnica delle Marche, University Hospital "Ospedali Riuniti Umberto I - G.M. Lancisi - G. Salesi", Ancona, Italy
| | - Salvatore Alessio Angileri
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Benenati
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Oncologia ed Ematologia, RadioterapiaRome, Italy
| | - Giulia Bicchierai
- Diagnostic Senology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Michaela Cellina
- Department of Radiology, ASST Fatebenefratelli Sacco, Ospedale Fatebenefratelli, Milan, Italy
| | - Vito Chianca
- Ospedale Evangelico Betania, Naples, Italy
- Clinica Di Radiologia, Istituto Imaging Della Svizzera Italiana - Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Diletta Cozzi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Letizia Di Meglio
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Gentili
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giuliana Giacobbe
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, Arezzo, Italy
| | - Pasquale Guerriero
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | | | - Giuseppe Micci
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Dipartimento Di Biomedicina, Neuroscienze E Diagnostica Avanzata, Sezione Di Scienze Radiologiche, Università Degli Studi Di Palermo, via Vetoio 1L'Aquila, 67100, Palermo, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Abruzzo Health Unit 1, Department of diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, L'Aquila, Italy
| | - Maria Paola Rocco
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Munk NE, Bondeven P, Pedersen BG. Diagnostic performance of MRI and endoscopy for assessing complete response in rectal cancer after neoadjuvant chemoradiotherapy: a systematic review of the literature. Acta Radiol 2021; 64:20-31. [PMID: 34928715 DOI: 10.1177/02841851211065925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The diagnostic performance of magnetic resonance imaging (MRI) modalities and/or endoscopy for assessing complete response in rectal cancer after neoadjuvant chemoradiotherapy (nCRT) is unclear. PURPOSE To summarize existing evidence on the diagnostic performance of diffusion-weighted MRI, perfusion-weighted MRI, T2-weighted MR tumor regression grade, and/or endoscopy for assessing complete tumor response after nCRT. MATERIAL AND METHODS MEDLINE and Embase databases were searched. The PRISMA guidelines were followed. Sensitivity, specificity, negative predictive, and positive predictive values were retrieved from included studies. RESULTS In total, 81 studies were eligible for inclusion. Evidence suggests that combined use of MRI and endoscopy tends to improve the diagnostic performance compared to single imaging modality. The positive predictive value of a complete response varies substantially between studies. There is considerable heterogeneity between studies. CONCLUSION Combined re-staging tends to improve diagnostic performance compared to single imaging modality, but the vast majority of studies fail to offer true clinical value due to the study heterogeneity.
Collapse
Affiliation(s)
| | - Peter Bondeven
- Department of Surgery, Regional Hospital Randers, Randers, Denmark
| | - Bodil Ginnerup Pedersen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
21
|
Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med 2021; 126:1571-1583. [PMID: 34865190 DOI: 10.1007/s11547-021-01436-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: "radiomics", "texture", and "delta". Studies were analysed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable. Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Annunziata
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessandra Farchione
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
22
|
Recent Advances in Functional MRI to Predict Treatment Response for Locally Advanced Rectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2021. [DOI: 10.1007/s11888-021-00470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11101796. [PMID: 34679494 PMCID: PMC8534713 DOI: 10.3390/diagnostics11101796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evaluation of the efficacy of different therapies is of paramount importance for the patients and the clinicians in oncology, and it is usually possible by performing imaging investigations that are interpreted, taking in consideration different response evaluation criteria. In the last decade, texture analysis (TA) has been developed in order to help the radiologist to quantify and identify parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye, that can be correlated with different endpoints, including cancer prognosis. The aim of this work is to analyze the impact of texture in the prediction of response and in prognosis stratification in oncology, taking into consideration different pathologies (lung cancer, breast cancer, gastric cancer, hepatic cancer, rectal cancer). Key references were derived from a PubMed query. Hand searching and clinicaltrials.gov were also used. This paper contains a narrative report and a critical discussion of radiomics approaches related to cancer prognosis in different fields of diseases.
Collapse
|
24
|
Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D, Desideri I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers (Basel) 2021; 13:3590. [PMID: 34298803 PMCID: PMC8303203 DOI: 10.3390/cancers13143590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Neoadjuvant radiotherapy is currently used mainly in locally advanced rectal cancer and sarcoma and in a subset of non-small cell lung cancer and esophageal cancer, whereas in other diseases it is under investigation. The evaluation of the efficacy of the induction strategy is made possible by performing imaging investigations before and after the neoadjuvant therapy and is usually challenging. In the last decade, texture analysis (TA) has been developed to help the radiologist to quantify and identify the parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye. The aim of this narrative is to review the impact of TA on the prediction of response to neoadjuvant radiotherapy and or chemoradiotherapy. MATERIALS AND METHODS Key references were derived from a PubMed query. Hand searching and ClinicalTrials.gov were also used. RESULTS This paper contains a narrative report and a critical discussion of radiomics approaches in different fields of neoadjuvant radiotherapy, including esophageal cancer, lung cancer, sarcoma, and rectal cancer. CONCLUSIONS Radiomics can shed a light on the setting of neoadjuvant therapies that can be used to tailor subsequent approaches or even to avoid surgery in the future. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Luca Boldrini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy;
| | - Ilaria Morelli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Carlotta Becherini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| |
Collapse
|
25
|
Ahmed SA, Taher MGA, Ali WA, Ebrahem MAES. Diagnostic performance of contrast-enhanced dynamic and diffusion-weighted MR imaging in the assessment of tumor response to neoadjuvant therapy in muscle-invasive bladder cancer. Abdom Radiol (NY) 2021; 46:2712-2721. [PMID: 33547919 DOI: 10.1007/s00261-021-02963-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/12/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the diagnostic performance of DCE MRI and DWI in the assessment of pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in patients with muscle-invasive bladder cancer (MIBC). METHODS This prospective study included 90 patients with MIBC who finished NAC. Two radiologists independently assessed MRI for the determination of semi-quantitative parameters (wash-in rate and wash-out rate) and apparent diffusion coefficient (ADC) value. The correlation between pCR and wash-in rate, wash-out rate, ADC value were analyzed. The area under the ROC curve (AUC) was used to evaluate the diagnostic performance for detecting pCR. Inter-reader agreement was assessed using the ICC statistics. RESULTS On cystectomy specimens, pCR was confirmed in (43.3%, 39/90). pCR is negatively correlated with wash-out rate (r = - 0.701, p = 0.01) and ADC value (r = - 0.621, p = 0.01). ADC value is positively correlated with wash-out rate (r = 0.631, p = 0.001). The diagnostic accuracy of ADC value (cut-off value: 0.911 × 10-3mm2/s) and wash-out rate (cut-off value: 0.677 min-1) in the identification of pCR was (92% for reader 1, 91% for reader 2), and (90% for reader 1, 88% for reader 2), respectively. The sensitivity, specificity for predicting pCR using ADC value + washout rate cut off values were 95.4%, 97.7% for reader 1, and 96%, 97% for reader 2, respectively. AUC was 0.981 for reader 1, 0.971 for reader 2. The overall reproducibility of the mean ADC value and wash out rate was excellent (ICC = 0.83-0.90). The ICC values for the mean ADC value, washout rate was 0.89 (95% CI 0.84-0.89) and 0.87 (95% CI 0.86-0.91), respectively. CONCLUSION Semi-quantitative parameter (wash-out) derived from DCE-MRI and ADC has the potential to assess the tumor's complete pathologic response. The two parameters using together can offer the best possibility to identify complete response to NAC in MIBC.
Collapse
|
26
|
Xu Q, Xu Y, Sun H, Jiang T, Xie S, Ooi BY, Ding Y. MRI Evaluation of Complete Response of Locally Advanced Rectal Cancer After Neoadjuvant Therapy: Current Status and Future Trends. Cancer Manag Res 2021; 13:4317-4328. [PMID: 34103987 PMCID: PMC8179813 DOI: 10.2147/cmar.s309252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Complete tumor response can be achieved in a certain proportion of patients with locally advanced rectal cancer, who achieve maximal response to neoadjuvant therapy (NAT). For these patients, a watch-and-wait (WW) or nonsurgical strategy has been proposed and is becoming widely practiced in order to avoid unnecessary surgical complications. Therefore, a non-invasive, reliable diagnostic tool for accurately evaluating complete tumor response is needed. Magnetic resonance imaging (MRI) plays a crucial role in both primary staging and restaging tumor response to NAT in rectal cancer without relying on resected specimen. In recent years, numerous efforts have been made to research the value of MRI in predicting and evaluating complete response in rectal cancer. Current MRI evaluation is mainly based on morphological and functional images. Morphologic MRI yields high soft tissue resolution, multiplanar images, and provides detailed depictions of rectal cancer and its surrounding structures. Functional MRI may help to distinguish residual tumor from fibrosis, therefore improving the diagnostic performance of morphologic MRI in identifying complete tumor response. Both morphologic and functional MRI have several promising parameters that may help accurately evaluate and/or predict complete response of rectal cancer. However, these parameters still have limitations and the results remain inconsistent. Recent development of new techniques, such as textural analysis, radiomics analysis and deep learning, demonstrate great potential based on MRI-derived parameters. This article aimed to review and help better understand the strengths, limitations, and future trends of these MRI-derived methods in evaluating complete response in rectal cancer.
Collapse
Affiliation(s)
- Qiaoyu Xu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanyan Xu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Hongliang Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Bee Yen Ooi
- Department of Radiology, Hospital Seberang Jaya, Penang, Malaysia
| | - Yi Ding
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Iacobellis F, Narese D, Berritto D, Brillantino A, Di Serafino M, Guerrini S, Grassi R, Scaglione M, Mazzei MA, Romano L. Large Bowel Ischemia/Infarction: How to Recognize It and Make Differential Diagnosis? A Review. Diagnostics (Basel) 2021; 11:998. [PMID: 34070924 PMCID: PMC8230100 DOI: 10.3390/diagnostics11060998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Ischemic colitis represents the most frequent form of intestinal ischemia occurring when there is an acute impairment or chronic reduction in the colonic blood supply, resulting in mucosal ulceration, inflammation, hemorrhage and ischemic necrosis of variable severity. The clinical presentation is variable and nonspecific, so it is often misdiagnosed. The most common etiology is hypoperfusion, almost always associated with generalized atherosclerotic disease. The severity ranges from localized and transient ischemia to transmural necrosis of the bowel wall, becoming a surgical emergency, with significant associated morbidity and mortality. The diagnosis is based on clinical, laboratory suspicion and radiological, endoscopic and histopathological findings. Among the radiological tests, enhanced-CT is the diagnostic investigation of choice. It allows us to make the diagnosis in an appropriate clinical setting, and to define the entity of the ischemia. MR may be adopted in the follow-up in patients with iodine allergy or renal dysfunctions, or younger patients who should avoid radiological exposure. In the majority of cases, supportive therapy is the only required treatment. In this article we review the pathophysiology and the imaging findings of ischemic colitis.
Collapse
Affiliation(s)
- Francesca Iacobellis
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
| | - Donatella Narese
- Department of Radiology, University of Campania “L. Vanvitelli”, Miraglia 2 Sq., 80138 Naples, Italy; (D.N.); (R.G.)
| | - Daniela Berritto
- Department of Radiology, Hospital “Villa Fiorita”, Appia St., km 199,00, 81043 Capua, Italy;
| | - Antonio Brillantino
- Department of Emergency Surgery, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy;
| | - Marco Di Serafino
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
| | - Susanna Guerrini
- Unit of Diagnostic Imaging, Department of Radiological Sciences, Azienda Ospedaliero-Universitaria Senese, Bracci St. 10, 53100 Siena, Italy;
| | - Roberta Grassi
- Department of Radiology, University of Campania “L. Vanvitelli”, Miraglia 2 Sq., 80138 Naples, Italy; (D.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Mariano Scaglione
- Department of Radiology, James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK;
- Teesside University School of Health and Life Sciences, Middlesbrough TS1 3BX, UK
- Department of Radiology, Pineta Grande Hospital, Domitiana St. km 30/00, 81030 Castel Volturno, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medical, Surgical and Neuro Sciences and of Radiological Sciences, University of Siena, Azienda Ospedaliero-Universitaria Senese, Bracci St. 10, 53100 Siena, Italy;
| | - Luigia Romano
- Department of General and Emergency Radiology, “Antonio Cardarelli” Hospital, Antonio Cardarelli St. 9, 80131 Naples, Italy; (M.D.S.); (L.R.)
| |
Collapse
|
28
|
Validation of the standardized index of shape tool to analyze DCE-MRI data in the assessment of neo-adjuvant therapy in locally advanced rectal cancer. Radiol Med 2021; 126:1044-1054. [PMID: 34041663 DOI: 10.1007/s11547-021-01369-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Standardized index of shape (SIS) tool validation to examine dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in preoperative chemo-radiation therapy (pCRT) assessment of locally advanced rectal cancer (LARC) in order to guide the surgeon versus more or less conservative treatment. MATERIALS AND METHODS A total of 194 patients (January 2008-November 2020), with III-IV locally advanced rectal cancer and subjected to pCRT were included. Three expert radiologists performed DCE-MRI analysis using SIS tool. Degree of absolute agreement among measurements, degree of consistency among measurements, degree of reliability and level of variability were calculated. Patients with a pathological tumour regression grade (TRG) 1 or 2 were classified as major responders (complete responders have TRG 1). RESULTS Good significant correlation was obtained between SIS measurements (range 0.97-0.99). The degree of absolute agreement ranges from 0.93 to 0.99, the degree of consistency from 0.81 to 0.9 and the reliability from 0.98 to 1.00 (p value < < 0.001). The variability coefficient ranges from 3.5% to 26%. SIS value obtained to discriminate responders by non-responders a sensitivity of 95.9%, a specificity of 84.7% and an accuracy of 91.8% while to detect complete responders, a sensitivity of 99.2%, a specificity of 63.9% and an accuracy of 86.1%. CONCLUSION SIS tool is suitable to assess pCRT response both to identify major responders and complete responders in order to guide the surgeon versus more or less conservative treatment.
Collapse
|
29
|
Granata V, Fusco R, Salati S, Petrillo A, Di Bernardo E, Grassi R, Palaia R, Danti G, La Porta M, Cadossi M, Gašljević G, Sersa G, Izzo F. A Systematic Review about Imaging and Histopathological Findings for Detecting and Evaluating Electroporation Based Treatments Response. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115592. [PMID: 34073865 PMCID: PMC8197272 DOI: 10.3390/ijerph18115592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Imaging methods and the most appropriate criteria to be used for detecting and evaluating response to oncological treatments depend on the pathology and anatomical site to be treated and on the treatment to be performed. This document provides a general overview of the main imaging and histopathological findings of electroporation-based treatments (Electrochemotherapy-ECT and Irreversible electroporation-IRE) compared to thermal approach, such as radiofrequency ablation (RFA), in deep-seated cancers with a particular attention to pancreatic and liver cancer. METHODS Numerous electronic datasets were examined: PubMed, Scopus, Web of Science and Google Scholar. The research covered the years from January 1990 to April 2021. All titles and abstracts were analyzed. The inclusion criteria were the following: studies that report imaging or histopathological findings after ablative thermal and not thermal loco-regional treatments (ECT, IRE, RFA) in deep-seated cancers including pancreatic and liver cancer and articles published in the English language. Exclusion criteria were unavailability of full text and congress abstracts or posters and different topic respect to inclusion criteria. RESULTS 558 potentially relevant references through electronic searches were identified. A total of 38 articles met the inclusion criteria: 20 studies report imaging findings after RFA or ECT or IRE in pancreatic and liver cancer; 17 studies report histopathological findings after RFA or ECT or IRE; 1 study reports both imaging and histopathological findings after RFA or ECT or IRE. CONCLUSIONS Imaging features are related to the type of therapy administrated, to the timing of re-assessment post therapy and to the imaging technique being used to observe the effects. Histological findings after both ECT and IRE show that the treated area becomes necrotic and encapsulated in fibrous tissue, suggesting that the size of the treated lesion cannot be measured as an endpoint to detect response. Moreover, histology frequently reported signs of apoptosis and reduced vital tissue, implying that imaging criteria, which take into account the viability and not the size of the lesion, are more appropriate to evaluate response to treatment.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (V.G.); (A.P.)
| | - Roberta Fusco
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
- Correspondence:
| | - Simona Salati
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (V.G.); (A.P.)
| | - Elio Di Bernardo
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Roberta Grassi
- Radiology Division, Università Degli Studi Della Campania Luigi Vanvitelli, I-80143 Naples, Italy;
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Raffaele Palaia
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (R.P.); (F.I.)
| | - Ginevra Danti
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, I-50139 Florence, Italy;
| | | | - Matteo Cadossi
- Oncology Medical and Research & Development Division, IGEA SpA, I-41012 Carpi, Italy; (S.S.); (E.D.B.); (M.C.)
| | - Gorana Gašljević
- Department of Pathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia;
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia;
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, I-80131 Naples, Italy; (R.P.); (F.I.)
| |
Collapse
|
30
|
Granata V, Caruso D, Grassi R, Cappabianca S, Reginelli A, Rizzati R, Masselli G, Golfieri R, Rengo M, Regge D, Lo Re G, Pradella S, Fusco R, Faggioni L, Laghi A, Miele V, Neri E, Coppola F. Structured Reporting of Rectal Cancer Staging and Restaging: A Consensus Proposal. Cancers (Basel) 2021; 13:cancers13092135. [PMID: 33925250 PMCID: PMC8125446 DOI: 10.3390/cancers13092135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Structured reporting in oncologic imaging is becoming necessary and has recently been recognized by major scientific societies. Structured reports collect all Patient Clinical Data, Clinical Evaluations and relevant key findings of Rectal Cancer, both in staging and restaging, and can facilitate clinical decision-making. Abstract Background: Structured reporting (SR) in oncologic imaging is becoming necessary and has recently been recognized by major scientific societies. The aim of this study was to build MRI-based structured reports for rectal cancer (RC) staging and restaging in order to provide clinicians all critical tumor information. Materials and Methods: A panel of radiologist experts in abdominal imaging, called the members of the Italian Society of Medical and Interventional Radiology, was established. The modified Delphi process was used to build the SR and to assess the level of agreement in all sections. The Cronbach’s alpha (Cα) correlation coefficient was used to assess the internal consistency of each section and to measure the quality analysis according to the average inter-item correlation. The intraclass correlation coefficient (ICC) was also evaluated. Results: After the second Delphi round of the SR RC staging, the panelists’ single scores and sum of scores were 3.8 (range 2–4) and 169, and the SR RC restaging panelists’ single scores and sum of scores were 3.7 (range 2–4) and 148, respectively. The Cα correlation coefficient was 0.79 for SR staging and 0.81 for SR restaging. The ICCs for the SR RC staging and restaging were 0.78 (p < 0.01) and 0.82 (p < 0.01), respectively. The final SR version was built and included 53 items for RC staging and 50 items for RC restaging. Conclusions: The final version of the structured reports of MRI-based RC staging and restaging should be a helpful and promising tool for clinicians in managing cancer patients properly. Structured reports collect all Patient Clinical Data, Clinical Evaluations and relevant key findings of Rectal Cancer, both in staging and restaging, and can facilitate clinical decision-making.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy; (V.G.); (R.F.)
| | - Damiano Caruso
- Department of Medical-Surgical and Translational Medicine-Radiology Unit, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (M.R.); (A.L.)
| | - Roberto Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (R.G.); (S.C.); (A.R.)
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, 20122 Milan, Italy
| | - Salvatore Cappabianca
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (R.G.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80127 Naples, Italy; (R.G.); (S.C.); (A.R.)
| | - Roberto Rizzati
- Division of Radiology, SS.ma Annunziata Hospital, Azienda USL di Ferrara, 44121 Ferrara, Italy;
| | - Gabriele Masselli
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Golfieri
- Division of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.G.); (F.C.)
| | - Marco Rengo
- Department of Medical-Surgical and Translational Medicine-Radiology Unit, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (M.R.); (A.L.)
| | - Daniele Regge
- Department of Surgical Sciences, University of Turin, 10124 Turin, Italy;
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| | - Giuseppe Lo Re
- Section of Radiological Sciences, DIBIMED, University of Palermo, 90127 Palermo, Italy;
| | - Silvia Pradella
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50139 Florence, Italy; (S.P.); (V.M.)
| | - Roberta Fusco
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy; (V.G.); (R.F.)
| | - Lorenzo Faggioni
- Department of Translational Research, University of Pisa, 56126 Pisa, Italy;
| | - Andrea Laghi
- Department of Medical-Surgical and Translational Medicine-Radiology Unit, Sapienza University of Rome, 00185 Rome, Italy; (D.C.); (M.R.); (A.L.)
| | - Vittorio Miele
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50139 Florence, Italy; (S.P.); (V.M.)
| | - Emanuele Neri
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, 20122 Milan, Italy
- Department of Translational Research, University of Pisa, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-997313 or +39-050-992913
| | - Francesca Coppola
- Division of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (R.G.); (F.C.)
| |
Collapse
|
31
|
Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics (Basel) 2021; 11:diagnostics11050756. [PMID: 33922483 PMCID: PMC8146913 DOI: 10.3390/diagnostics11050756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
While cross-sectional imaging has seen continuous progress and plays an undiscussed pivotal role in the diagnostic management and treatment planning of patients with rectal cancer, a largely unmet need remains for improved staging accuracy, assessment of treatment response and prediction of individual patient outcome. Moreover, the increasing availability of target therapies has called for developing reliable diagnostic tools for identifying potential responders and optimizing overall treatment strategy on a personalized basis. Radiomics has emerged as a promising, still fully evolving research topic, which could harness the power of modern computer technology to generate quantitative information from imaging datasets based on advanced data-driven biomathematical models, potentially providing an added value to conventional imaging for improved patient management. The present study aimed to illustrate the contribution that current radiomics methods applied to magnetic resonance imaging can offer to managing patients with rectal cancer.
Collapse
|
32
|
Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021; 21:425-449. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The standard of care for locoregionally advanced rectal cancer is neoadjuvant therapy (NA CRT) prior to surgery, of which 10-30% experience a complete pathologic response (pCR). There has been interest in using imaging features, also known as radiomics features, to predict pCR and potentially avoid surgery. This systematic review aims to describe the spectrum of MRI studies examining high-performing radiomic features that predict NA CRT response.Areas covered: This article reviews the use of pre-therapy MRI in predicting NA CRT response for patients with locoregionally advanced rectal cancer (T3/T4 and/or N1+). The primary outcome was to identify MRI radiomic studies; secondary outcomes included the power and the frequency of use of radiomic features.Expert opinion: Advanced models incorporating multiple radiomics categories appear to be the most promising. However, there is a need for standardization across studies with regards to; the definition of NA CRT response, imaging protocols, and radiomics features incorporated. Further studies are needed to validate current radiomics models and to fully ascertain the value of MRI radiomics in the response prediction for locoregionally advanced rectal cancer.
Collapse
Affiliation(s)
- Angelina Marina Di Re
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Yu Sun
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Purnima Sundaresan
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - James Wei Tatt Toh
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Harriet Gee
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Michelle Or
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
33
|
Haak HE, Maas M, Trebeschi S, Beets-Tan RGH. Modern MR Imaging Technology in Rectal Cancer; There Is More Than Meets the Eye. Front Oncol 2020; 10:537532. [PMID: 33117678 PMCID: PMC7578261 DOI: 10.3389/fonc.2020.537532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/02/2020] [Indexed: 12/29/2022] Open
Abstract
MR imaging (MRI) is now part of the standard work up of patients with rectal cancer. Restaging MRI has been traditionally used to plan the surgical approach. Its role has recently increased and been adopted as a valuable tool to assist the clinical selection of clinical (near) complete responders for organ preserving treatment. Recently several studies have addressed new imaging biomarkers that combined with morphological provides a comprehensive picture of the tumor. Diffusion-weighted MRI (DWI) has entered the clinics and proven useful for response assessment after chemoradiotherapy. Other functional (quantitative) MRI technologies are on the horizon including artificial intelligence modeling. This narrative review provides an overview of recent advances in rectal cancer (re)staging by imaging with a specific focus on response prediction and evaluation of neoadjuvant treatment response. Furthermore, directions are given for future research.
Collapse
Affiliation(s)
- Hester E Haak
- Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands.,Department of Surgery, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Monique Maas
- Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
34
|
Magnetic Resonance of Rectal Cancer Response to Therapy: An Image Quality Comparison between 3.0 and 1.5 Tesla. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9842732. [PMID: 33102603 PMCID: PMC7576357 DOI: 10.1155/2020/9842732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023]
Abstract
Purpose To evaluate signal intensity (SI) differences between 3.0 T and 1.5 T on T2-weighted (T2w), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) in rectal cancer pre-, during, and postneoadjuvant chemoradiotherapy (CRT). Materials and Methods 22 patients with locally advanced rectal cancer were prospectively enrolled. All patients underwent T2w, DWI, and ADC pre-, during, and post-CRT on both 3.0 T MRI and 1.5 T MRI. A radiologist drew regions of interest (ROIs) of the tumor and obturator internus muscle on the selected slice to evaluate SI and relative SI (rSI). Additionally, a subanalysis evaluating the SI before and after-CRT (∆SI pre-post) in complete responder patients (CR) and nonresponder patients (NR) on T2w, DWI, and ADC was performed. Results Significant differences were observed for T2w and DWI on 3.0 T MRI compared to 1.5 T MRI pre-, during, and post-CRT (all P < 0.001), whereas no significant differences were reported for ADC among all controls (all P > 0.05). rSI showed no significant differences in all the examinations for all sequences (all P > 0.05). ∆SI showed significant differences between 3.0 T and 1.5 T MRI for DWI-∆SI in CR and NR (188.39 ± 166.90 vs. 30.45 ± 21.73 and 169.70 ± 121.87 vs. 22.00 ± 31.29, respectively, all P 0.02) and ADC-∆SI for CR (−0.58 ± 0.27 vs. −0.21 ± 0.24P value 0.02), while no significant differences were observed for ADC-∆SI in NR and both CR and NR for T2w-∆SI. Conclusion T2w-SI and DWI-SI showed significant differences for 3.0 T compared to 1.5 T in all three controls, while ADCSI showed no significant differences in all three controls on both field strengths. rSI was comparable for 3.0 T and 1.5 T MRI in rectal cancer patients; therefore, rectal cancer patients can be assessed both at 3.0 T MRI and 1.5 T MRI. However, a significant DWI-∆SI and ADC-∆SI on 3.0 T in CR might be interpreted as a better visual assessment in discriminating response to therapy compared to 1.5 T. Further investigations should be performed to confirm future possible clinical application.
Collapse
|
35
|
Tönnes C, Janssen S, Golla AK, Uhrig T, Chung K, Schad LR, Zöllner FG. Deterministic Arterial Input Function selection in DCE-MRI for automation of quantitative perfusion calculation of colorectal cancer. Magn Reson Imaging 2020; 75:116-123. [PMID: 32987123 DOI: 10.1016/j.mri.2020.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Development of a deterministic algorithm for automated detection of the Arterial Input Function (AIF) in DCE-MRI of colorectal cancer. Using a filter pipeline to determine the AIF region of interest. Comparison to algorithms from literature with mean squared error and quantitative perfusion parameter Ktrans. The AIF found by our algorithm has a lower mean squared error (0.0022 ± 0.0021) in reference to the manual annotation than comparable algorithms. The error of Ktrans (21.52 ± 17.2%) is lower than that of other algorithms. Our algorithm generates reproducible results and thus supports a robust and comparable perfusion analysis.
Collapse
Affiliation(s)
- Christian Tönnes
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| | - Sonja Janssen
- Department for Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Tanja Uhrig
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Khanlian Chung
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Frank Gerrit Zöllner
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| |
Collapse
|
36
|
Li Y, Xia C, Peng W, Gao Y, Hu S, Zhang K, Zhao F, Benkert T, Zhou X, Zhang H, Li Z. Dynamic contrast-enhanced MR imaging of rectal cancer using a golden-angle radial stack-of-stars VIBE sequence: comparison with conventional contrast-enhanced 3D VIBE sequence. Abdom Radiol (NY) 2020; 45:322-331. [PMID: 31552465 DOI: 10.1007/s00261-019-02225-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To compare conventional 3D volumetric-interpolated breath-hold examination (C-VIBE) sequence image quality to that of golden-angle radial stack-of stars acquisition scheme (R-VIBE) in rectal cancer patients. METHODS Seventy-eight patients had undergone pre-contrast C-VIBE, followed by DCE-MRI with R-VIBE and post-contrast C-VIBE in the visualization of rectal cancer. The first phase and the last phase of R-VIBE sequence were compared with pre-contrast and post-contrast C-VIBE sequences, respectively. Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of rectal neoplasms, gluteus maximus, and subcutaneous fat were compared between the two different sequences. A further qualitative score system (graded 1-5) was used to evaluate the overall image. Quantitative and qualitative parameters from the two sequences were compared. RESULTS In all patients, R-VIBE achieved the same SNR and CNR ratings in pre- and post-contrast (all P > 0.05), with the exception of a higher SNR of fat in pre-contrast images (P = 0.037). In addition, there were no significant differences in scores of overall image quality, lesion conspicuity, and rectal wall boundary (all P > 0.05). There was an improved score in artifacts of post-contrast R-VIBE sequence (P = 0.005). CONCLUSION R-VIBE sequence can provide comparable image quality and less motion artifacts to that of C-VIBE sequence and is feasible for imaging of rectal cancer.
Collapse
Affiliation(s)
- Yuming Li
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wanlin Peng
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Gao
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Sixian Hu
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kai Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Zhao
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Thomas Benkert
- MR Applications Development, Siemens Healthcare, 91052, Erlangen, Germany
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Huapeng Zhang
- Xi'an Branch of Siemens Healthcare Ltd., Xi'an, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
37
|
Badia S, Picchia S, Bellini D, Ferrari R, Caruso D, Paolantonio P, Carbone I, Laghi A, Rengo M. The Role of Contrast-Enhanced Imaging for Colorectal Cancer Management. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00443-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|