1
|
Ge Y, Wang J, Gu D, Cao W, Feng Y, Wu Y, Liu H, Xu Z, Zhang Z, Xie J, Geng S, Cong J, Liu Y. Low-temperature plasma jet suppresses bacterial colonisation and affects wound healing through reactive species. Wound Repair Regen 2024; 32:407-418. [PMID: 38602090 DOI: 10.1111/wrr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-β levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.
Collapse
Affiliation(s)
- Yang Ge
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jun Wang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Nanjing Guoke Medical Enginneering Technology Development co., LTD, Nanjing, Jiangsu, China
| | - DongHua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Wei Cao
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongtong Feng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yanfan Wu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Han Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhengping Xu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhe Zhang
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jinsong Xie
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shuang Geng
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Junrui Cong
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yi Liu
- The CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Harada A, Sasaki H, Asami Y, Hanazawa K, Miyazaki S, Sekine H, Yajima Y. Effects of the application of low-temperature atmospheric plasma on titanium implants on wound healing in peri-implant connective tissue in rats. Int J Implant Dent 2024; 10:15. [PMID: 38509336 PMCID: PMC10954594 DOI: 10.1186/s40729-024-00524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE This study aimed to clarify the effects of surface modification of titanium (Ti) implants by low-temperature atmospheric pressure plasma treatment on wound healing and cell attachment for biological sealing in peri-implant soft tissue. METHODS Hydrophilization to a Ti disk using a handheld low-temperature atmospheric pressure plasma device was evaluated by a contact angle test and compared with an untreated group. In in vivo experiments, plasma-treated pure Ti implants using a handheld plasma device (experimental group: PL) and untreated implants (control group: Cont) were placed into the rat upper molar socket, and samples were harvested at 3, 7 and 14 days after surgery. Histological evaluation was performed to assess biological sealing, collagen- and cell adhesion-related gene expression by reverse transcription quantitative polymerase chain reaction, collagen fiber detection by Picrosirius Red staining, and immunohistochemistry for integrins. RESULTS In in vivo experiments, increased width of the peri-implant connective tissue (PICT) and suppression of epithelial down growth was observed in PL compared with Cont. In addition, high gene expression of types I and XII collagen at 7 days and acceleration of collagen maturation was recognized in PL. Strong immunoreaction of integrin α2, α5, and β1 was observed at the implant contact area of PICT in PL. CONCLUSIONS The handheld low-temperature atmospheric pressure plasma device provided hydrophilicity on the Ti surface and maintained the width of the contact area of PICT to the implant surface as a result of accelerated collagen maturation and fibroblast adhesion, compared to no plasma application.
Collapse
Affiliation(s)
- Atsuro Harada
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan.
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan.
| | - Yosuke Asami
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Kiyotoshi Hanazawa
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Sota Miyazaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Hideshi Sekine
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| |
Collapse
|
3
|
Barjasteh A, Kaushik N, Choi EH, Kaushik NK. Cold Atmospheric Pressure Plasma: A Growing Paradigm in Diabetic Wound Healing-Mechanism and Clinical Significance. Int J Mol Sci 2023; 24:16657. [PMID: 38068979 PMCID: PMC10706109 DOI: 10.3390/ijms242316657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetes is one of the most significant causes of death all over the world. This illness, due to abnormal blood glucose levels, leads to impaired wound healing and, as a result, foot ulcers. These ulcers cannot heal quickly in diabetic patients and may finally result in amputation. In recent years, different research has been conducted to heal diabetic foot ulcers: one of them is using cold atmospheric pressure plasma. Nowadays, cold atmospheric pressure plasma is highly regarded in medicine because of its positive effects and lack of side effects. These conditions have caused plasma to be considered a promising technology in medicine and especially diabetic wound healing because studies show that it can heal chronic wounds that are resistant to standard treatments. The positive effects of plasma are due to different reactive species, UV radiation, and electromagnetic fields. This work reviews ongoing cold atmospheric pressure plasma improvements in diabetic wound healing. It shows that plasma can be a promising tool in treating chronic wounds, including ones resulting from diabetes.
Collapse
Affiliation(s)
- Azadeh Barjasteh
- Department of Physics, Lorestan University, Khorramabad 68151-44316, Iran;
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea;
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma, Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics/Plasma, Bioscience Research Center, Kwangwoon University, Seoul 01897, Republic of Korea;
| |
Collapse
|
4
|
Toyokuni S, Zheng H, Kong Y, Sato K, Nakamura K, Tanaka H, Okazaki Y. Low-temperature plasma as magic wand to differentiate between the good and the evil. Free Radic Res 2023; 57:38-46. [PMID: 36919449 DOI: 10.1080/10715762.2023.2190860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plasma is the fourth physical state of matter, characterized by an ionized gaseous mixture, after solid, liquid, and gas phases, and contains a wide array of components such as ions, electrons, radicals, and ultraviolet ray. Whereas the sun and thunder are typical natural plasma, recent progress in the electronics enabled the generation of body-temperature plasma, designated as low-temperature plasma (LTP) or non-thermal plasma since the 1990s. LTP has attracted the attention of researchers for possible biological and medical applications. All the living species on earth utilize water as essential media for solvents and molecular transport. Thus, biological application of LTP naturally intervenes water whether LTP is exposed directly or indirectly, where plasma-activated lactate (PAL) is a standard, containing H2O2, NO2- and other identified molecules. Electron spin resonance and immunohistochemical studies demonstrated that LTP exposure is a handy method to load local oxidative stress. Cancer cells are characterized by persistent self-replication and high cytosolic catalytic Fe(II). Therefore, both direct exposure of LTP and PAL can provide higher damage to cancer cells in comparison to non-tumorous cells, which has been demonstrated in a variety of cancer types. The cell death mode is either apoptosis or ferroptosis, depending on the cancer-type. Thus, LTP and PAL are expected to work as an additional cancer therapy to the established guideline protocols, especially for use in somatic cavities or surgical margins.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Sato
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Jung JM, Yoon HK, Jung CJ, Jo SY, Hwang SG, Lee HJ, Lee WJ, Chang SE, Won CH. Cold Plasma Treatment Promotes Full-thickness Healing of Skin Wounds in Murine Models. THE INTERNATIONAL JOURNAL OF LOWER EXTREMITY WOUNDS 2023; 22:77-84. [PMID: 33856260 DOI: 10.1177/15347346211002144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing-related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant (P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.
Collapse
Affiliation(s)
- Joon M Jung
- University of Ulsan College of Medicine, Seoul, Korea
| | - Hae K Yoon
- University of Ulsan College of Medicine, Seoul, Korea
| | - Chang J Jung
- University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Y Jo
- University of Ulsan College of Medicine, Seoul, Korea
| | - Sang G Hwang
- University of Ulsan College of Medicine, Seoul, Korea
| | - Heun J Lee
- 58920Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo J Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - Sung E Chang
- University of Ulsan College of Medicine, Seoul, Korea
| | - Chong H Won
- University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Lee HR, Kang SU, Kim HJ, Ji EJ, Yun JH, Kim S, Jang JY, Shin YS, Kim CH. Liquid plasma as a treatment for cutaneous wound healing through regulation of redox metabolism. Cell Death Dis 2023; 14:119. [PMID: 36781835 PMCID: PMC9925775 DOI: 10.1038/s41419-023-05610-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The skin functions as the outermost protective barrier to the internal organs and major vessels; thus, delayed regeneration from acute injury could induce serious clinical complications. For rapid recovery of skin wounds, promoting re-epithelialization of the epidermis at the initial stage of injury is essential, wherein epithelial keratinocytes act as leading cells via migration. This study applied plasma technology, which has been known to enable wound healing in the medical field. Through in vitro and in vivo experiments, the study elucidated the effect and molecular mechanism of the liquid plasma (LP) manufactured by our microwave plasma system, which was found to improve the applicability of existing gas-type plasma on skin cell migration for re-epithelialization. LP treatment promoted the cytoskeletal transformation of keratinocytes and migration owing to changes in the expression of integrin-dependent focal adhesion molecules and matrix metalloproteinases (MMPs). This study also identified the role of increased levels of intracellular reactive oxygen species (ROS) as a driving force for cell migration activation, which was regulated by changes in NADPH oxidases and mitochondrial membrane potential. In an in vivo experiment using a murine dorsal full-thickness acute skin wound model, LP treatment helped improve the re-epithelialization rate, reaffirming the activation of the underlying intracellular ROS-dependent integrin-dependent signaling molecules. These findings indicate that LP could be a valuable wound management material that can improve the regeneration potential of the skin via the activation of migration-related molecular signaling within the epithelial cell itself with plasma-driven oxidative eustress.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology-Head and Neck Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, 22711, Republic of Korea
- Department of Medical Sciences, Otolaryngology, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Eun Jong Ji
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungryeal Kim
- Department of Otolaryngology, College of Medicine, Inha University, Incheon, 22332, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
7
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
8
|
Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front Microbiol 2021; 12:737635. [PMID: 34712211 PMCID: PMC8546340 DOI: 10.3389/fmicb.2021.737635] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Department of Biotechnology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Ramya Premanath
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Iddya Karunasagar
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
9
|
Bekeschus S, von Woedtke T, Emmert S, Schmidt A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol 2021; 46:102116. [PMID: 34474394 PMCID: PMC8408623 DOI: 10.1016/j.redox.2021.102116] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
10
|
Bekeschus S, Kramer A, Schmidt A. Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine. Molecules 2021; 26:molecules26185682. [PMID: 34577153 PMCID: PMC8469854 DOI: 10.3390/molecules26185682] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
The loss of skin integrity is inevitable in life. Wound healing is a necessary sequence of events to reconstitute the body’s integrity against potentially harmful environmental agents and restore homeostasis. Attempts to improve cutaneous wound healing are therefore as old as humanity itself. Furthermore, nowadays, targeting defective wound healing is of utmost importance in an aging society with underlying diseases such as diabetes and vascular insufficiencies being on the rise. Because chronic wounds’ etiology and specific traits differ, there is widespread polypragmasia in targeting non-healing conditions. Reactive oxygen and nitrogen species (ROS/RNS) are an overarching theme accompanying wound healing and its biological stages. ROS are signaling agents generated by phagocytes to inactivate pathogens. Although ROS/RNS’s central role in the biology of wound healing has long been appreciated, it was only until the recent decade that these agents were explicitly used to target defective wound healing using gas plasma technology. Gas plasma is a physical state of matter and is a partially ionized gas operated at body temperature which generates a plethora of ROS/RNS simultaneously in a spatiotemporally controlled manner. Animal models of wound healing have been vital in driving the development of these wound healing-promoting technologies, and this review summarizes the current knowledge and identifies open ends derived from in vivo wound models under gas plasma therapy. While gas plasma-assisted wound healing in humans has become well established in Europe, veterinary medicine is an emerging field with great potential to improve the lives of suffering animals.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
- Correspondence:
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany;
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| |
Collapse
|
11
|
van Welzen A, Hoch M, Wahl P, Weber F, Rode S, Tietze JK, Boeckmann L, Emmert S, Thiem A. The Response and Tolerability of a Novel Cold Atmospheric Plasma Wound Dressing for the Healing of Split Skin Graft Donor Sites: A Controlled Pilot Study. Skin Pharmacol Physiol 2021; 34:328-336. [PMID: 34365456 PMCID: PMC8619757 DOI: 10.1159/000517524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cold atmospheric plasma (CAP) has positive effects on wound healing and antimicrobial properties. However, an ongoing challenge is the development of specific modes of application for different clinical indications. OBJECTIVES We investigated in a prospective pilot study the response and tolerability of a newly developed CAP wound dressing for the acute healing of split skin graft donor sites compared to conventional therapy. METHODS We applied both treatments to each patient (n = 10) for 7 days and measured 4 parameters of wound healing every other day (i.e., 1,440 measurements) using a hyperspectral imaging camera. Additionally, we evaluated the clinical appearance and pain levels reported by the patients. RESULTS The CAP wound dressing was superior to the control (p < 0.001) in the improvement of 3 wound parameters, that is, deep tissue oxygen saturation, hemoglobin distribution, and tissue water distribution. CAP was well tolerated, and pain levels were lower in CAP-treated wound areas. CONCLUSION CAP wound dressing is a promising new tool for acute wound healing.
Collapse
Affiliation(s)
- Annika van Welzen
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Matti Hoch
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | | | - Frank Weber
- Department for Biostatistics and Informatics in Medicine, University Medical Center, Rostock, Germany
| | - Susen Rode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Julia Katharina Tietze
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
12
|
Duchesne C, Frescaline N, Blaise O, Lataillade JJ, Banzet S, Dussurget O, Rousseau A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere 2021; 6:e0021721. [PMID: 34133202 PMCID: PMC8265637 DOI: 10.1128/msphere.00217-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Océane Blaise
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Antoine Rousseau
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| |
Collapse
|
13
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
14
|
Could cold plasma act synergistically with allogeneic mesenchymal stem cells to improve wound skin regeneration in a large size animal model? Res Vet Sci 2021; 136:97-110. [PMID: 33596495 DOI: 10.1016/j.rvsc.2021.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Skin wound healing may sometimes lead to open sores that persist for long periods and expensive hospitalization is needed. Among different kinds of therapeutic innovative approaches, mesenchymal stem cells (MSCs) and low-temperature atmospheric pressure cold plasma (ionized gas) have been recently tested to improve this regenerative process. To optimize wound healing the present study intended to combine, for the first time, these two novel approaches in a large size animal wound healing model with the aim of assessing the putative dual beneficial effects. Based on clinical, histopathological, and molecular results a synergistic action in a second intention healing wound in sheep has been observed. Experimental wounds treated with cold plasma and MSCs showed a slower but more effective healing compared to the single treatment, as observed in previous studies. The combined treatment improved the correct development of skin appendages and structural proteins of the dermis showing the potential of the dual combination as a safe and effective tool for skin regeneration in the veterinary clinical field.
Collapse
|
15
|
Lou BS, Hsieh JH, Chen CM, Hou CW, Wu HY, Chou PY, Lai CH, Lee JW. Helium/Argon-Generated Cold Atmospheric Plasma Facilitates Cutaneous Wound Healing. Front Bioeng Biotechnol 2020; 8:683. [PMID: 32695763 PMCID: PMC7338308 DOI: 10.3389/fbioe.2020.00683] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Cold atmospheric plasma jet (CAPJ) or non-thermal plasma jet has been employed in various biomedical applications based on their functions in bactericidal activity and wound healing. However, the effect of CAPJ generated by a particular composition of gases on wound closure and the underlying mechanisms that regulate wound healing signals remain elusive. In the present study, we investigated the impact of helium (He)- or a gas mixture of He and argon (He/Ar)-generated CAPJ on cell proliferation, which is a pivotal step during the wound healing process. With careful treatment duration control, He/Ar-CAPJ effectively induced keratinocyte proliferation and migration mediated through the activation of epithelial-to-mesenchymal transition (EMT) and cell cycle progression, which was evidenced by a decrease in E-cadherin levels and increases in N-cadherin, cyclin D1, Ki-67, Cdk2, and p-ERK levels. Rat wound healing studies showed that He/Ar-CAPJ treatment facilitated granulation tissue formation and mitigated inflammation in cutaneous tissue, resulting in accelerated wound closure. These findings highlight the possibility that He/Ar-CAPJ can be developed as a therapeutic agent for enhancing wound healing.
Collapse
Affiliation(s)
- Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan.,Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jang-Hsing Hsieh
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, New Taipei, Taiwan
| | - Chun-Ming Chen
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan
| | - Chun-Wei Hou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Pang-Yun Chou
- Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Jyh-Wei Lee
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, New Taipei, Taiwan.,Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Plasma-Derived Reactive Species Shape a Differentiation Profile in Human Monocytes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Monocyte-derived macrophages are key regulators and producers of reactive oxygen and nitrogen species (ROS/RNS). Pre-clinical and clinical studies suggest that cold physical plasma may be beneficial in the treatment of inflammatory conditions via the release of ROS/RNS. However, it is unknown how plasma treatment affects monocytes and their differentiation profile. Methods: Naïve or phorbol-12-myristate-13-acetate (PMA)-pulsed THP-1 monocytes were exposed to cold physical plasma. The cells were analyzed regarding their metabolic activity as well as flow cytometry (analysis of viability, oxidation, surface marker expression and cytokine secretion) and high content imaging (quantitative analysis of morphology. Results: The plasma treatment affected THP-1 metabolisms, viability, and morphology. Furthermore, a significant modulation CD55, CD69, CD271 surface-expression and increase of inflammatory IL1β, IL6, IL8, and MCP1 secretion was observed upon plasma treatment. Distinct phenotypical changes in THP-1 cells arguing for a differentiation profile were validated in primary monocytes from donor blood. As a functional outcome, plasma-treated monocytes decreased the viability of co-cultured melanoma cells to a greater extent than their non-treated counterparts. Conclusions: Our results suggest plasma-derived ROS/RNS shaped a differentiation profile in human monocytes as evidenced by their increased inflammatory profile (surface marker and cytokines) as well as functional outcome (tumor toxicity).
Collapse
|
17
|
When plasma jet is effective for chronic wound bacteria inactivation, is it also effective for wound healing? CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2019.100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Scharf C, Eymann C, Emicke P, Bernhardt J, Wilhelm M, Görries F, Winter J, von Woedtke T, Darm K, Daeschlein G, Steil L, Hosemann W, Beule A. Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7071536. [PMID: 31223425 PMCID: PMC6541959 DOI: 10.1155/2019/7071536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023]
Abstract
The promising potential of cold atmospheric plasma (CAP) treatment as a new therapeutic option in the field of medicine, particularly in Otorhinolaryngology and Respiratory medicine, demands primarily the assessment of potential risks and the prevention of any direct and future cell damages. Consequently, the application of a special intensity of CAP that is well tolerated by cells and tissues is of particular interest. Although improvement of wound healing by CAP treatment has been described, the underlying mechanisms and the molecular influences on human tissues are so far only partially characterized. In this study, human S9 bronchial epithelial cells were treated with cold plasma of atmospheric pressure plasma jet that was previously proven to accelerate the wound healing in a clinically relevant extent. We studied the detailed cellular adaptation reactions for a specified plasma intensity by time-resolved comparative proteome analyses of plasma treated vs. nontreated cells to elucidate the mechanisms of the observed improved wound healing and to define potential biomarkers and networks for the evaluation of plasma effects on human epithelial cells. K-means cluster analysis and time-related analysis of fold-change factors indicated concordantly clear differences between the short-term (up to 1 h) and long-term (24-72 h) adaptation reactions. Thus, the induction of Nrf2-mediated oxidative and endoplasmic reticulum stress response, PPAR-alpha/RXR activation as well as production of peroxisomes, and prevention of apoptosis already during the first hour after CAP treatment are important cell strategies to overcome oxidative stress and to protect and maintain cell integrity and especially microtubule dynamics. After resolving of stress, when stress adaptation was accomplished, the cells seem to start again with proliferation and cellular assembly and organization. The observed strategies and identification of marker proteins might explain the accelerated wound healing induced by CAP, and these indicators might be subsequently used for risk assessment and quality management of application of nonthermal plasma sources in clinical settings.
Collapse
Affiliation(s)
- Christian Scharf
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Christine Eymann
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Philipp Emicke
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Jörg Bernhardt
- 2Institute for Microbiology, University of Greifswald, Germany
| | - Martin Wilhelm
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Fabian Görries
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Jörn Winter
- 3Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Thomas von Woedtke
- 3Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- 4Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Darm
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Georg Daeschlein
- 5Department of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Leif Steil
- 6Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Germany
| | - Werner Hosemann
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
| | - Achim Beule
- 1Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine Greifswald, Germany
- 7Department of Otorhinolaryngology, University Hospital Münster, Münster, Germany
| |
Collapse
|
19
|
Taslı H, Akbıyık A, Topaloğlu N, Alptüzün V, Parlar S. Photodynamic antimicrobial activity of new porphyrin derivatives against methicillin resistant Staphylococcus aureus. J Microbiol 2018; 56:828-837. [PMID: 30353469 DOI: 10.1007/s12275-018-8244-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 01/21/2023]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.
Collapse
Affiliation(s)
- Hüseyin Taslı
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey.
| | - Ayse Akbıyık
- Department of Nursing, Faculty of Health Sciences, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Nermin Topaloğlu
- Department of Biomedical Engineering, Faculty of Engineering and Architecture Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| | - Sülünay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
20
|
Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2018.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 2018; 26:156-162. [PMID: 27492871 DOI: 10.1111/exd.13156] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
Abstract
Cold plasma has been successfully applied in several fields of medicine that require, for example, pathogen inactivation, implant functionalization or alteration of cellular activity. Previous studies have provided evidence that plasma supports the healing of wounds owing to its beneficial mixtures of reactive species and modulation of inflammation in cells and tissues. To investigate the wound healing activity of an atmospheric pressure plasma jet in vivo, we examined the cold plasma's efficacy on dermal regeneration in a murine model of dermal full-thickness ear wound. Over 14 days, female mice received daily plasma treatment. Quantitative analysis by transmitted light microscopy demonstrated a significantly accelerated wound re-epithelialization at days 3-9 in comparison with untreated controls. In vitro, cold plasma altered keratinocyte and fibroblast migration, while both cell types showed significant stimulation resulting in accelerated closure of gaps in scratch assays. This plasma effect correlated with the downregulation of the gap junctional protein connexin 43 which is thought to be important in the regulation of wound healing. In addition, plasma induced profound changes in adherence junctions and cytoskeletal dynamics as shown by downregulation of E-cadherin and several integrins as well as actin reorganization. Our results theorize cold plasma to be a beneficial treatment option supplementing existing wound therapies.
Collapse
Affiliation(s)
- Anke Schmidt
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Kristian Wende
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany
| | - Thomas von Woedtke
- Plasma Life Science, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany.,Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
22
|
Kang SU, Choi JW, Chang JW, Kim KI, Kim YS, Park JK, Kim YE, Lee YS, Yang SS, Kim CH. N 2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9. Exp Dermatol 2018; 26:163-170. [PMID: 27673439 DOI: 10.1111/exd.13229] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 12/17/2022]
Abstract
Advances in physics and biology have made it possible to apply non-thermal atmospheric pressure plasma (NTP) in the biomedical field. Although accumulating evidence suggests that NTP has various medicinal effects, such as facilitating skin wound healing on exposed tissue while minimizing undesirable tissue damage, the underlying molecular mechanisms are not fully understood. In this study, NTP generated from N2 optimized wound healing in the scratch wound healing assay. In addition, matrix metalloproteinase (MMP)-9 expression and enzyme activity increased and the urokinase-type plasminogen activator (uPA) system was activated after NTP treatment. We also showed that NTP treatment increased Slug and TCF8/ZEB1 expression and decreased that of E-cadherin, suggesting induction of the epithelial-to-mesenchymal transition (EMT). The effect of N2 NTP was verified on rat wound model. Taken together, these results suggest that N2 NTP promotes wound healing by inducing the EMT and activating the MMP-9/uPA system. These findings show the therapeutic potential of NTP for skin wound healing.
Collapse
Affiliation(s)
- Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Choi
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kang Il Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Korea
| | - Yeon Soo Kim
- Department of otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Ju Kyeong Park
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yang Eun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea
| | - Sang Sik Yang
- Department of Electrical and Computer Engineering, Ajou University, Suwon, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
23
|
Maikho T, Patwardhan RS, Das TN, Sharma D, Sandur SK. Cold atmospheric plasma-modulated phorbol 12-myristate 13-acetate-induced differentiation of U937 cells to macrophage-like cells. Free Radic Res 2018; 52:212-222. [DOI: 10.1080/10715762.2017.1423069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Thoh Maikho
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Tomi Nath Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
24
|
Redox regulation of leukocyte-derived microparticle release and protein content in response to cold physical plasma-derived oxidants. CLINICAL PLASMA MEDICINE 2017. [DOI: 10.1016/j.cpme.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Kubinova S, Zaviskova K, Uherkova L, Zablotskii V, Churpita O, Lunov O, Dejneka A. Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci Rep 2017; 7:45183. [PMID: 28338059 PMCID: PMC5364525 DOI: 10.1038/srep45183] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023] Open
Abstract
Non-thermal plasma (NTP) has nonspecific antibacterial effects, and can be applied as an effective tool for the treatment of chronic wounds and other skin pathologies. In this study we analysed the effect of NTP on the healing of the full-thickness acute skin wound model in rats. We utilised a single jet NTP system generating atmospheric pressure air plasma, with ion volume density 5 · 1017 m-3 and gas temperature 30-35 °C. The skin wounds were exposed to three daily plasma treatments for 1 or 2 minutes and were evaluated 3, 7 and 14 days after the wounding by histological and gene expression analysis. NTP treatment significantly enhanced epithelization and wound contraction on day 7 when compared to the untreated wounds. Macrophage infiltration into the wound area was not affected by the NTP treatment. Gene expression analysis did not indicate an increased inflammatory reaction or a disruption of the wound healing process; transient enhancement of inflammatory marker upregulation was found after NTP treatment on day 7. In summary, NTP treatment had improved the healing efficacy of acute skin wounds without noticeable side effects and concomitant activation of pro-inflammatory signalling. The obtained results highlight the favourability of plasma applications for wound therapy in clinics.
Collapse
Affiliation(s)
- S Kubinova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - K Zaviskova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,2nd Medical Faculty, Charles University, Prague, Czech Republic
| | - L Uherkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - V Zablotskii
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Churpita
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Lunov
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Dejneka
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
26
|
Xu GM, Shi XM, Cai JF, Chen SL, Li P, Yao CW, Chang ZS, Zhang GJ. Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound Repair Regen 2016; 23:878-84. [PMID: 26342154 DOI: 10.1111/wrr.12364] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022]
Abstract
Cold plasma has become an attractive tool for promoting wound healing and treating skin diseases. This article presents an atmospheric pressure plasma jet (APPJ) generated in argon gas through dielectric barrier discharge, which was applied to superficial skin wounds in BALB/c mice. The mice (n = 50) were assigned randomly into five groups (named A, B, C, D, E) with 10 animals in each group. Natural wound healing was compared with stimulated wound healing treated daily with APPJ for different time spans (10, 20, 30, 40, and 50 seconds) on 14 consecutive days. APPJ emission spectra, morphological changes in animal wounds, and tissue histological parameters were analyzed. Statistical results revealed that wound size changed over the duration of the experimental period and there was a significant interaction between experimental day and group. Differences between group C and other groups at day 7 were statistically significant (p < 0.05). All groups had nearly achieved closure of the untreated control wounds at day 14. The wounds treated with APPJ for 10, 20, 30, and 40 seconds showed significantly enhanced daily improvement compared with the control and almost complete closure at day 12, 10, 7, and 13, respectively. The optimal results of epidermal cell regeneration, granulation tissue hyperplasia, and collagen deposition in histological aspect were observed at day 7. However, the wounds treated for 50 seconds were less well healed at day 14 than those of the control. It was concluded that appropriate doses of cold plasma could inactivate bacteria around the wound, activate fibroblast proliferation in wound tissue, and eventually promote wound healing. Whereas, over doses of plasma suppressed wound healing due to causing cell death by apoptosis or necrosis. Both positive and negative effects may be related to the existence of reactive oxygen and nitrogen species (ROS and RNS) in APPJ.
Collapse
Affiliation(s)
- Gui-Min Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xing-Min Shi
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jing-Fen Cai
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Si-Le Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ping Li
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Cong-Wei Yao
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zheng-Shi Chang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Guan-Jun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
27
|
Bekeschus S, Schmidt A, Weltmann KD, von Woedtke T. The plasma jet kINPen – A powerful tool for wound healing. CLINICAL PLASMA MEDICINE 2016. [DOI: 10.1016/j.cpme.2016.01.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Shao PL, Liao JD, Wong TW, Wang YC, Leu S, Yip HK. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds. PLoS One 2016; 11:e0156699. [PMID: 27248979 PMCID: PMC4889145 DOI: 10.1371/journal.pone.0156699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jiunn-Der Liao
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
- * E-mail:
| | - Tak-Wah Wong
- Department of Dermatology, Department of Biochemistry and Molecular Biology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Cheng Wang
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Steve Leu
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| |
Collapse
|
29
|
Comparison of the histological morphology between normal skin and scar tissue. ACTA ACUST UNITED AC 2016; 36:265-269. [PMID: 27072974 DOI: 10.1007/s11596-016-1578-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Skin wound healing is a complex event, and interrupted wound healing process could lead to scar formation. The aim of this study was to examine the morphological changes of scar tissue. Pathological staining (HE staining, Masson's trichrome staining, methenamine silver staining) was used to evaluate the morphological changes of regenerating epidermis in normal skin and scar tissue, and immunofluorescence staining to detect the expression of collagen IV, a component of basement membrane (BM), and the expression of integrinβ4, a receptor for BM laminins. Additionally, the expression of CK14, CK5, and CK10 was measured to evaluate the proliferation and differentiation of keratinocytes in normal skin and scar tissue. The results showed that the structure of the skin was histologically changed in scar tissue. Collagen IV, expressed under the epidermis of normal skin, was reduced distinctly in scar tissue. Integrinβ4, expressed in the basal layer of normal skin, was found absent in the basal layer of scar tissue. Additionally, it was found that keratinocytes in scarring epidermis were more proliferative than in normal skin. These results indicate that during the skin wound healing, altered formation of BM may affect the proliferation of keratinocytes, reepithelial and tissue remodeling, and then result in scar formation. Thus, remodeling BM structure during wound repair may be beneficial for improving healing in cutaneous wounds during clinical practice.
Collapse
|
30
|
Arndt S, Landthaler M, Zimmermann JL, Unger P, Wacker E, Shimizu T, Li YF, Morfill GE, Bosserhoff AK, Karrer S. Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One 2015; 10:e0120041. [PMID: 25768736 PMCID: PMC4359157 DOI: 10.1371/journal.pone.0120041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Cold atmospheric plasma (CAP) has been gaining increasing interest as a new approach for the treatment of skin diseases or wounds. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. This study explored in vitro and in vivo whether CAP influences gene expression and molecular mechanisms in keratinocytes. Our results revealed that a 2 min CAP treatment using the MicroPlaSter ß in analogy to the performed clinical studies for wound treatment induces expression of IL-8, TGF-ß1, and TGF-ß2. In vitro and in vivo assays indicated that keratinocyte proliferation, migration, and apoptotic mechanisms were not affected by the CAP treatment under the applied conditions. Further, we observed that antimicrobial peptides of the ß-defensin family are upregulated after CAP treatment. In summary, our results suggest that a 2 min application of CAP induces gene expression of key regulators important for inflammation and wound healing without causing proliferation, migration or cell death in keratinocytes. The induction of ß-defensins in keratinocytes describes an absolutely new plasma strategy. Activation of antimicrobial peptides supports the well-known antibacterial effect of CAP treatment, whereas the mechanism of ß-defensin activation by CAP is not investigated so far.
Collapse
Affiliation(s)
- Stephanie Arndt
- Institute of Pathology, University Regensburg, D-93042 Regensburg, Germany
| | - Michael Landthaler
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Julia L. Zimmermann
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
| | - Eva Wacker
- Institute of Pathology, University Regensburg, D-93042 Regensburg, Germany
| | - Tetsuji Shimizu
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Yang-Fang Li
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Gregor E. Morfill
- Max Planck Institute for Extraterrestrial Physics, D-85748 Garching, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry and Molecular Medicine, University Erlangen, D-91054—Erlangen, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, D-93042 Regensburg, Germany
- * E-mail:
| |
Collapse
|
31
|
Haertel B, von Woedtke T, Weltmann KD, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther (Seoul) 2014; 22:477-90. [PMID: 25489414 PMCID: PMC4256026 DOI: 10.4062/biomolther.2014.105] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022] Open
Abstract
Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.
Collapse
Affiliation(s)
- Beate Haertel
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP), Felix-Hausdorff Str. 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP), Felix-Hausdorff Str. 2, 17489 Greifswald, Germany
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald, D17489 Greifswald, Germany
| |
Collapse
|
32
|
Stahl HC, Ahmadi F, Schleicher U, Sauerborn R, Bermejo JL, Amirih ML, Sakhayee I, Bogdan C, Stahl KW. A randomized controlled phase IIb wound healing trial of cutaneous leishmaniasis ulcers with 0.045% pharmaceutical chlorite (DAC N-055) with and without bipolar high frequency electro-cauterization versus intralesional antimony in Afghanistan. BMC Infect Dis 2014; 14:619. [PMID: 25420793 PMCID: PMC4258014 DOI: 10.1186/s12879-014-0619-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/07/2014] [Indexed: 11/21/2022] Open
Abstract
Background A previously published proof of principle phase IIa trial with 113 patients from Kabul showed that bipolar high-frequency (HF) electro-cauterization (EC) of cutaneous leishmaniasis (CL) ulcers and subsequent moist wound treatment (MWT) closed 85% of all Leishmania (L.) tropica lesions within 60 days. Methods A three-armed phase IIb, randomized and controlled clinical trial was performed in Mazar-e-Sharif. L. tropica- or L. major-infected CL patients received intradermal sodium stibogluconate (SSG) (Group I); HF-EC followed by MWT with 0.045% DAC N-055 (Group II); or MWT with 0.045% DAC N-055 in basic crème alone (Group III). The primary outcome was complete epithelialisation before day 75 after treatment start. Results 87 patients enrolled in the trial were randomized into group I (n = 24), II (n = 32) and III (n = 31). The per-protocol analysis of 69 (79%) patients revealed complete epithelialisation before day 75 in 15 (of 23; 65%) patients of Group I, in 23 (of 23; 100%) patients of Group II, and in 20 (of 23; 87%) patients of Group III (p = 0.004, Fisher’s Exact Test). In the per-protocol analysis, wound closure times were significantly different between all regimens in a pair-wise comparison (p = 0.000039, Log-Rank (Mantel-Cox) test). In the intention-to-treat analysis wound survival times in Group II were significantly different from those in Group I (p = 0.000040, Log-Rank (Mantel-Cox) test). Re-ulcerations occurred in four (17%), three (13%) and seven (30%) patients of Group I, II or III, respectively (p = 0.312, Pearson Chi-Square Test). Conclusions Treatment of CL ulcers with bipolar HF-EC followed by MWT with 0.045% DAC N-055 or with DAC N-055 alone showed shorter wound closure times than with the standard SSG therapy. The results merit further exploration in larger trials in the light of our current knowledge of in vitro and in vivo activities of chlorite. Clinicaltrials.gov ID: NCT00996463. Registered: 15th October 2009. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0619-8) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 2013; 8:e79325. [PMID: 24265766 PMCID: PMC3825691 DOI: 10.1371/journal.pone.0079325] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
Cold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.
Collapse
Affiliation(s)
- Stephanie Arndt
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | - Petra Unger
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Wacker
- Institute of Pathology, University Regensburg, Regensburg, Germany
| | - Tetsuji Shimizu
- Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany
| | - Julia Heinlin
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Yang-Fang Li
- Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany
| | | | - Gregor E. Morfill
- Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany
| | | | | | - Sigrid Karrer
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Heinlin J, Zimmermann JL, Zeman F, Bunk W, Isbary G, Landthaler M, Maisch T, Monetti R, Morfill G, Shimizu T, Steinbauer J, Stolz W, Karrer S. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen 2013; 21:800-7. [DOI: 10.1111/wrr.12078] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/02/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Heinlin
- Department of Dermatology; University Hospital Regensburg; Regensburg Germany
| | | | - Florian Zeman
- Center for Clinical Studies; University Hospital Regensburg; Regensburg Germany
| | - Wolfram Bunk
- Max Planck Institute for Extraterrestrial Physics; Garching Germany
| | - Georg Isbary
- Department of Dermatology; Hospital Munich-Schwabing; Munich Germany
| | - Michael Landthaler
- Department of Dermatology; University Hospital Regensburg; Regensburg Germany
| | - Tim Maisch
- Department of Dermatology; University Hospital Regensburg; Regensburg Germany
| | - Roberto Monetti
- Max Planck Institute for Extraterrestrial Physics; Garching Germany
| | - Gregor Morfill
- Max Planck Institute for Extraterrestrial Physics; Garching Germany
| | - Tetsuji Shimizu
- Max Planck Institute for Extraterrestrial Physics; Garching Germany
| | - Julia Steinbauer
- Department of Dermatology; University Hospital Regensburg; Regensburg Germany
| | - Wilhelm Stolz
- Department of Dermatology; Hospital Munich-Schwabing; Munich Germany
| | - Sigrid Karrer
- Department of Dermatology; University Hospital Regensburg; Regensburg Germany
| |
Collapse
|