1
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Rutkoski CF, Grott SC, Israel NG, Guerreiro FDC, Carneiro FE, Bitschinski D, Warsneski A, Horn PA, Lima D, Bastolla CLV, Mattos JJ, Bainy ACD, da Silva EB, de Albuquerque CAC, Alves TC, de Almeida EA. Prednisone and prednisolone effects on development, blood, biochemical and histopathological markers of Aquarana catesbeianus tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106869. [PMID: 38387247 DOI: 10.1016/j.aquatox.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Synthetic glucocorticoids are often found in surface waters and can cause harmful effects to aquatic organisms such as amphibians. In this work we evaluated the effects of the drugs prednisone (PD) and prednisolone (PL) on developmental, molecular, blood, biochemical and histological markers. Aquarana catesbeianus tadpoles were exposed for 16 days to environmentally relevant concentrations of 0, 0.1, 1 and 10 µg/L of both drugs. PD increased the transcript levels of the enzyme deiodinase III (Dio3), the hormones cortisol and T4 and delayed development. Changes in the thyroid gland occurred after tadpoles were exposed to both drugs, with a reduction in the diameter and number of follicles and an increase/or decrease in area. Also, both drugs caused a decrease in lymphocytes (L) and an increase in neutrophils (N), thrombocytes, the N:L ratio and lobed and notched erythrocytes. Increased activity of the enzymes superoxide dismutase, glutathione S-transferase and glucose 6-phosphate dehydrogenase was observed after exposure to PD. Furthermore, both drugs caused an increase in the activity of the enzymes catalase and glutathione peroxidase. However, only PD caused oxidative stress in exposed tadpoles, evidenced by increased levels of malondialdehyde and carbonyl proteins. Both drugs caused an increase in inflammatory infiltrates, blood cells and melanomacrophages in the liver. Our results indicate that PD was more toxic than PL, affecting development and causing oxidative stress.
Collapse
Affiliation(s)
- Camila Fatima Rutkoski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Nicole Grasmuk Israel
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Daiane Bitschinski
- Biodiversity Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Aline Warsneski
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Priscila Aparecida Horn
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | | | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | |
Collapse
|
5
|
Li X, Gao P, Zhang C, Wu T, Xu Y, Liu D. Reduced bioavailability of cyclosporine A in rats by mung bean seed coat extract. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502014000300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mung bean seed coat (MBSC) is a healthcare product in Asian countries. The aim of this study was to investigate the effect of an MBSC ethanol extract on the bioavailability of cyclosporine A (CsA) in rats. Rats were orally dosed with CsA alone or in combination with MBSC ethanol extracts (500 mg/kg, p.o.). The blood levels of CsA were assayed by liquid chromatography with an electrospray ionization source and tandem mass spectrometry (LC-MS/MS). The everted rat intestinal sac technique was used to determine the influence of MBSC on the absorption of CsA. The results reveal that combined CsA intake with MBSC decreased the Cmax, AUC0-t, t1/2z and MRT0-t values of CsA by 24.96%, 47.28%, 34.73% and 23.58%, respectively (P<0.05), and significantly raised the CL/F by 51.97% (P<0.01). The in vitro results demonstrated that significantly less CsA was absorbed (P<0.05). The overall results indicate that after being concomitantly ingested, MBSC reduced the bioavailability of CsA, at least partially, in the absorption phase.
Collapse
Affiliation(s)
- Xiping Li
- Huazhong University of Science and Technology, China
| | - Ping Gao
- Wuhan Children's Hospital, China
| | | | - Tao Wu
- Huazhong University of Science and Technology, China
| | - Yanjiao Xu
- Huazhong University of Science and Technology, China
| | - Dong Liu
- Huazhong University of Science and Technology, China
| |
Collapse
|
6
|
Zhang C, Xu Y, Zhong Q, Li X, Gao P, Feng C, Chu Q, Chen Y, Liu D. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2. PLoS One 2014; 9:e93819. [PMID: 24699684 PMCID: PMC3974814 DOI: 10.1371/journal.pone.0093819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Two major forms of human carboxylesterase (CES), CES1A and CES2, dominate the pharmacokinetics of most prodrugs such as imidapril and irinotecan (CPT-11). Excipients, largely used as insert vehicles in formulation, have been recently reported to affect drug enzyme activity. The influence of excipients on the activity of CES remains undefined. In this study, the inhibitory effects of 25 excipients on the activities of CES1A1 and CES2 were evaluated. Imidapril and CPT-11 were used as substrates and cultured with liver microsomes in vitro. Imidapril hydrolase activities of recombinant CES1A1 and human liver microsomes (HLM) were strongly inhibited by sodium lauryl sulphate (SLS) and polyoxyl 40 hydrogenated castor oil (RH40) [Inhibition constant (Ki) = 0.04 ± 0.01 μg/ml and 0.20 ± 0.09 μg/ml for CES1A1, and 0.12 ± 0.03 μg/ml and 0.76 ± 0.33 μg/ml, respectively, for HLM]. The enzyme hydrolase activity of recombinant CES2 was substantially inhibited by Tween 20 and polyoxyl 35 castor oil (EL35) (K(i) = 0.93 ± 0.36 μg/ml and 4.4 ± 1.24 μg/ml, respectively). Thus, these results demonstrate that surfactants such as SLS, RH40, Tween 20 and EL35 may attenuate the CES activity; such inhibition should be taken into consideration during drug administration.
Collapse
Affiliation(s)
- Chengliang Zhang
- Department of Pharmacy, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiaoni Zhong
- Hubei Pharmaceutical Industry Research Institute Co. Ltd., Wuhan, Hubei, China
| | - Xiping Li
- Department of Pharmacy, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Gao
- Department of Pharmacy, Wuhan Children's Hospital, Wuhan, Hubei, China
| | - Chengyang Feng
- Department of Pharmacy, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Chu
- Department of Oncology, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Oncology, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dong Liu
- Department of Pharmacy, Tongji hospital, Tongji medical school, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|