1
|
Leitner N, Simsek I, Hlavaty J, Schäfer-Somi S, Walter I. Immunohistochemical assessment of ERM proteins (ezrin, radixin, moesin) in the ovaries of different species. Tissue Cell 2025; 93:102644. [PMID: 39637489 DOI: 10.1016/j.tice.2024.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The ezrin/radixin/moesin proteins play a central role in cross-linking plasma membrane proteins with the actin cytoskeleton. Despite intensive ERM protein research in many tissues and pathologies, little is known about these proteins in healthy tissues of reproductive organs. Therefore, we examined ezrin, phosphorylated ezrin/radixin/moesin (pan-pERM), radixin, and moesin distribution at the cellular level by means of immunohistochemistry in ovaries of the following animal species: mouse, dog, cat, sheep, pig, horse, and cynomolgus monkey. Ezrin was expressed in oocytes, ovarian surface, granulosa cells and corpus luteum. A characteristic, predominantly membranous pan-pERM staining pattern was observed in ovarian surface epithelium, oocyte, granulosa cells and corpus luteum. Moesin immunoreactivity was present in all ovarian structures with a prominent signal in endothelial cells of blood vessels. Oocytes, granulosa cells and corpus luteum revealed mainly nuclear radixin staining. Staining pattern and subcellular localization (membranous, cytoplasmic, nuclear) varied between different animal species and between particular ERM proteins as well. This data may help gain new insights into the physiological function of ERM proteins in biological events in the female reproductive system.
Collapse
Affiliation(s)
- Natascha Leitner
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Ismi Simsek
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Juraj Hlavaty
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| | - Sabine Schäfer-Somi
- Department of Small Animals and Horses, Clinical Center for Reproduction University of Veterinary Medicine, Vienna, Austria.
| | - Ingrid Walter
- Department of Biomedical Sciences and Pathobiology, Center of Pathobiology, University of Veterinary Medicine, Vienna, Austria; VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
2
|
Chen Q, Fan K, Chen X, Xie X, Huang L, Song G, Qi W. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling. J Cell Mol Med 2021; 25:9378-9389. [PMID: 34459110 PMCID: PMC8500952 DOI: 10.1111/jcmm.16877] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the role and regulatory mechanisms of Ezrin in synovial vessels in rheumatoid arthritis (RA). Synovial tissues were obtained from people with osteoarthritis people and patients with RA patients. We also used an antigen-induced arthritis (AIA) mice model by using Freund's adjuvant injections. Ezrin expression was analysed by immunofluorescence and immunohistochemical staining in synovial vessels of patients with RA and AIA mice. We investigated the role of Ezrin on vascular endothelial cells and its regulatory mechanism in vivo and in vitro by adenoviral transfection technology. Our results suggest a role for the Ezrin protein in proliferation, migration and angiogenesis of vascular endothelial cells in RA. We also demonstrate that Ezrin plays an important role in vascular endothelial cell migration and tube formation through regulation of the Hippo-yes-associated protein 1 (YAP) pathway. YAP, as a key protein, can further regulate the activity of PI3K/Akt signalling pathway in vascular endothelial cells. In AIA mice experiments, we observed that the inhibition of Ezrin or of its downstream YAP pathway can affect synovial angiogenesis and may lead to progression of RA. In conclusion, Ezrin plays an important role in angiogenesis in the RA synovium by regulating YAP nuclear translocation and interacting with the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Qiyue Chen
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Kai Fan
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xi Chen
- Department of DermatologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaobo Xie
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Li Huang
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Guangbao Song
- Department of Special ClinicsStomatological HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weizhong Qi
- Department of Joint and OrthopedicsZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Cota Teixeira S, Silva Lopes D, Santos da Silva M, Cordero da Luz FA, Cirilo Gimenes SN, Borges BC, Alves da Silva A, Alves Martins F, Alves Dos Santos M, Teixeira TL, Oliveira RA, de Melo Rodrigues Ávila V, Barbosa Silva MJ, Elias MC, Martin R, Vieira da Silva C, Knölker HJ. Pentachloropseudilin Impairs Angiogenesis by Disrupting the Actin Cytoskeleton, Integrin Trafficking and the Cell Cycle. Chembiochem 2019; 20:2390-2401. [PMID: 31026110 DOI: 10.1002/cbic.201900203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/21/2022]
Abstract
Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, 45029-094, BA, Brazil
| | - Marcelo Santos da Silva
- Special Laboratory of Cell Cycle (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil.,The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Felipe Andrés Cordero da Luz
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Sarah Natalie Cirilo Gimenes
- Imunopathology Laboratory, Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil
| | - Bruna Cristina Borges
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Aline Alves da Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Flávia Alves Martins
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Marlus Alves Dos Santos
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Thaise Lara Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Ricardo A Oliveira
- Medical School, Federal University of Uberlândia, Av. Pará, Bloco 2u, 1720 - Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Institute of Biotechnology, Federal University of Uberlândia, Av. Pará, 1720 - Bloco 2E - Sala(s) 246 - Campus Umuarama, Uberlândia, 38405-320, MG, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Maria Carolina Elias
- Special Laboratory of Cell Cycle (LECC), Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, Av. Vital Brasil, 1500 - Butantã, São Paulo, 05503-900, SP, Brazil
| | - René Martin
- Fakultät Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Claudio Vieira da Silva
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlândia, Rua Piauí, Bloco 2B, sala 200, Campus Umuarama, Uberlândia, 38400-902, MG, Brazil
| | - Hans-Joachim Knölker
- Fakultät Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
4
|
Quan C, Sun J, Lin Z, Jin T, Dong B, Meng Z, Piao J. Ezrin promotes pancreatic cancer cell proliferation and invasion through activating the Akt/mTOR pathway and inducing YAP translocation. Cancer Manag Res 2019; 11:6553-6566. [PMID: 31372056 PMCID: PMC6634270 DOI: 10.2147/cmar.s202342] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Ezrin and YAP are abnormally expressed in various cancers, and play pivotal roles in cancer initiation and development. However, the mechanisms of Ezrin in pancreatic cancer have not been fully elucidated. In this study, we aimed to elucidate the functions and mechanisms of Ezrin in the pathogenesis of pancreatic cancer. Methods Effects of Ezrin deregulation on pancreatic cancer phenotype were determined in Capan-1 and BxPC-3 cells using MTT, colony formation, transwell, wound-healing, and chick chorioallantoic membrane assays. To find out the underlying mechanism of Ezrin, multiple assays were performed to detect the effect of Ezrin on Akt pathway activation and YAP expression. Then, Ezrin and YAP expression was analyzed in pancreatic cancer and normal pancreas samples. Finally, the prognostic value of Ezrin and YAP was evaluated in pancreatic cancer patients. Results Ezrin promoted proliferation, invasion, epithelial–mesenchymal transition (EMT) progression, and angiogenesis of pancreatic cancers. Mechanistically, Ezrin activated Akt/mTOR pathways and induced YAP phosphorylation and nucleus translocation. The PI3K/Akt pathway inhibitor, rapamycin, and LY294002 could partially attenuate the effect of Ezrin on cell proliferation, invasion, EMT progression, and YAP phosphorylation and translocation. Moreover, both Ezrin and YAP were significantly overexpressed in pancreatic cancer tissues compared with adjacent normal pancreas, and correlated with poor prognosis in pancreatic cancer patients. Multivariate survival analysis showed that Ezrin was an independent prognostic marker for pancreatic cancer. Furthermore, the expression status of Ezrin and YAP had positive correlations in pancreatic cancer tissues. Conclusion Ezrin promoted pancreatic cancer proliferation, invasion, migration, and EMT progression, partially through activating the PI3K/Akt pathway, and also regulated YAP phosphorylation and translocation, partially through the PI3K/Akt pathway. Ezrin and YAP were significantly overexpressed in pancreatic cancers, and correlated with poor prognosis in pancreatic cancer patients.
Collapse
Affiliation(s)
- Chunji Quan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, People's Republic of China
| | - Jie Sun
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| | - Bing Dong
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| | - Ziqi Meng
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| | - Junjie Piao
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji 133002, People's Republic of China.,Key Laboratory of the Science and Technology, Department of Jilin Province , Yanji 133002, People's Republic of China
| |
Collapse
|
5
|
Cho H, Shen GQ, Wang X, Wang F, Archacki S, Li Y, Yu G, Chakrabarti S, Chen Q, Wang QK. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J Biol Chem 2019; 294:3881-3898. [PMID: 30655286 DOI: 10.1074/jbc.ra118.005050] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts of > 200 nucleotides and are increasingly recognized as playing functional roles in physiology and disease. ANRIL is an lncRNA gene mapped to the chromosome 9p21 genetic locus for CAD identified by the first series of genome-wide association studies (GWAS). However, ANRIL's role in CAD and the underlying molecular mechanism are unknown. Here, we show that the major ANRIL transcript in endothelial cells (ECs) is DQ485454 with a much higher expression level in ECs than in THP-1 monocytes. Of note, DQ485454 expression was down-regulated in CAD coronary arteries compared with non-CAD arteries. DQ485454 overexpression significantly reduced monocyte adhesion to ECs, transendothelial monocyte migration (TEM), and EC migration, which are critical cellular processes involved in CAD initiation, whereas siRNA-mediated ANRIL knockdown (KD) had the opposite effect. Microarray and follow-up quantitative RT-PCR analyses revealed that the ANRIL KD down-regulated expression of AHNAK2, CLIP1, CXCL11, ENC1, EZR, LYVE1, WASL, and TNFSF10 genes and up-regulated TMEM100 and TMEM106B genes. Mechanistic studies disclosed that overexpression of CLIP1, EZR, and LYVE1 reversed the effects of ANRIL KD on monocyte adhesion to ECs, TEM, and EC migration. These findings indicate that ANRIL regulates EC functions directly related to CAD, supporting the hypothesis that ANRIL is involved in CAD pathogenesis at the 9p21 genetic locus and identifying a molecular mechanism underlying lncRNA-mediated regulation of EC function and CAD development.
Collapse
Affiliation(s)
- Hyosuk Cho
- From the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106.,the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Gong-Qing Shen
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Xiaofeng Wang
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Fan Wang
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Stephen Archacki
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Yabo Li
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Gang Yu
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and.,the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430073, China
| | - Susmita Chakrabarti
- the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Qiuyun Chen
- the Departments of Cardiovascular and Metabolic Sciences and .,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Qing Kenneth Wang
- From the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, .,the Departments of Cardiovascular and Metabolic Sciences and.,the Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, and.,the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430073, China
| |
Collapse
|
6
|
Teixeira SC, Lopes DS, Gimenes SNC, Teixeira TL, da Silva MS, Brígido RTES, da Luz FAC, da Silva AA, Silva MA, Florentino PV, Tavares PCB, dos Santos MA, Ávila VDMR, Silva MJB, Elias MC, Mortara RA, da Silva CV. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy. Sci Rep 2017; 7:44978. [PMID: 28322302 PMCID: PMC5359584 DOI: 10.1038/srep44978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Daiana Silva Lopes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Sarah Natalie Cirilo Gimenes
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Thaise Lara Teixeira
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marcelo Santos da Silva
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Rebecca Tavares e Silva Brígido
- Laboratório de Patologia Molecular e Biotecnologia do Centro de Referência Nacional em Dermatologia Sanitária/Hanseníase, Faculdade de Medicina, Universidade Federal de Uberlândia, MG, Brasil
| | - Felipe Andrés Cordero da Luz
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Aline Alves da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Makswell Almeida Silva
- Laboratório de Bioquímica e Toxinas Animais, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, MG, Brasil
| | - Pilar Veras Florentino
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Paula Cristina Brígido Tavares
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Marlus Alves dos Santos
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | | | - Marcelo José Barbosa Silva
- Laboratório de Osteoimunologia e Imunologia dos Tumores, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| | - Maria Carolina Elias
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, MG, Brasil
| |
Collapse
|