1
|
Wang R, Gao C, Yu M, Song J, Feng Z, Wang R, Pan H, Liu H, Li W, Fan X. Mechanistic prediction and validation of Brevilin A Therapeutic effects in Lung Cancer. BMC Complement Med Ther 2024; 24:214. [PMID: 38840248 PMCID: PMC11151568 DOI: 10.1186/s12906-024-04516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been found widespread application in neoplasm treatment, yielding promising therapeutic candidates. Previous studies have revealed the anti-cancer properties of Brevilin A, a naturally occurring sesquiterpene lactone derived from Centipeda minima (L.) A.Br. (C. minima), a TCM herb, specifically against lung cancer. However, the underlying mechanisms of its effects remain elusive. This study employs network pharmacology and experimental analyses to unravel the molecular mechanisms of Brevilin A in lung cancer. METHODS The Batman-TCM, Swiss Target Prediction, Pharmmapper, SuperPred, and BindingDB databases were screened to identify Brevilin A targets. Lung cancer-related targets were sourced from GEO, Genecards, OMIM, TTD, and Drugbank databases. Utilizing Cytoscape software, a protein-protein interaction (PPI) network was established. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), and gene-pathway correlation analysis were conducted using R software. To validate network pharmacology results, molecular docking, molecular dynamics simulations, and in vitro experiments were performed. RESULTS We identified 599 Brevilin A-associated targets and 3864 lung cancer-related targets, with 155 overlapping genes considered as candidate targets for Brevilin A against lung cancer. The PPI network highlighted STAT3, TNF, HIF1A, PTEN, ESR1, and MTOR as potential therapeutic targets. GO and KEGG analyses revealed 2893 enriched GO terms and 157 enriched KEGG pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. GSEA demonstrated a close association between hub genes and lung cancer. Gene-pathway correlation analysis indicated significant associations between hub genes and the cellular response to hypoxia pathway. Molecular docking and dynamics simulations confirmed Brevilin A's interaction with PTEN and HIF1A, respectively. In vitro experiments demonstrated Brevilin A-induced dose- and time-dependent cell death in A549 cells. Notably, Brevilin A treatment significantly reduced HIF-1α mRNA expression while increasing PTEN mRNA levels. CONCLUSIONS This study demonstrates that Brevilin A exerts anti-cancer effects in treating lung cancer through a multi-target and multi-pathway manner, with the HIF pathway potentially being involved. These results lay a theoretical foundation for the prospective clinical application of Brevilin A.
Collapse
Affiliation(s)
- Ruixue Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Meng Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jialing Song
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhenzhen Feng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ruyu Wang
- School of clinical medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimeng Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wei Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiangzhen Fan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
2
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
3
|
Levallet J, Biojout T, Bazille C, Douyère M, Dubois F, Ferreira DL, Taylor J, Teulier S, Toutain J, Elie N, Bernaudin M, Valable S, Bergot E, Levallet G. Hypoxia-induced activation of NDR2 underlies brain metastases from Non-Small Cell Lung Cancer. Cell Death Dis 2023; 14:823. [PMID: 38092743 PMCID: PMC10719310 DOI: 10.1038/s41419-023-06345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
The molecular mechanisms induced by hypoxia are misunderstood in non-small cell lung cancer (NSCLC), and above all the hypoxia and RASSF1A/Hippo signaling relationship. We confirmed that human NSCLC (n = 45) as their brain metastases (BM) counterpart are hypoxic since positive with CAIX-antibody (target gene of Hypoxia-inducible factor (HIF)). A severe and prolonged hypoxia (0.2% O2, 48 h) activated YAP (but not TAZ) in Human Bronchial Epithelial Cells (HBEC) lines by downregulating RASSF1A/kinases Hippo (except for NDR2) regardless their promoter methylation status. Subsequently, the NDR2-overactived HBEC cells exacerbated a HIF-1A, YAP and C-Jun-dependent-amoeboid migration, and mainly, support BM formation. Indeed, NDR2 is more expressed in human tumor of metastatic NSCLC than in human localized NSCLC while NDR2 silencing in HBEC lines (by shRNA) prevented the xenograft formation and growth in a lung cancer-derived BM model in mice. Collectively, our results indicated that NDR2 kinase is over-active in NSCLC by hypoxia and supports BM formation. NDR2 expression is thus a useful biomarker to predict the metastases risk in patients with NSCLC, easily measurable routinely by immunohistochemistry on tumor specimens.
Collapse
Affiliation(s)
- Jérôme Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Tiphaine Biojout
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Céline Bazille
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
- Department of Pathology, CHU de Caen, Caen, F-14000, France
| | - Manon Douyère
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Fatéméh Dubois
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
- Department of Pathology, CHU de Caen, Caen, F-14000, France
- Structure Fédérative D'oncogénétique cyto-MOléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, Caen, F-14000, France
| | - Dimitri Leite Ferreira
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, F-14000, France
| | - Jasmine Taylor
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Sylvain Teulier
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, F-14000, France
| | - Jérôme Toutain
- CNRS, Université de Caen Normandie, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Nicolas Elie
- Normandie Univ, UNICAEN, Federative Structure 4207 "Normandie Oncologie", Service Unit PLATON, Virtual'His platform, Caen, France; Normandie Univ, UNICAEN, Service Unit EMERODE, Centre de Microscopie Appliquée à la Biologie, CMABio³, Caen, France
| | - Myriam Bernaudin
- CNRS, Université de Caen Normandie, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Samuel Valable
- CNRS, Université de Caen Normandie, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
| | - Emmanuel Bergot
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France
- Department of Pulmonology & Thoracic Oncology, CHU de Caen, Caen, F-14000, France
| | - Guénaëlle Levallet
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14074, France.
- Department of Pathology, CHU de Caen, Caen, F-14000, France.
- Structure Fédérative D'oncogénétique cyto-MOléculaire du CHU de Caen (SF-MOCAE), CHU de Caen, Caen, F-14000, France.
| |
Collapse
|
4
|
Pangarsa EA, Rizky D, Tandarto K, Naibaho RM, Kurniawan SP, Istiadi H, Puspasari D, Santoso AG, Setiawan B, Santosa D, Haryana SM, Suharti C. The expression of hypoxia inducible factor-1 alpha in diffuse large B-cell lymphoma (DLBCL) patients: a cross-sectional study in Indonesia. Ann Med Surg (Lond) 2023; 85:4780-4787. [PMID: 37811023 PMCID: PMC10553143 DOI: 10.1097/ms9.0000000000001162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/02/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Hypoxia fuels cancer growth by supporting blood vessel formation, suppressing immune response, and helping cancer cells adapt to harsh surroundings. This happens when cancer cells react to low oxygen levels by activating hypoxia inducible factor-1 alpha (HIF-1α). High levels of HIF-1α can indicate an aggressive form of cancer and resistance to treatment in diffuse large B-cell lymphoma (DLBCL) patients. This study aimed to identify which factors are linked to HIF-1α distribution using immunohistochemistry in DLBCL patients. Method This study conducted at a hospital in Indonesia between 2020 and 2022 aimed to investigate factors associated with HIF-1α expression in DLBCL patients. Newly diagnosed DLBCL patients were categorized into two groups based on HIF-1α distribution (<40% and ≥40%). Various factors were analyzed between the two groups using statistical tests such as χ2, Mann-Whitney U, and Spearman correlation tests. Results In this study, 40 participants diagnosed with DLBCL were divided into two groups based on their HIF-1α distribution. The group with HIF-1α distribution greater than or equal to 40% had a higher incidence of extranodal involvement, including primary extranodal disease, compared to the group with less than 40% distribution. This difference was statistically significant. The authors also found that haemoglobin level statistically significant (P=0.041) in this research. The Spearman test analysis showed negative correlation between haemoglobin (P = <0.05, r = -0.44) and positive correlation of soluble interleukin-2 receptor (sIL-2R) (P = <0.05, r = 0.5) with vascular endothelial growth factor (VEGF), as well as between tumour volume (P = <0.05, r = 0.37) with sIL-2R. Additionally, there was a positive correlation between VEGF and sIL-2R (P = <0.05, r= 0.5). Conclusion Patients with higher HIF-1α expression (≥40%) had more extranodal involvement and primary extranodal disease in this study of 40 DLBCL patients. Haemoglobin level, sIL-2R, and VEGF were also identified as potential biomarkers.
Collapse
Affiliation(s)
- Eko Adhi Pangarsa
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
- Doctoral of Medical Science and Health Study Program, Faculty of Medicine Diponegoro University
| | - Daniel Rizky
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Kevin Tandarto
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Ridho M. Naibaho
- Department of Hematology/Medical Oncology, A. M. Parikesit Hospital and A. W. Sjahranie Hospital, Mulawarman School of Medicine, Samarinda, East Kalimantan
| | - Sigit P. Kurniawan
- Department of Hematology/Medical Oncology, Department of Internal Medicine, Lambung Mangkurat University/Ulin General Hospital, Banjarmasin, and Hadji Boejasin General Hospital, Tanah Laut, Indonesia
| | - Hermawan Istiadi
- Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Dik Puspasari
- Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Antonius Gunawan Santoso
- Interventional Radiology, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Budi Setiawan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | - Damai Santosa
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| | | | - Catharina Suharti
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital
| |
Collapse
|
5
|
Arrieta O, Hernández-Pedro N, Maldonado F, Ramos-Ramírez M, Yamamoto-Ramos M, López-Macías D, Lozano F, Zatarain-Barrón ZL, Turcott JG, Barrios-Bernal P, Orozco-Morales M, Flores-Estrada D, Cardona AF, Rolfo C, Cacho-Díaz B. Nitroglycerin Plus Whole Intracranial Radiation Therapy for Brain Metastases in Patients With Non-Small Cell Lung Cancer: A Randomized, Open-Label, Phase 2 Clinical Trial. Int J Radiat Oncol Biol Phys 2023; 115:592-607. [PMID: 35157994 DOI: 10.1016/j.ijrobp.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Hypoxia has been associated with chemoradioresistance secondary to vascular endothelial growth factor receptor induced by hypoxia-induced factor (HIF). Nitroglycerin (NTG) can reduce HIF-1 in tissues, and this may have antiangiogenic, proapoptotic, and antiefflux effects. Particularly, epidermal growth factor-mutated (EGFRm) tumor cell lines have been shown to overexpress both vascular endothelial growth factor and HIF. In this phase 2 study, we evaluated the effect of transdermal NTG plus whole brain radiation therapy (WBRT) in patients with non-small cell lung cancer (NSCLC) with brain metastases (BM). METHODS This was an open-label, phase 2 clinical trial with 96 patients with NSCLC and BM. Patients were randomized 1:1 to receive NTG plus WBRT (30 Gy in 10 fractions) or WBRT alone. The primary endpoint was intracranial objective response rate (iORR) evaluated 3 months posttreatment. NTG was administered using a transdermal 36-mg patch from Monday through Friday throughout WBRT administration (10 days). The protocol was retrospectively registered at ClinicalTrials.gov (NCT04338867). RESULTS Fifty patients were allocated to the control group, and 46 were allocated to the experimental group (NTG); among these, 26 (52%) had EGFRm in the control group and 21 (45.7%) had EGFRm in the NTG arm. In terms of the iORR, patients in the NTG group had a significantly higher response compared with controls (56.5% [n = 26/46 evaluable patients] vs 32.7% [n = 16/49 evaluable patients]; relative risk, 1.73; 95% confidence interval [CI], 1.08-2.78; P = .024). Additionally, patients who received NTG + WBRT had an independently prolonged intracranial progression-free survival (ICPFS) compared with those who received WBRT alone (27.7 vs 9.6; hazard ratio [HR], 0.5; 95% CI, 0.2-0.9; P = .020); this positively affected overall progression-free survival among patients who received systemic therapy (n = 88; HR, 0.5; 95% CI, 0.2-0.9; P = .043). The benefit of ICPFS (HR, 0.4; 95% CI, 0.2-0.9; P = .030) was significant in the EGFRm patient subgroup. No differences were observed in overall survival. A significantly higher rate of vomiting presented in the NTG arm of the study (P = .016). CONCLUSIONS The concurrent administration of NTG and radiation therapy improves iORR and ICPFS among patients with NSCLC with BM. The benefit in ICPFS is significant in the EGFRm patient subgroup.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit and Laboratory of Personalized Medicine.
| | - Norma Hernández-Pedro
- Thoracic Oncology Unit and Laboratory of Personalized Medicine; Personalized Medicine Laboratory
| | - Federico Maldonado
- Department of Radio-Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | | | | | - Francisco Lozano
- Department of Radio-Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Jenny G Turcott
- Thoracic Oncology Unit and Laboratory of Personalized Medicine
| | | | | | | | - Andrés F Cardona
- Clinical and Translational Oncology Group, Fundación Santa Fe de Bogotá, Bogotá, Colombia; Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
6
|
Deng Y, Li H, Fu J, Pu Y, Zhang Y, Chen S, Tong S, Liu H. A hypoxia risk score for prognosis prediction and tumor microenvironment in adrenocortical carcinoma. Front Genet 2022; 13:796681. [PMID: 36583015 PMCID: PMC9792869 DOI: 10.3389/fgene.2022.796681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Adrenocortical carcinoma (ACC) is a rare malignant endocrine tumor derived from the adrenal cortex. Because of its highly aggressive nature, the prognosis of patients with adrenocortical carcinoma is not impressive. Hypoxia exists in the vast majority of solid tumors and contributes to invasion, metastasis, and drug resistance. This study aimed to reveal the role of hypoxia in Adrenocortical carcinoma and develop a hypoxia risk score (HRS) for Adrenocortical carcinoma prognostic prediction. Methods: Hypoxia-related genes were obtained from the Molecular Signatures Database. The training cohorts of patients with adrenocortical carcinoma were downloaded from The Cancer Genome Atlas, while another three validation cohorts with comprehensive survival data were collected from the Gene Expression Omnibus. In addition, we constructed a hypoxia classifier using a random survival forest model. Moreover, we explored the relationship between the hypoxia risk score and immunophenotype in adrenocortical carcinoma to evaluate the efficacy of immune check inhibitors (ICI) therapy and prognosis of patients. Results: HRS and tumor stage were identified as independent prognostic factors. HRS was negatively correlated with immune cycle activity, immune cell infiltration, and the T cell inflammatory score. Therefore, we considered the low hypoxia risk score group as the inflammatory immunophenotype, whereas the high HRS group was a non-inflammatory immunophenotype. In addition, the HRS was negatively related to the expression of common immune checkpoint molecules such as PD-L1, CD200, CTLA-4, and TIGIT, suggesting that patients with a lower hypoxia risk score respond better to immunotherapy. Conclusion: We developed and validated a novel hypoxia risk score to predict the immunophenotype and response of patients with adrenocortical carcinoma to immune check inhibitors therapy. These findings not only provide fresh prognostic indicators for adrenocortical carcinoma but also offer several promising treatment targets for this disease.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinglan Fu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Pu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Shijing Chen
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Huixia Liu, ; Shiyu Tong,
| | - Huixia Liu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Huixia Liu, ; Shiyu Tong,
| |
Collapse
|
7
|
Aberrant Expression and Prognostic Potential of IL-37 in Human Lung Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123037. [PMID: 36551790 PMCID: PMC9775426 DOI: 10.3390/biomedicines10123037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin-37 (IL-37) is a relatively new IL-1 family cytokine that, due to its immunoregulatory properties, has lately gained increasing attention in basic and translational biomedical research. Emerging evidence supports the implication of this protein in any human disorder in which immune homeostasis is compromised, including cancer. The aim of this study was to explore the prognostic and/or diagnostic potential of IL-37 and its receptor SIGIRR (single immunoglobulin IL-1-related receptor) in human tumors. We utilized a series of bioinformatics tools and -omics datasets to unravel possible associations of IL-37 and SIGIRR expression levels and genetic aberrations with tumor development, histopathological parameters, distribution of tumor-infiltrating immune cells, and survival rates of patients. Our data revealed that amongst the 17 human malignancies investigated, IL-37 exhibits higher expression levels in tumors of lung adenocarcinoma (LUAD). Moreover, the expression profiles of IL-37 and SIGIRR are associated with LUAD development and tumor stage, whereas their high mRNA levels are favorable prognostic factors for the overall survival of patients. What is more, IL-37 correlates positively with a LUAD-associated transcriptomic signature, and its nucleotide changes and expression levels are linked with distinct infiltration patterns of certain cell subsets known to control LUAD anti-tumor immune responses. Our data indicate the potential value of IL-37 and its receptor SIGIRR to serve as biomarkers and/or immune-checkpoint therapeutic targets for LUAD patients. Further, the data highlight the urgent need for further exploration of this cytokine and the underlying pathogenetic mechanisms to fully elucidate its implication in LUAD development and progression.
Collapse
|
8
|
Tahanovich AD, Kauhanka NN, Murashka DI, Kolb AV, Prokhorova VI, Got'ko OV, Derzhavets LA. Preoperative blood markers for prediction of recurrence-free survival after surgical treatment of patients with stage III lung adenocarcinoma. Klin Lab Diagn 2022; 67:640-646. [PMID: 36398772 DOI: 10.51620/0869-2084-2022-67-11-640-646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The possibility of the preoperative level of 42 indicators characterizing the cellular composition and metabolism in blood of patients with stage III lung adenocarcinoma (AC) to predict their relapse-free survival was studied. Blood samples of 451 patients with newly diagnosed AK stage III after their surgical treatment (resection volume - R0) have been investigated. The duration of the relapse-free period (period of observation - 1 year), cellular composition of the blood, concentration of C-RP, albumin, Cyfra 21-1 antigens, SCC, TPA, chemokines CXCL5, CXCL8, pyruvate kinase TuM2 PK isoenzyme, HIF-1α and hyaluronic acid in blood serum so as the proportion of blood cells with CXCR1 and CXCR2, CD44V6 receptors in blood serum were measured. To determine the dependence of the duration of the relapse-free period after the treatment on the observation time, Kaplan-Meier graphs were built. The relationship between the determined parameters and survival was judged using single- and multi-factor Cox proportional hazard models. Comparison of groups with different risk of AK recurrence was performed using the Log Rank test and χ2. The assessment of the predictive information content of laboratory tests was carried out using ROC analysis. It was shown that the concentration of monocytes, eosinophilic leukocytes, the relative quantity of lymphocytes with CXCR1 receptor, the level of Cyfra 21-1 before surgical treatment were associated with the duration of the relapse-free period. A regression equation was compiled, which included the level of Cyfra 21-1, relative content of lymphocytes with CXCR1, and the eosinophilic leukocytes / monocytes ratio. Based on the threshold value Y=0,597, a Kaplan-Meier plot of patient survival was built and the results of it correspond to the TNM stratification. The prognostic sensitivity of the results of the equation - 85,7%, the specificity - 94,7%.
Collapse
Affiliation(s)
| | | | | | - A V Kolb
- Belarusian State Medical University
| | | | - O V Got'ko
- National Centre of oncology and medical radiology
| | | |
Collapse
|
9
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
10
|
Majumder D, Sarkar C, Debnath R, Tribedi P, Maiti D. Mechanistic insight into the synergism of IL-27 and IL-28B in regulation of benzo(a)pyrene-induced lung carcinogenesis associated ROS/NF-κB/NLRP3 crosstalk. Chem Biol Interact 2022; 354:109807. [PMID: 34999049 DOI: 10.1016/j.cbi.2022.109807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
Abstract
AIM Our previous work depicted that benzo(a)pyrene (BaP)-induced lung cancer associated pulmonary redox imbalance and inflammation were effectively regulated by the combinatorial treatment of IL-27 and IL-28B. So in continuation of that finding the present study was designed to reveal the inflammation regulating signaling network modulated by IL-27 and IL-28B treatment related to BaP-induced lung cancer. METHODS Male Swiss albino mice were treated with BaP to induce lung tumor. Then they received individual as well as combinatorial treatment of IL-27 and IL-28B. At the end of the experimental schedule, the expression of NF-κB signaling proteins, the formation of NLRP3 inflammasome complex and IL-18; IL-17A expression in the lung were observed using Western blot and RT-PCR. The tissue and serum levels of some proinflammatory cytokines were also studied using ELISA. Mast cell density was also studied using toluidine blue staining procedure. RESULTS Treatment with IL-27 or IL-28B alone was successful to regulate the expression of NF-κB signaling proteins and NLRP3 complex in some cases but best attenuation was observed in animals who received both IL-27 and IL-28B in combination. In combination, it was successful in down-regulating the expression of p-ERK1/2 and in reducing the accumulation of mast cells in the lung tissue associated with BaP-induced lung carcinogenesis. The impaired PPARγ expression was also reinstated upon combination treatment. CONCLUSION Altogether, the treatment in combination with IL-27 and IL-28B is an effective regimen to attenuate the ROS/NF-κB/NLRP3 axis associated with BaP-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022 , India.
| | - Chaitali Sarkar
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022 , India.
| | - Rahul Debnath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022 , India.
| | - Prosun Tribedi
- Department of Biotechnology, Jhinger Pole, Diamond Harbour Rd, Sarisha, West Bengal, 743368, India.
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022 , India.
| |
Collapse
|
11
|
Song Z, Tan J. Effects of Anesthesia and Anesthetic Techniques on Metastasis of Lung Cancers: A Narrative Review. Cancer Manag Res 2022; 14:189-204. [PMID: 35046726 PMCID: PMC8763573 DOI: 10.2147/cmar.s343772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose Tumor recurrence and metastasis are essential for the mortality and morbidity of cancer. Surgical resection of solid tumors is the conventional treatment approach for malignant tumors. However, even after undergoing radical surgery, certain patients develop local or distant metastasis, which may contribute to treatment failure. Anesthesia and anesthetic techniques are widely used in the perioperative period. Emerging evidence indicates that anesthetics influence tumor recurrence and metastasis. Therefore, the current review summarizes the effects of anesthesia and anesthetic techniques on tumor recurrence and lung metastasis. Methods Relevant literature was retrieved from the following databases: Medline/PubMed, CNKI and Wanfang. A total of 109 articles were selected and analyzed in this research. Results (1) A variety of intravenous anesthetics may affect metastasis or tumor growth, though the evidence is contradictory and inconsistent, and the clinical data are still inconclusive. (2) Volatile anesthetics have proinflammatory effects and may have direct and indirect effects on the survival of cancer cells. (3) Although the relevant clinical data are limited, there is strong evidence in vitro that local anesthetics have a protective effect on cancer recurrence. (4) No mode of anesthesia has been determined to be beneficial to patients with cancer, but clinical studies are currently recommended for anesthesia modality and composite use. Conclusion Available data suggest that anesthesia and anesthetic techniques might play an important role in tumor progression and lung metastasis, the understanding of which will help in designing more effective management of the tumor and attaining fewer side effects.
Collapse
Affiliation(s)
- Zhenghuan Song
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jing Tan
- Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Correspondence: Jing Tan Department of Anesthesiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Xuanwu Section, Nanjing, Jiangsu Province, People’s Republic of ChinaTel +86-02583284765 Email
| |
Collapse
|
12
|
Wegge M, Dok R, Nuyts S. Hypoxia and Its Influence on Radiotherapy Response of HPV-Positive and HPV-Negative Head and Neck Cancer. Cancers (Basel) 2021; 13:5959. [PMID: 34885069 PMCID: PMC8656584 DOI: 10.3390/cancers13235959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cancers are a heterogeneous group of cancers that arise from the upper aerodigestive tract. Etiologically, these tumors are linked to alcohol/tobacco abuse and infections with high-risk human papillomavirus (HPV). HPV-positive HNSCCs are characterized by a different biology and also demonstrate better therapy response and survival compared to alcohol/tobacco-related HNSCCs. Despite this advantageous therapy response and the clear biological differences, all locally advanced HNSCCs are treated with the same chemo-radiotherapy schedules. Although we have a better understanding of the biology of both groups of HNSCC, the biological factors associated with the increased radiotherapy response are still unclear. Hypoxia, i.e., low oxygen levels because of an imbalance between oxygen demand and supply, is an important biological factor associated with radiotherapy response and has been linked with HPV infections. In this review, we discuss the effects of hypoxia on radiotherapy response, on the tumor biology, and the tumor microenvironment of HPV-positive and HPV-negative HNSCCs by pointing out the differences between these two tumor types. In addition, we provide an overview of the current strategies to detect and target hypoxia.
Collapse
Affiliation(s)
- Marilyn Wegge
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Zeng Y, Lv X, Du J. Natural killer cell‑based immunotherapy for lung cancer: Challenges and perspectives (Review). Oncol Rep 2021; 46:232. [PMID: 34498710 PMCID: PMC8444189 DOI: 10.3892/or.2021.8183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the marked success of molecular targeted therapy in lung cancer in this era of personalized medicine, its efficacy has been limited by the presence of resistance mechanisms. The prognosis of patients with lung cancer remains poor, and there is an unmet need to develop more effective therapies to improve clinical outcomes. The increasing insight into the human immune system has led to breakthroughs in immunotherapy and has prompted research interest in employing immunotherapy to treat lung cancer. Natural killer (NK) cells, which serve as the first line of defense against tumors, can induce the innate and adaptive immune responses. Therefore, the use of NK cells for the development of novel lung-cancer immunotherapy strategies is promising. A growing number of novel approaches that boost NK cell antitumor immunity and expand NK cell populations ex vivo now provide a platform for the development of antitumor immunotherapy. The present review outlined the biology of NK cells, summarized the role of NK cells in lung cancer and the effect of the tumor microenvironment on NK cells, highlighted the potential of NK cell-based immunotherapy as an effective therapeutic strategy for lung cancer and discussed future directions.
Collapse
Affiliation(s)
- Yongqin Zeng
- Department of Nephrology, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiuzhi Lv
- Department of Pulmonary and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
14
|
Zhu Z, Gregg K, Zhou W. iRGvalid: A Robust in silico Method for Optimal Reference Gene Validation. Front Genet 2021; 12:716653. [PMID: 34422018 PMCID: PMC8372526 DOI: 10.3389/fgene.2021.716653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Appropriate reference genes are critical to accurately quantifying relative gene expression in research and clinical applications. Numerous efforts have been made to select the most stable reference gene(s), but a consensus has yet to be achieved. In this report, we propose an in silico reference gene validation method, iRGvalid, that can be used as a universal tool to validate the reference genes recommended from different resources so as to identify the best ones without a need for any wet lab validation tests. Methods iRGvalid takes advantage of high throughput gene expression data and is built on a double-normalization strategy. First, the expression level of each individual gene is normalized against the total gene expression level of each sample, followed by a target gene normalization to the candidate reference gene(s). Linear regression analysis is then performed between the pre- and post- normalized target gene across the whole sample set to evaluate the stability of the reference gene(s), which is positively associated with the Pearson correlation coefficient, Rt. The higher the Rt value, the more stable the reference gene. We applied iRGvalid to 14 candidate reference genes to validate and identify the most stable reference genes in four cancer types: lung adenocarcinoma, breast cancer, colon adenocarcinoma, and nasopharyngeal cancer. The stability of the reference gene is evaluated both individually and in groups of all possible combinations. Results Highly stable reference genes resulted in high Rt values regardless of the target gene used. The highest stability was achieved with a specific combination of 3 to 6 reference genes. A few genes were among the best reference genes across the cancer types studied here. Conclusion iRGvalid provides an easy and robust method to validate and identify the most stable reference gene or genes from a pool of candidate reference genes. The inclusivity of large expression data sets as well as the direct comparison of candidate reference genes makes it possible to identify reference genes with universal quality. This method can be used in any other gene expression studies when large cohorts of expression data are available.
Collapse
Affiliation(s)
| | | | - Wenli Zhou
- XYZ Laboratory, Austin, TX, United States
| |
Collapse
|
15
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
16
|
Thiruthaneeswaran N, Bibby BAS, Yang L, Hoskin PJ, Bristow RG, Choudhury A, West C. Lost in application: Measuring hypoxia for radiotherapy optimisation. Eur J Cancer 2021; 148:260-276. [PMID: 33756422 DOI: 10.1016/j.ejca.2021.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
The history of radiotherapy is intertwined with research on hypoxia. There is level 1a evidence that giving hypoxia-targeting treatments with radiotherapy improves locoregional control and survival without compromising late side-effects. Despite coming in and out of vogue over decades, there is now an established role for hypoxia in driving molecular alterations promoting tumour progression and metastases. While tumour genomic complexity and immune profiling offer promise, there is a stronger evidence base for personalising radiotherapy based on hypoxia status. Despite this, there is only one phase III trial targeting hypoxia modification with full transcriptomic data available. There are no biomarkers in routine use for patients undergoing radiotherapy to aid management decisions, and a roadmap is needed to ensure consistency and provide a benchmark for progression to application. Gene expression signatures address past limitations of hypoxia biomarkers and could progress biologically optimised radiotherapy. Here, we review recent developments in generating hypoxia gene expression signatures and highlight progress addressing the challenges that must be overcome to pave the way for their clinical application.
Collapse
Affiliation(s)
- Niluja Thiruthaneeswaran
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Becky A S Bibby
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Lingjang Yang
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Catharine West
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Zheng H, Ning Y, Zhan Y, Liu S, Yang Y, Wen Q, Fan S. Co-expression of PD-L1 and HIF-1α predicts poor prognosis in Patients with Non-small Cell Lung Cancer after surgery. J Cancer 2021; 12:2065-2072. [PMID: 33754005 PMCID: PMC7974520 DOI: 10.7150/jca.53119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose: PD-L1 is highly expressed in multiple cancers and suppresses anticancer immunity. HIF-1α, as a vital transcription factor, could regulate the proliferation, metastasis, and apoptosis of cancer cells. The aim of this study was to explore the correlation between PD-L1 and HIF-1α protein and further estimate its clinicopathological/prognostic impact on NSCLC patients. Methods: In this study, expression of PD-L1 and HIF-1α protein was detected by immunohistochemistry in tissue microarrays of NSCLC and non-cancerous tissues. Results: Expression of PD-L1 and HIF-1α protein was evidently elevated in NSCLC tissues compared with non-cancerous control lung tissues (both P<0.05). Also, PD-L1 was higher in male, lung SCC patients with lymph node metastasis (all P<0.05). There was a positive link between PD-L1 and HIF-1α in NSCLC (r=0.177, P=0.005). What's more, overall survival of lung ADC patients had to do with PD-L1 and clinical stage, while that of SCC patients was related to HIF-1α, pathological grade and LNM status (all P<0.05). Furthermore, multivariate analysis confirmed that PD-L1 and HIF-1α were considered to be independent prognostic factors for NSCLC patients (both P<0.05). Conclusion: PD-L1 and HIF-1α may serve as attractive independent worse prognostic biomarkers for NSCLC patients and the combined evaluation of PD-L1 and HIF-1α may also be valuable for prognosis judgment. Additionally, expression of PD-L1 was positively correlated with HIF-1α, which may provide evidences for a novel combinational therapy targeting PD-L1 and HIF-1α in NSCLC patients.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yue Ning
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
18
|
Liu Y, Wang X, Li W, Xu Y, Zhuo Y, Li M, He Y, Wang X, Guo Q, Zhao L, Qiang L. Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription. Oncogene 2020; 39:6893-6905. [PMID: 32978517 DOI: 10.1038/s41388-020-01474-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Hypoxia is a key concern during the treatment of non-small cell lung cancer (NSCLC), and hypoxia-inducible factor 1 alpha (HIF-1α) has been associated with increased tumor resistance to therapeutic modalities such as cisplatin. Compensatory activation of nucleotide excision repair (NER) pathway is the major mechanism that accounts for cisplatin resistance. In the present study, we suggest a novel strategy to improve the treatment of NSCLC and overcome the hypoxia-induced cisplatin resistance by cotreatment with Oroxylin A, one of the main bioactive flavonoids of Scutellariae radix. Based on the preliminary screening, we found that xeroderma pigmentosum group C (XPC), an important DNA damage recognition protein involved in NER, dramatically increased in hypoxic condition and contributed to hypoxia-induced cisplatin resistance. Further data suggested that Oroxylin A significantly reversed the hypoxia-induced cisplatin resistance through directly binding to HIF-1α bHLH-PAS domain and blocking its binding to HRE3 transcription factor binding sites on XPC promoter which is important to hypoxia-induced XPC transcription. Taken together, our findings not only demonstrate a crucial role of XPC dependent NER in hypoxia-induced cisplatin resistance, but also suggest a previously unrecognized tumor suppressive mechanism of Oroxylin A in NSCLC which through sensitization of cisplatin-mediated growth inhibition and apoptosis under hypoxia.
Collapse
Affiliation(s)
- Yunyao Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenshu Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yujiao Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yating Zhuo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Qiang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
19
|
Lin C, Zhang Y, Wang J, Sui A, Xiu L, Zhu X. The study of effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives. Lasers Med Sci 2019; 35:1085-1094. [PMID: 31642999 DOI: 10.1007/s10103-019-02892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
To investigate the effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives (HPD) and provide theoretical basis for clinical photodynamic therapy (PDT). Human lung adenocarcinoma cell xenograft model in nude mice was established and randomly divided into four groups: control group, pure photosensitizer group, pure irradiation group, and photodynamic treatment group. The tumor volume growth was compared, and the tumor growth inhibition rate was calculated. HE staining was used for routine pathological observation of tumor sections, and gross conditions of cells, interstitium, and blood vessels in several groups of tumor tissues were observed. TUNEL staining was used to observe and compare the apoptosis induced by photodynamic therapy. Real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression level of angiogenesis-related factors VEGF, HIF-1α and apoptosis-related factors Bax and Bcl-2 mRNA in the transplanted tumor tissues. Western blot was employed to detect the expression of angiogenesis-related proteins VEGF, HIF-1α and apoptosis-related proteins Bax, Caspase-3, and Bcl-2. Compared with the other three groups, the tumor growth inhibition rate of the photodynamic treatment group was significantly increased and the difference was statistically significant (P < 0.05). HE staining showed that the animal model of lung adenocarcinoma A549 was successfully established. TUNEL staining revealed that more apoptotic cells were found in the photodynamic treatment group, and the apoptosis index was calculated. Compared with the other three groups, the difference was statistically significant (P < 0.05). RT-PCR results showed that compared with the other three groups, the mRNA expressions of VEGF, HIF-1α, and Bcl-2 in the photodynamic treatment group decreased, while the expression of Bax mRNA increased(P < 0.05), and the differences were statistically significant. Western blot results showed that protein expressions of VEGF, HIF-1α, and Bcl-2 decreased in the photodynamic treatment group, while protein expression level of Bax and Caspase-3 increased (P < 0.05), indicating statistically significant differences. The 630-nm laser mediated by hematoporphyrin derivatives can significantly inhibit the growth of human lung adenocarcinoma xenograft tumor in nude mice, the mechanism of which is related to the inhibition of tumor angiogenesis by down-regulating VEGF and HIF-1α gene expression, and the promotion of tumor apoptosis by up-regulating Bax, Caspase-3, and down-regulating Bcl-2 gene expression.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanyuan Zhang
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Aihua Sui
- Central laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lulu Xiu
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xinhong Zhu
- Department of International Medicine, Qingdao Municipal Hospital, Qingdao, 266071, China.
| |
Collapse
|
20
|
Wu F, Gao H, Liu K, Gao B, Ren H, Li Z, Liu F. The lncRNA ZEB2-AS1 is upregulated in gastric cancer and affects cell proliferation and invasion via miR-143-5p/HIF-1α axis. Onco Targets Ther 2019; 12:657-667. [PMID: 30705594 PMCID: PMC6343511 DOI: 10.2147/ott.s175521] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Growing evidence has implicated the important role of the long non-coding RNAs (lncRNAs) in gastric cancer progression. In this study, we examined the expression of lncRNA zinc finger E-box-binding homeobox 2 antisense RNA 1 (ZEB2-AS1) in gastric cancer tissues and elucidated the molecular mechanisms underlying ZEB2-AS1-mediated gastric cancer progression. Methods Quantitative real-time PCR measured the gene expression level; CCK-8, colony formation and cell invasion assays determined gastric cancer cell proliferation, growth and invasion, respectively; the xenograft nude mice model was used to determine in vivo tumor growth; Bioinformatics analysis and luciferase reporter assay determined the downstream targets of ZEB2-AS1 and miR-143-5p. The expression of ZEB2-AS1 was upregulated in gastric cancer cell lines. Results Knockdown of ZEB2-AS1 suppressed gastric cancer cell proliferation, growth and invasion, and also suppressed in vivo tumor growth in the nude mice. Overexpression of ZEB2-AS1 potentiated gastric cancer cell proliferation, growth and invasion. Bioinformatics analysis and luciferase reporter assay showed that miR-143-5p was a direct target of ZEB2-AS1 and was negatively regulated by ZEB2-AS1. Furthermore, hypoxia-inducible factor-1α (HIF-1α) was found to be a target of miR-143-5p and was negatively regulated by miR-143-5p. The rescue in vitro assays showed that the effects of ZEB2-AS1 overexpression on gastric cancer cell proliferation, growth and invasion was mediated via miR-143-5p/HIF-1α. ZEB2-AS1 and HIF-1α was upregulated in gastric cancer tissues, while miR-143-5p was down-regulated; and ZEB2-AS1 expression level was inversely correlated with miR-143-5p expression level, and positively correlated with HIF-1α mRNA expression level; while miR-143-5p expression level was inversely correlated with HIF-1α expression level. High ZEB2-AS1 expression level was correlated with poor differentiation, lymph node metastasis and distant metastasis. Conclusion Collectively, our results indicated that ZEB2-AS1 was up-regulated in gastric cancer tissues and cells and promoted cell proliferation and metastasis through miR-143-5p/HIF-1α pathway, which may provide a promising target for treatment of gastric cancer.
Collapse
Affiliation(s)
- Fangxiong Wu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Hongyan Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Kaige Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Baohua Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Hezhuang Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China
| | - Zheng Li
- Department of Emergency, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China,
| | - Fengrui Liu
- Department of Emergency, The First Affiliated Hospital of Xi'an Medical University, Xi'an City, Shaanxi Province, China,
| |
Collapse
|
21
|
Koh YW, Lee SJ, Han JH, Haam S, Jung J, Lee HW. PD-L1 protein expression in non-small-cell lung cancer and its relationship with the hypoxia-related signaling pathways: A study based on immunohistochemistry and RNA sequencing data. Lung Cancer 2019; 129:41-47. [PMID: 30797490 DOI: 10.1016/j.lungcan.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Therapies that target programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) have shown promising efficacy in non-small-cell lung cancer (NSCLC). Hypoxia-related genes are also important regulators of PD-L1, and the role of PD-L1 in NSCLC is still not clear. The objective of this study was to investigate PD-L1 expression and its correlation with hypoxic-inducible factor 1α (HIF1A), vascular endothelial growth factor A (VEGFA), glucose transporter 1 (GLUT1), and carbonic anhydrase 9 (CAIX) expression in NSCLC patients. The association between PD-L1 expression and survival was also determined. MATERIALS AND METHODS PD-L1/protein expression was evaluated in 295 resected NSCLCs and its correlation with HIF1A, VEGFA, GLUT1, CAIX expression and survival was determined based on immunohistochemical and RNA sequencing data obtained from The Cancer Genome Atlas (TCGA) database. RESULTS PD-L1 protein expression was significantly correlated with HIF1A, VEGFA, GLUT1, and CAIX expression only in adenocarcinoma when a 10% or a 50% cut-off was used. PD-L1 mRNA expression was also significantly correlated with HIF1A, VEGFA, GLUT1, and CAIX expression in adenocarcinoma. Univariate analysis revealed that HIF1A expression was associated with poor recurrence-free survival (RFS), and GLUT1 was associated with poor overall survival (OS) and RFS. GLUT1 was an independent prognostic factor for OS in multivariate analysis of immunohistochemical and TCGA data (p = 0.024 and 0.029, respectively). Patients with low expression of both PD-L1 and GLUT1 had longer OS than other patterns in immunohistochemical and TCGA data (p = 0.003 and 0.051, respectively). CONCLUSIONS PD-L1 protein and mRNA expression were correlated with HIF1A, VEGFA, GLUT1, and CAIX expression in adenocarcinoma alone. Low expression of GLUT1 and low expression of both PD-L1 and GLUT1 were associated with improved prognosis. Our findings support the rationale for co-targeting hypoxia-related genes and PD-L1 in cancer therapy. Expression of hypoxia-related genes may be helpful in selecting patients appropriate for PD-L1 therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Su Jin Lee
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joonho Jung
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
22
|
Pezzuto F, Fortarezza F, Lunardi F, Calabrese F. Are there any theranostic biomarkers in small cell lung carcinoma? J Thorac Dis 2019; 11:S102-S112. [PMID: 30775033 DOI: 10.21037/jtd.2018.12.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC), an aggressive lung tumour with a poor prognosis, has a high load of somatic mutations, mainly induced by tobacco carcinogens given the strong association with smoking. Advances in genomic, epigenetic and proteomic profiling have significantly improved our understanding of the molecular and cellular biology of SCLC. Given the high mutational burden of SCLC the immune microenvironment is another exciting area under investigation even if it seems to be quite distinct from that of other solid tumours. In this review we will outline the current progress in molecular etiology of SCLC mentioning some key markers considered promising theranostic biomarkers.
Collapse
Affiliation(s)
- Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| |
Collapse
|
23
|
Yang Z, Zhang SL, Hu X, Tam KY. Inhibition of pyruvate dehydrogenase kinase 1 enhances the anti-cancer effect of EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Eur J Pharmacol 2018; 838:41-52. [PMID: 30213498 DOI: 10.1016/j.ejphar.2018.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Abstract
Although epidermal growth factor receptor (EGFR) inhibitors have been used to treat non-small cell lung cancer (NSCLC) for decades with great success in patients with EGFR mutations, acquired-resistance inevitably occurs after long-term exposure to the treatment of EGFR inhibitors. Glycolysis is a predominant process for most cancer cells to utilize glucose, which referred to as the Warburg Effect. Targeting critical enzymes, such as pyruvate dehydrogenase kinase 1 (PDK1) that inversely regulating the process of glycolysis could be a promising approach to work alone or in combination with other treatments for cancer therapy. The purpose of this study is to evaluate whether PDK1 inhibition could enhance the anti-cancer effects of EGFR-TKi. Herein, we utilized a recently reported PDK1 inhibitor 2,2-Dichloro-1-(4-isopropoxy-3-nitrophenyl)ethan-1-one (Cpd64), which was more potent and selective than dichloroacetate (DCA) and/or dichloroacetophenone (DAP), to study the mechanism of PDK1 inhibition in TKi-mediated anti-cancer activity. We found that the introduction of Cpd64 in EGFR-TKi therapy enhanced the anti-proliferative effects in EGFR-mutant NSCLC cells under hypoxia. In particular, Cpd64 was shown to increase the activity of pyruvate dehydrogenase (PDH) and improved XPHOS, such as elevated mitochondrial respiration, and increased ATP generation, which effectively modulated the upregulation of PDK1 by EGFR-TKi treatment. We have observed that Cpd64 effectively enhanced the tumor growth inhibition induced by erlotinib in a NCI-H1975 xenograft mouse model. Collectively, our results suggested that combined use of selective PDK inhibitor and EGFR-TKi could be a potential strategy for NSCLC therapy.
Collapse
Affiliation(s)
- Zheng Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shao-Lin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
24
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Parkkila S, Saarnio J, Lehenkari PP, Karttunen TJ. Weak HIF-1alpha expression indicates poor prognosis in resectable pancreatic ductal adenocarcinoma. World J Surg Oncol 2018; 16:127. [PMID: 29973215 PMCID: PMC6033289 DOI: 10.1186/s12957-018-1432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIF-1alpha and CAIX proteins are commonly expressed under hypoxic conditions, but other regulatory factors have been described as well. Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and strong stromal reaction and has a dismal prognosis with the currently available treatment modalities. METHODS We investigated the expression and prognostic role of HIF-1alpha and CAIX in PDAC series from Northern Finland (n = 69) using immunohistochemistry. RESULTS In our PDAC cases, 95 and 85% showed HIF-1alpha and CAIX expression, respectively. Low HIF-1alpha expression correlated with poor prognosis, and multivariate analysis identified weak HIF-1alpha intensity as an independent prognostic factor for PDAC-specific deaths (HR 2.176, 95% CI 1.216-3.893; p = 0.009). There was no correlation between HIF-1alpha and CAIX expression levels, and the latter did not relate with survival. CONCLUSIONS Our findings are in contrast with previous research by finding an association between low HIF-1alpha and poor prognosis. The biological mechanisms remain speculative, but such an unexpected relation with prognosis and absence of correlation between HIF-1alpha and CAIX suggests that the prognostic association of HIF-1alpha may not directly be linked with hypoxia. Accordingly, the role of HIF-1alpha might be more complex than previously thought and the use of this marker as a hypoxia-related prognostic factor should be addressed with caution.
Collapse
Affiliation(s)
- Joni Leppänen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
- 0000 0001 0941 4873grid.10858.34Department of Pathology, University of Oulu, PO-Box 5000, 90014 Oulu, Finland
| | - Olli Helminen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Heikki Huhta
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Joonas H. Kauppila
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
- 0000 0004 1937 0626grid.4714.6Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Joel Isohookana
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Kirsi-Maria Haapasaari
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Seppo Parkkila
- 0000 0001 2314 6254grid.5509.9School of Medicine, University of Tampere, 33014 Tampere, Finland
- 0000 0004 0628 2985grid.412330.7Fimlab Ltd, Tampere University Hospital, 33520 Tampere, Finland
| | - Juha Saarnio
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Petri P. Lehenkari
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Tuomo J. Karttunen
- 0000 0001 0941 4873grid.10858.34Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| |
Collapse
|
25
|
Standardized Uptake Values Derived from 18F-FDG PET May Predict Lung Cancer Microvessel Density and Expression of KI 67, VEGF, and HIF-1 α but Not Expression of Cyclin D1, PCNA, EGFR, PD L1, and p53. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:9257929. [PMID: 29983647 PMCID: PMC6011144 DOI: 10.1155/2018/9257929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
Background Our purpose was to provide data regarding relationships between 18F-FDG PET and histopathological parameters in lung cancer. Methods MEDLINE library was screened for associations between PET parameters and histopathological features in lung cancer up to December 2017. Only papers containing correlation coefficients between PET parameters and histopathological findings were acquired for the analysis. Overall, 40 publications were identified. Results Associations between SUV and KI 67 were reported in 23 studies (1362 patients). The pooled correlation coefficient was 0.44. In 2 studies (180 patients), relationships between SUV and expression of cyclin D1 were analyzed (pooled correlation coefficient = 0.05). Correlation between SUV and HIF-1α was investigated in 3 studies (288 patients), and the pooled correlation coefficient was 0.42. In 5 studies (310 patients), associations between SUV and MVD were investigated (pooled correlation coefficient = 0.54). In 6 studies (305 patients), relationships between SUV and p53 were analyzed (pooled correlation coefficient = 0.30). In 6 studies (415 patients), associations between SUV and VEGF expression were investigated (pooled correlation coefficient = 0.44). In 5 studies (202 patients), associations between SUV and PCNA were investigated (pooled correlation coefficient = 0.32). In 3 studies (718 patients), associations between SUV and expression of PD L1 were analyzed (pooled correlation coefficient = 0.36). Finally, in 5 studies (409 patients), associations between SUV and EGFR were investigated (pooled correlation coefficient = 0.38). Conclusion SUV may predict microvessel density and expression of VEGF, KI 67, and HIF-1α in lung cancer.
Collapse
|
26
|
Xie W, Liu L, He H, Yang K. Prognostic value of hypoxia-inducible factor-1 alpha in nasopharyngeal carcinoma: a meta-analysis. Int J Biol Markers 2018; 33:1724600818778756. [PMID: 29888634 DOI: 10.1177/1724600818778756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Over the past 5 years, many studies have reported the prognostic value of hypoxia-inducible factor-1 alpha (HIF-1α) in nasopharyngeal carcinoma. However, the results have not reached a consensus until now. Therefore, we performed this meta-analysis to investigate the influence of HIF-1α expression on the prognosis and clinical characteristics in nasopharyngeal carcinoma. METHODS We searched PubMed, the Cochrane Library, Embase (via Ovid interface), Web of Science, and China National Knowledge Infrastructure electronic databases from their establishment to 6 December 2017. We calculated the hazard ratio (HR) and the odds ratio (OR) to assess the prognostic and clinicopathological values of HIF-1α, respectively. Q test and I2 statistic were applied to evaluate heterogeneity. We also conducted publication bias and sensitivity analyses. RESULTS A total of 18 studies with 1476 patients were included in our meta-analysis. We found HIF-1α expression was associated with poor overall survival (HR=1.77; 95% confidence interval (CI) 1.35, 2.32; P<0.001), poor progression-free survival (HR=1.72; 95% CI 1.22, 2.44; P=0.002), a higher rate of lymph node metastasis (OR=3.81; 95% CI 2.60, 5.58, P<0.001), and more advanced tumor stage (OR=2.98; 95% CI 1.79, 4.97; P<0.001). CONCLUSIONS Our study demonstrated that HIF-1α could be an appropriate prognostic biomarker for nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Wenji Xie
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lihui Liu
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haixia He
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaixuan Yang
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Abstract
OBJECTIVE: To investigate the correlation between the expression of PD-L1 and HIF-1α in hepatocellular carcinoma (HCC) tissue and further analyze the association with clinical parameters and the prognostic value of coexpression in HCC patients. METHODS: We assessed the expression of PD-L1 and HIF-1α by immunohistochemistry in tumor tissue from 90 HCC patients who underwent curative hepatectomy. The results were validated in an independent cohort of additional 90 HCC patients. RESULTS: PD-L1 and HIF-1α exhibited in tumor tissue high expression rates of 41.11% (37/90) and 43.33% (43/90), respectively, and their expressions were positively correlated (r = 0.563, P < .01). High expression of PD-L1 was significantly associated with low albumin levels (P < .05); high expression of HIF-1α was significantly correlated with high alpha-fetoprotein (AFP) levels and low albumin levels (P < .05); high expression of both PD-L1 and HIF-1α was also significantly associated with high AFP levels and low albumin levels (P < .05). High expression of PD-L1, HIF-1α, as well as both PD-L1 and HIF-1 α was respectively significantly associated with worse overall survival (OS) and disease-free survival (DFS) (P < .05). Patients with co-overexpression of PD-L1 and HIF-1α had the worst prognosis compared with other groups. Additionally, multivariate Cox regression models suggested that high expression of PD-L1, HIF-1α, as well as both PD-L1 and HIF-1α was an independent prognostic factor for OS and DFS (P < .05). Furthermore, the positive correlation and prognostic values of PD-L1 and HIF-1α were validated in an independent data set. CONCLUSION: We demonstrated that HCC patients with co-overexpression of PD-L1 and HIF-1α in tumor tissue had a significantly higher risk of recurrence or metastasis and death compared with others. Therefore, more frequent follow-up is needed for patients with co-overexpression of PD-L1 and HIF-1α. At the same time, a combinational therapy with HIF-1α inhibitors in conjunction with PD-L1 blockade may be beneficial for HCC patients with co-overexpression in the future.
Collapse
|
28
|
Iijima M, Gombodorj N, Tachibana Y, Tachibana K, Yokobori T, Honma K, Nakano T, Asao T, Kuwahara R, Aoyama K, Yasuda H, Kelly M, Kuwano H, Yamanouchi D. Development of single nanometer-sized ultrafine oxygen bubbles to overcome the hypoxia-induced resistance to radiation therapy via the suppression of hypoxia-inducible factor‑1α. Int J Oncol 2018; 52:679-686. [PMID: 29393397 PMCID: PMC5807044 DOI: 10.3892/ijo.2018.4248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Radiation therapy can result in severe side-effects, including the development of radiation resistance. The aim of this study was to validate the use of oxygen nanobubble water to overcome resistance to radiation in cancer cell lines via the suppression of the hypoxia-inducible factor 1-α (HIF-1α) subunit. Oxygen nanobubble water was created using a newly developed method to produce nanobubbles in the single-nanometer range with the ΣPM-5 device. The size and concentration of the oxygen nanobubbles in the water was examined using a cryo-transmission electron microscope. The nanobubble size was ranged from 2 to 3 nm, and the concentration of the nanobubbles was calculated at 2×1018 particles/ml. Cell viability and HIF-1α levels were evaluated in EBC-1 lung cancer and MDA-MB-231 breast cancer cells treated with or without the nanobubble water and radiation under normoxic and hypoxic conditions in vitro. The cancer cells grown in oxygen nanobubble-containing media exhibited a clear suppression of hypoxia-induced HIF-1α expression compared to the cells grown in media made with distilled water. Under hypoxic conditions, the EBC-1 and MDA-MB231 cells displayed resistance to radiation compared to the cells cultured under normoxic cells. The use of oxygen nanobubble medium significantly suppressed the hypoxia-induced resistance to radiation compared to the use of normal medium at 2, 6, 10 and 14 Gy doses. Importantly, the use of nanobubble media did not affect the viability and radiation sensitivity of the cancer cell lines, or the non-cancerous cell line, BEAS-2B, under normoxic conditions. This newly created single-nanometer range oxygen nanobubble water, without any additives, may thus prove to be a promising agent which may be used to overcome the hypoxia-induced resistance of cancer cells to radiation via the suppression of HIF-1α.
Collapse
Affiliation(s)
- Misaki Iijima
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Navchaa Gombodorj
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | - Takehiko Yokobori
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kyoko Honma
- Sigma Technology Inc., Hitachinaka, Ibaraki 312-0053, Japan
| | - Takashi Nakano
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Asao
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Ryusuke Kuwahara
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiro Aoyama
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Hidehiro Yasuda
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Matthew Kelly
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
29
|
Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB, Faivre-Finn C. Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome. J Natl Cancer Inst 2018; 110:4096546. [PMID: 28922791 DOI: 10.1093/jnci/djx160] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Oxygen deprivation (hypoxia) in non-small cell lung cancer (NSCLC) is an important factor in treatment resistance and poor survival. Hypoxia is an attractive therapeutic target, particularly in the context of radiotherapy, which is delivered to more than half of NSCLC patients. However, NSCLC hypoxia-targeted therapy trials have not yet translated into patient benefit. Recently, early termination of promising evofosfamide and tarloxotinib bromide studies due to futility highlighted the need for a paradigm shift in our approach to avoid disappointments in future trials. Radiotherapy dose painting strategies based on hypoxia imaging require careful refinement prior to clinical investigation. This review will summarize the role of hypoxia, highlight the potential of hypoxia as a therapeutic target, and outline past and ongoing hypoxia-targeted therapy trials in NSCLC. Evidence supporting radiotherapy dose painting based on hypoxia imaging will be critically appraised. Carefully selected hypoxia biomarkers suitable for integration within future NSCLC hypoxia-targeted therapy trials will be examined. Research gaps will be identified to guide future investigation. Although this review will focus on NSCLC hypoxia, more general discussions (eg, obstacles of hypoxia biomarker research and developing a framework for future hypoxia trials) are applicable to other tumor sites.
Collapse
Affiliation(s)
- Ahmed Salem
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marie-Claude Asselin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Bart Reymen
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Alan Jackson
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Philippe Lambin
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Catharine M L West
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - James P B O'Connor
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Corinne Faivre-Finn
- Division of Cancer Sciences and Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK; Department of Radiation Oncology (MAASTRO Lab), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
30
|
Wang C, Han C, Zhang Y, Liu F. LncRNA PVT1 regulate expression of HIF1α via functioning as ceRNA for miR‑199a‑5p in non‑small cell lung cancer under hypoxia. Mol Med Rep 2017; 17:1105-1110. [PMID: 29115513 DOI: 10.3892/mmr.2017.7962] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC) represents one of the most important causes of cancer mortality in the world, and leads to the largest number of deaths in all kinds of lung cancer. Hypoxia has been confirmed to be a characteristic feature of NSCLC and has been shown to decrease the therapeutic efficacy of radiotherapy and some forms of chemotherapy. Previous studies revealed that many miRNAs have been proven to be involved in the molecular regulation of hypoxia and to affect the protein expression level of HIF‑1α. Here, we demonstrated that miR‑199a‑5p downregulated HIF‑1α expression and was involved in regulating the proliferation of NLSCS cell under hypoxia through downregulation of HIF‑1α. Recently, PVT1 has been proposed to function as a molecular sponge by competitively binding miR‑199a‑5p using miRcode. In this study, we confirmed that PVT1 was overexpressed in the hypoxic lung cancer cells, and then we further demonstrated that PVT1 functioned as competing endogenous (ce)RNA for miR‑199a‑5p, upregulated expression of its endogenous targets HIF‑1α and inhibited its function. Collectively, our study suggested that PVT1 promotes expression of HIF‑1α in NSCLC by functioning as ceRNA of miR‑199a‑5p. These findings support the hypothesis that PVT1 is a vital potential target for hypoxia therapy.
Collapse
Affiliation(s)
- Chunhong Wang
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Chunfang Han
- Department of Pediatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Yibo Zhang
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| | - Fengqin Liu
- The Third Department of Geriatrics, Weifang People's Hospital, Weifang, Shandong 261014, P.R. China
| |
Collapse
|