1
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Tripathi D, Pandey P, Sharma S, Rai AK, Prabhu B.H. M. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. BIOIMPACTS : BI 2024; 15:30573. [PMID: 40256227 PMCID: PMC12008503 DOI: 10.34172/bi.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 04/22/2025]
Abstract
By integrating the cutting-edge principles of nanotechnology with medical science, nanomedicine offers unprecedented opportunities to develop advanced drug delivery systems that surpass the limitations of conventional therapies. These nanoscale systems are designed to enhance treatments' efficacy, specificity, and safety by optimizing pharmacokinetics and biodistribution, ensuring that therapeutic agents reach their intended targets with minimal side effects. The article provides an in-depth analysis of nanomaterials' pivotal role in overcoming challenges related to drug delivery, including the ability to bypass biological barriers, improve bioavailability, and achieve controlled release of drugs. Despite these promising advancements, the transition of nanomedicine from research to clinical practice faces significant hurdles. The review highlights key obstacles such as patient heterogeneity, physiological variability, and the complex ADME (Absorption, Distribution, Metabolism, Excretion) profiles of nanocarriers, which complicate treatment predictability and effectiveness. Moreover, the article addresses the issues of limited tissue penetration, variable patient responses, and the need for standardized protocols in nanomaterial characterization, all of which hinder the widespread clinical adoption of nanomedicine. Nevertheless, the potential of nanomedicine in revolutionizing personalized cancer therapy remains immense. The article advocates for increased translational research and international collaboration to overcome these challenges, paving the way for fully realizing nanomedicine's capabilities in precision oncology and beyond.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sakshi Sharma
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Awani K Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Manjunatha Prabhu B.H.
- Department of Food Protection and Infestation Control, CSIR- Central Food Technological Research Institute (CFTRI), Mysore-570012, Karnataka, India
| |
Collapse
|
3
|
Yang Y, Wang S, Liu L, Yue B, Qi P, Zhang M, Song S. A Triterpene-Based bioactive drug delivery system for combined chemotherapy of liver cancer. Eur J Pharm Biopharm 2024; 201:114378. [PMID: 38917949 DOI: 10.1016/j.ejpb.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Carrier materials always account for the majority particularly in nanosized formulations, which are administrated along with the active ingredient part might result in metabolism related toxicity. The usage of bioactive excipients could not only reduce the sided effect but also provide additional therapeutic effects. In the present study, a triterpene based micellar drug delivery system was developed using a bioactive solanesol derivative. Solanesylamine was prepared firstly followed by conjugating with poly (ethylene glycol) using maleic acid amide linkage. The amphiphilic drug carrier PEGylated (2-propyl-3-methylmaleic acid)-block-solanesol amine (mPEG-CDM-NH-SOL) could be formed into micelles and loaded with doxorubicin (DOX) inside. The micelles were about 112 nm in size and the drug loading content was about 5.97 wt%. An acid triggered drug release behavior was obviously observed for the DOX loaded pH-sensitive micelle mPEG-CDM-NH-SOL-DOX. While not for DOX-loaded micelles without pH-sensitivity (mPEG-NHS-NH-SOL). CCK8 assay showed that the micelles of PEGylated solanesylamines exhibited certain inhibitory effect on tumor cells at high concentration and the pH sensitive ones seemed more toxic. In vivo studies showed that the pH sensitive mPEG-CDM-NH-SOL-DOX had a superior anti-tumor effect, indicating its great potential in cancer treatment.
Collapse
Affiliation(s)
- Yanwei Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Shuaichao Wang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Lei Liu
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| | - Bolin Yue
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Peilan Qi
- College of Medical Science, Henan Vocational University of Science and Technology, Zhoukou, China 466000.
| | - Mengke Zhang
- School of Pharmacy, Henan University, Kaifeng, China 475004
| | - Shiyong Song
- School of Pharmacy, Henan University, Kaifeng, China 475004.
| |
Collapse
|
4
|
Yuan C, Chang S, Zhang C, Dong D, Ding J, Mahdavian AR, Hu Z, Sun L, Tan S. Post cross-linked ROS-responsive poly(β-amino ester)-plasmid polyplex NPs for gene therapy of EBV-associated nasopharyngeal carcinoma. J Mater Chem B 2024; 12:3129-3143. [PMID: 38451208 DOI: 10.1039/d3tb02926c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common tumors in South China and Southeast Asia and is thought to be associated with Epstein-Barr virus (EBV) infection. Downregulation of latent membrane protein 1 (LMP1) encoded by EBV can reduce the expression of NF-κB and PI3K, induce apoptosis, and inhibit the growth of EBV-related NPC. For targeted cleavage of the Lmp1 oncogene via the CRISPR/Cas9 gene editing system, a post cross-linked ROS-responsive poly(β-amino ester) (PBAE) polymeric vector was developed for the delivery of CRISPR/Cas9 plasmids both in vitro and in vivo. After composition optimization, the resultant polymer-plasmid polyplex nanoparticles (NPs) showed a diameter of ∼230 nm and a zeta potential of 22.3 mV with good stability. Compared with the non-cross-linked system, the cross-linked NPs exhibited efficient and quick cell uptake, higher transfection efficiency in EBV-positive C666-1 cells (53.5% vs. 40.6%), more efficient gene editing ability against the Mucin2 model gene (Muc2) (17.9% vs. 15.4%) and Lmp1 (8.5% vs. 5.6%), and lower intracellular reactive oxygen species (ROS) levels. The NPs achieved good tumor penetration and tumor growth inhibition in the C666-1 xenograft tumor model via Lmp1 cleavage, indicating their potential for gene therapy of EBV-related NPC.
Collapse
Affiliation(s)
- Caiyan Yuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The First Hospital of Nanchang, Nanchang 330008, China
| | - Shuangyan Chang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Donghu 169th Road, Wuchang District, Wuhan 430062, Hubei, China.
| | - Chong Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dirong Dong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Donghu 169th Road, Wuchang District, Wuhan 430062, Hubei, China.
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, Tehran 14967, Iran
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Donghu 169th Road, Wuchang District, Wuhan 430062, Hubei, China.
| | - Lili Sun
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Donghu 169th Road, Wuchang District, Wuhan 430062, Hubei, China.
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Metwally AA, Ganguly S, Biomi N, Yao M, Elbayoumi T. Cationic Vitamin E-TPGS Mixed Micelles of Berberine to Neutralize Doxorubicin-Induced Cardiotoxicity via Amelioration of Mitochondrial Dysfunction and Impeding Apoptosis. Molecules 2024; 29:1155. [PMID: 38474668 DOI: 10.3390/molecules29051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracycline antibiotics, namely, doxorubicin (DOX) and daunorubicin, are among the most widely used anticancer therapies, yet are notoriously associated with severe myocardial damage due to oxidative stress and mitochondrial damage. Studies have indicated the strong pharmacological properties of Berberine (Brb) alkaloid, predominantly mediated via mitochondrial functions and nuclear networks. Despite the recent emphasis on Brb in clinical cardioprotective studies, pharmaceutical limitations hamper its clinical use. A nanoformulation for Brb was developed (mMic), incorporating a cationic lipid, oleylamine (OA), into the TPGS-mixed corona of PEGylated-phosphatidylethanolamine (PEG-PE) micelles. Cationic TPGS/PEG-PE mMic with superior Brb loading and stability markedly enhanced both intracellular and mitochondria-tropic Brb activities in cardiovascular muscle cells. Sub-lethal doses of Brb via cationic OA/TPGS mMic, as a DOX co-treatment, resulted in significant mitochondrial apoptosis suppression. In combination with an intense DOX challenge (up to ~50 µM), mitochondria-protective Brb-OA/TPGS mMic showed a significant 24 h recovery of cell viability (p ≤ 0.05-0.01). Mechanistically, the significant relative reduction in apoptotic caspase-9 and elevation of antiapoptotic Bcl-2 seem to mediate the cardioprotective role of Brb-OA/TPGS mMic against DOX. Our report aims to demonstrate the great potential of cationic OA/TPGS-mMic to selectively enhance the protective mitohormetic effect of Brb to mitigate DOX cardiotoxicity.
Collapse
Affiliation(s)
- Abdelkader A Metwally
- Department of Pharmaceutics, College of Pharmacy, Health Science Center (HSC), Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbasseya, Cairo 11566, Egypt
| | - Samayita Ganguly
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Dignity Health/St. Joseph's Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Nora Biomi
- Pharmacology and Toxicology Program, New College of Interdisciplinary Arts and Sciences, West Valley Campus, Arizona State University, N. 47th Ave & University Way, Glendale, AZ 85306, USA
| | - Mingyi Yao
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences, Glendale Campus (CPG), College of Pharmacy, Midwestern University, 218-Cholla Hall, 19555 N. 59th Ave., Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Dr. Arthur G. Dobbelaere Science Hall 350D, 19555 N. 59th Ave., Glendale, AZ 85308, USA
| |
Collapse
|
6
|
Ding J, Zhang H, Dai T, Gao X, Yin Z, Wang Q, Long M, Tan S. TPGS-b-PBAE Copolymer-Based Polyplex Nanoparticles for Gene Delivery and Transfection In Vivo and In Vitro. Pharmaceutics 2024; 16:213. [PMID: 38399267 PMCID: PMC10891721 DOI: 10.3390/pharmaceutics16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Poly (β-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein-Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.
Collapse
Affiliation(s)
- Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Handan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Tianli Dai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| | - Xueqin Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhongyuan Yin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (Q.W.)
| | - Mengqi Long
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Meihua 52nd Road, Xiangzhou District, Zhuhai 510009, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.D.); (H.Z.)
| |
Collapse
|
7
|
Guo F, Jiao Y, Ding W, Du Y, Luo S, Wang M, Wang Y, Wu F, Wang L, Yang G. Synergistic effects of multidrug/material combination deliver system for anti-mutidrug-resistant tumor. Int J Pharm 2024; 649:123669. [PMID: 38056797 DOI: 10.1016/j.ijpharm.2023.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Multidrug resistance (MDR) is a public health issue of particular concern, for which nanotechnology-based multidrug delivery systems are considered among the most effective suppressive strategies for such resistance in tumors. However, for such strategies to be viable, the notable shortcomings of reduced loading efficiency and uncontrollable drug release ratio need to be addressed. To this end, we developed a novel "multidrug/material" co-delivery system, using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, P-gp efflux pump inhibitor) and poly(amidoamine) (PAMAM) to fabricate a precursor material with the properties of reversing MDR and having a long-cycle. Further, to facilitate multidrug co-delivery, we loaded doxorubicin(Dox) and curcumin(Cur, cardiotoxicity modifier and P-gp inhibitor) into PAMAM-TPGS nano-micelles respectively, and mixed in appropriate proportions. The multidrug/material co-delivery system thus obtained was characterized by high drug loading and a controllable drug release ratio in the physiological environment. More importantly, in vitro and in vivo pharmacodynamic studies indicated that the multidrug/material co-delivery system facilitated the reversal of MDR. Moreover, the system has increased anti-tumor activity and is biologically safe. We accordingly propose that the "multidrug/material" co-delivery system developed in this study could serve as a potential platform for reversing MDR and achieving safe and effective clinical treatment.
Collapse
Affiliation(s)
- Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunlong Jiao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenqin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinzhou Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuai Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengqi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujia Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fang Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Tu Y, Zhang W, Fan G, Zou C, Zhang J, Wu N, Ding J, Zou WQ, Xiao H, Tan S. Paclitaxel-loaded ROS-responsive nanoparticles for head and neck cancer therapy. Drug Deliv 2023; 30:2189106. [PMID: 36916054 PMCID: PMC10026753 DOI: 10.1080/10717544.2023.2189106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
High intracellular reactive oxygen species (ROS) level is characteristic of cancer cells and could act as a target for the efficient targeted drug delivery for cancer treatment. Consequently, biomaterials that react to excessive levels of ROS are essential for biomedical applications. In this study, a novel ROS-responsive polymer based on D-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) and poly (β-thioester) (TPGS-PBTE) was synthesized for targeted delivery of the first-line antineoplastic drug, paclitaxel (PTX). The resultant TPGS-PBTE NPs showed good ROS-responsive capability in size change and drug release. Compared to PTX, PTX-loaded nanoparticles (PTX@TPGS-PBTE NPs) showed enhanced cytotoxicity and higher level of apoptosis toward squamous cell carcinoma (SCC-7) cells. Tumor-targeted delivery of the NPs was also observed, especially after being modified with a tumor-targeting peptide, cRGD. Enhanced tumor growth inhibition was also observed in head and neck cancer SCC-7 murine models. In summary, PTX@TPGS-PBTE NPs can achieve good therapeutic effects of PTX against head and neck cancer both in vitro and in vivo, especially when modified by cRGD for active targeting, which enriched the application of ROS responsive system utilized in the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Qing Zou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Mod Razif MRF, Chan SY, Widodo RT, Chew YL, Hassan M, Hisham SA, Rahman SA, Ming LC, Tan CS, Lee SK, Liew KB. Optimization of a Luteolin-Loaded TPGS/Poloxamer 407 Nanomicelle: The Effects of Copolymers, Hydration Temperature and Duration, and Freezing Temperature on Encapsulation Efficiency, Particle Size, and Solubility. Cancers (Basel) 2023; 15:3741. [PMID: 37509402 PMCID: PMC10378229 DOI: 10.3390/cancers15143741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Luteolin is a flavonoid compound that has been widely studied for its various anti-cancer properties and sensitization to multidrug-resistant cells. However, the limited solubility and bioavailability of Lut hindered its potential clinical use. Theoretically, the combination of this compound with vitamin E TPGS and poloxamer 407 can produce a synergistic effect to enhance tumor apoptosis and P-glycoprotein inhibition. This study aimed to develop and optimize vitamin E TPGS/Poloxamer 407 micelles loaded with luteolin through investigating certain factors that can affect the encapsulation efficiency and particle size of the micelle. METHODS A micelle was prepared using the film hydration method, and the micellar solution was lyophilized. The cake formed was analyzed. The factors investigated include the concentrations of the surfactants, ratio of vitamin E TPGS/Poloxamer 407, temperature of the hydrating solution, duration of hydration, and freezing temperature before lyophilization. The effects of these factors on the encapsulation efficiency and particle size of the micelle were also studied. The encapsulation efficiency was measured using a UV-Vis spectrophotometer, while particle size was measured using dynamic light scattering. RESULTS The optimized micelle was found to have 90% encapsulation efficiency with a particle size of less than 40 nm, which was achieved using a 10% concentration of surfactants at a vitamin E TPGS/Poloxamer 407 ratio of 3:1. The optimized temperature for hydrating the micellar film was 40 °C, the optimized mixing time was 1 h, and the optimized freezing temperature was -80 °C. The solubility of the luteolin-loaded micelles increased 459-fold compared to pure Lut in water. The critical micelle concentration of the vitamin E TPGS/Poloxamer 407 micelle was 0.001 mg/mL, and the release study showed that luteolin-loaded micelles exhibited sustained release behavior. The release of luteolin from a micelle was found to be higher in pH 6.8 compared to pH 7.4, which signified that luteolin could be accumulated more in a tumor microenvironment compared to blood. CONCLUSION This study demonstrated that several factors need to be considered when developing such nanoparticles in order to obtain a well-optimized micelle.
Collapse
Affiliation(s)
| | - Siok Yee Chan
- School of Pharmaceutical Science, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | | | - Yik-Ling Chew
- Faculty of Pharmaceutical Science, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Masriana Hassan
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | | | | | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Cyberjaya 63000, Malaysia
| |
Collapse
|
10
|
Wang H, Wu Y, Lin X. Crizotinib loaded polydopamine-polylactide-TPGS nanoparticles in targeted therapy for non-small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:26. [PMID: 36459216 DOI: 10.1007/s12032-022-01893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
To evaluate the effect and safety of crizotinib loaded polydopamine-polylactide-TPGS nanoparticles (CZT/pD-PT NPs) on non-small cell lung cancer (NSCLC). CZT/pD-PT NPs were synthesized and characterized, and their effects on PC-9 cell viability and apoptosis were determined. In vivo experiment was further performed to evaluate the anti-NSCLC efficacy of CZT/pD-PT NPs. TUNEL assay and Western blot were respectively applied for the determination of cell apoptosis and apoptosis-related protein expression, while liver function-related index expression detection and liver histopathological detection were used to evaluate the hepatotoxicity of CZT/pD-PT NPs. Compared with free CZT, CZT/pD-PT NPs had a sustained-release effect and promoted the cellular uptake of CZT. In addition, CZT/pD-PT NPs significantly inhibited PC-9 cell viability and promoted cell apoptosis both in vitro and in vivo, exhibiting superior cytotoxicity. At the same time, CZT/pD-PT NPs had no significant effect on liver tissue morphology and liver function-related indicators such as ALP, ALT, AST, and DBIL. CZT/pD-PT NPs have excellent anti-NSCLC effect with low hepatotoxicity, which can be served as a novel drug delivery system to improve the efficacy of chemotherapy for NSCLC.
Collapse
Affiliation(s)
- Han Wang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- The Graduate School of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350001, China
| | - Yilan Wu
- The School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Xiaoyan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- The Graduate School of Fujian Medical University, Fuzhou, 350001, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350001, China.
| |
Collapse
|
11
|
Li J, Yuan M, Qiu T, Lu M, Zhan S, Bai Y, Yang M, Liu X, Zhang X. A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:650-673. [PMID: 36272104 DOI: 10.1080/09205063.2022.2139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.
Collapse
Affiliation(s)
- Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Yuan
- Wuhan Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
12
|
Unnam S, Manjappa AS, Muddana Eswara BR, Salawi A, Gunti P. Liposomal Melphalan: Approach to obtain improved plasma stability, pharmacokinetics, and in vitro and in vivo anticancer efficacy in combination with liposomal simvastatin against mouse RPMI-8226 multiple myeloma model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kondiah PPD, Rants’o TA, Makhathini SS, Mdanda S, Choonara YE. An Oral 3D Printed PLGA-Tocopherol PEG Succinate Nanocomposite Hydrogel for High-Dose Methotrexate Delivery in Maintenance Chemotherapy. Biomedicines 2022; 10:1470. [PMID: 35884775 PMCID: PMC9313284 DOI: 10.3390/biomedicines10071470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
High-dose methotrexate (HDMTX) is one of the chemotherapeutic agents used to treat a variety of cancers in both adults and children. However, the toxicity associated with HDMTX has resulted in the spread of infections and treatment interruption. Further, poor bioavailability due to efflux pump activities mediated by P-glycoprotein has also been linked to poor therapeutic effects of methotrexate following oral administrations. D-α-Tocopheryl poly-ethylene glycol 1000 succinate (TPGS) is known to improve the bioavailability of poorly soluble drugs by inhibiting P-gp efflux activities, thus enhancing cellular uptake. Therefore, to achieve improved bioavailability for MTX, this study aimed to design and develop a novel drug delivery system employing TPGS and a biodegradable polymer, i.e., PLGA, to construct methotrexate-loaded nanoparticles fixated in alginate-gelatine 3D printable hydrogel ink to form a solid 3D printed tablet for oral delivery. The results indicated that high accuracy (>95%) of the 3D printed tablets was achieved using a 25 G needle. In vitro, drug release profiles were investigated at pH 1.2 and pH 7.4 to simulate the gastrointestinal environment. The in vitro release profile displayed a controlled and prolonged release of methotrexate over 24 h. The in silico modeling study displayed P-gp ATPase inhibition, suggesting enhanced MTX absorption from the gastrointestinal site. The 3D-printed hydrogel-based tablet has the potential to overcome the chemotherapeutic challenges that are experienced with conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa; (P.P.D.K.); (T.A.R.); (S.S.M.); (S.M.)
| |
Collapse
|
14
|
Optimization of Naringenin Nanoparticles to Improve the Antitussive Effects on Post-Infectious Cough. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123736. [PMID: 35744861 PMCID: PMC9228777 DOI: 10.3390/molecules27123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
Abstract
Naringenin (NRG) is a natural compound with several biological activities; however, its bioavailability is limited owing to poor aqueous solubility. In this study, NRG nanoparticles (NPs) were prepared using the wet media milling method. To obtain NRG NPs with a small particle size and high drug-loading content, the preparation conditions, including stirring time, temperature, stirring speed, and milling media amount, were optimized. The NRG (30 mg) and D-α-tocopherol polyethylene glycol succinate (10 mg) were wet-milled in deionized water (2 mL) with 10 g of zirconia beads via stirring at 50 °C for 2 h at a stirring speed of 300 rpm. As a result, the NRG NPs, with sheet-like morphology and a diameter of approximately 182.2 nm, were successfully prepared. The NRG NPs were stable in the gastrointestinal system and were released effectively after entering the blood circulation. In vivo experiments indicated that the NRG NPs have good antitussive effects. The cough inhibition rate after the administration of the NRG NPs was 66.7%, cough frequency was three times lower, and the potential period was 1.8 times longer than that in the blank model group. In addition, the enzyme biomarkers and histological analysis results revealed that the NRG NPs can effectively regulate the inflammatory and oxidative stress response. In conclusion, the NRG NPs exhibited good oral bioavailability and promoted antitussive and anti-inflammatory effects.
Collapse
|
15
|
Tang M, Huang Y, Liang X, Tao Y, He N, Li Z, Guo J, Gui S. Sorafenib-Loaded PLGA-TPGS Nanosystems Enhance Hepatocellular Carcinoma Therapy Through Reversing P-Glycoprotein-Mediated Multidrug Resistance. AAPS PharmSciTech 2022; 23:130. [PMID: 35487999 DOI: 10.1208/s12249-022-02214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multidrug resistance (MDR) is a key determinant for hepatocellular carcinoma chemotherapy failure. P-glycoprotein is one of the main causes of MDR by causing drug efflux in tumor cells. In order to solve this thorny problem, we prepared a sorafenib-loaded polylactic acid-glycolic acid (PLGA) - D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (SPTNs). SPTNs were successfully synthesized through an ultrasonic emulsion solvent evaporation method with a favourable encapsulation efficiency of 90.35%. SPTNs were almost spherical in shape with uniform particle size (215.70 ± 0.36 nm), narrow polydispersity index (0.27 ± 0.02) and negative surface charge (-26.01 ± 0.65 mV). In the cellular uptake assay, the intracellular coumarin-6 (C6) fluorescence of TPGS component-based PLGA nanoparticles (C6-PTNs) was 1.63-fold higher relative to that of PVA component-based PLGA nanoparticles (C6-PVNs). The half-maximal inhibitory concentration and apoptosis ratio of SPTNs against HepG2/MDR cells were 3.90 μM and 75.62%, respectively, which were notably higher than free SF and sorafenib-PLGA-PVA nanoparticles (SPVNs). The anti-drug efflux activities of SPTNs were assessed by the intracellular trafficking assay using verapamil as a P-gp inhibitor. SPTNs could effectively inhibit the drug efflux in tumor cells detected by flow cytometry, and suppressed relative MDR1 gene as well as P-glycoprotein expression in tumor cells. Attributed to the MDR reversion effect of SPTNs, the in vivo antitumor efficacy experiment showed that SPTNs significantly inhibited the tumor growth of HepG2/MDR xenograft-bearing nude mice, and obviously reduced the toxicity against liver and kidney compared with SF treatment. In summary, SPTNs, as highly efficient and safe antitumor nano delivery systems, showed promising potential for hepatocellular carcinoma therapy through reversing P-glycoprotein-mediated MDR. Graphical Abstract.
Collapse
|
16
|
Tan C, Fan H, Ding J, Han C, Guan Y, Zhu F, Wu H, Liu Y, Zhang W, Hou X, Tan S, Tang Q. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater Today Bio 2022; 14:100246. [PMID: 35372817 PMCID: PMC8965165 DOI: 10.1016/j.mtbio.2022.100246] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chen Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Ding
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoqun Han
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Wu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yujin Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Corresponding author.
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
17
|
Nano Drug Delivery Systems: Effective Therapy Strategies to Overcome Multidrug Resistance in Tumor Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Sambamoorthy U, Manjappa AS, Eswara BRM, Sanapala AK, Nagadeepthi N. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 2021; 23:23. [PMID: 34907484 DOI: 10.1208/s12249-021-02177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.
Collapse
|
19
|
Liu P, Huang P, Kang ET. pH-Sensitive Dextran-Based Micelles from Copper-Free Click Reaction for Antitumor Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12990-12999. [PMID: 34714094 DOI: 10.1021/acs.langmuir.1c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There remains a need to develop new strategies to fabricate dextran-based biocompatible drug delivery systems for safe and effective chemotherapy. Herein, a copper-free azide-propiolate ester click reaction was introduced for dextran modification to fabricate a pH-sensitive dextran-based drug delivery system. A pH-sensitive dextran-based micelle system, self-assembled from amphiphilic dextran-graft-poly(2-(diisopropylamino)ethyl methacrylate-co-2-(2',3',5'-triiodobenzoyl)ethyl methacrylate) or dextran-g-P(DPA-co-TIBMA), is reported for effective chemotherapy. The amphiphilic dextran-g-P(DPA-co-TIBMA) was prepared via reversible addition-fragmentation chain-transfer (RAFT) polymerization and copper-free azide-propiolate ester click reaction. Doxorubicin (DOX)-loaded dextran-g-P(DPA-co-TIBMA) micelles were prepared through self-assembly of DOX and dextran-g-P(DPA-co-TIBMA) in aqueous solution, and had a mean diameter of 154 nm and a drug loading content of 9.7 wt %. The release of DOX from DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles was slow at pH 7.4, but was greatly accelerated under acidic conditions (pH 6 and 5). Confocal laser scanning microscopy and flow cytometry experiments showed that the dextran-g-P(DPA-co-TIBMA) micelles could effectively deliver and release DOX in human breast cancer cell line (MCF-7 cells). MTT assay showed that dextran-g-P(DPA-co-TIBMA) exhibited excellent biocompatibility while DOX-loaded dextran-g-P(DPA-co-TIBMA) micelles have good antitumor efficacy in vitro. The in vivo therapeutic studies indicated that the DOX-loaded dextran-g-P(PDPA-co-TIBMA) micelles could effectively reduce the growth of tumor with little body weight reduction.
Collapse
Affiliation(s)
- Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Ping Huang
- Division of Ultrasound, Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518058, China
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| |
Collapse
|
20
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
21
|
Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant. J Control Release 2021; 336:396-409. [PMID: 34175367 DOI: 10.1016/j.jconrel.2021.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.
Collapse
|
22
|
Vitamin E TPGS 1000 Induces Apoptosis in the K562 Cell Line: Implications for Chronic Myeloid Leukemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5580288. [PMID: 34211630 PMCID: PMC8211508 DOI: 10.1155/2021/5580288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Chronic myeloid leukemia (CML) is a hematologic malignancy derived from the myeloid lineage molecularly characterized by t(9;22)(q34;q11) resulting in BCR-ABL1 gene fusion, which is known as Philadelphia (Ph) chromosome. Although tyrosine kinase inhibitors (TKIs) have restored and maintained the quality of life of patients with CML, an important minority of patients become resistant to first-and-second-generation TKIs and require an alternative treatment. The K562 cell (Ph+, p53-/-) line was treated with Vit E TPGS 1000 (20-80 μM) only or with other products of interest (e.g., antioxidant N-acetylcysteine (NAC), specific JNK and caspase-3 inhibitor SP600125, and NSCSI, respectively) for 24 h at 37°C. Cells were analyzed by fluorescence microscopy (FM), flow cytometry (FC), and Western blotting (WB) techniques. We show that TPGS induces apoptosis in K562 cells through H2O2 signaling mechanism comprising the activation of a minimal molecular cascade: the kinase JNK>the transcription factor c-JUN>the activation of BCL-only BH3 proapoptotic protein PUMA>loss of mitochondrial membrane potential (ΔΨ m)>activation of caspase-3>chromatin condensation>fragmentation of DNA. Additionally, TPGS oxidizes the stress sensor protein DJ-1-Cys106-SH into DJ-1-Cys106-SO3 and arrested the cell cycle in the S phase. Remarkably, NAC, SP600125, and NSCSI blocked TPGS-induced OS and apoptosis in K562. Since TPGS is safe in mice and humans, it is especially promising for preclinical and clinical CML leukemia research. Our findings support the view that oxidation therapy offers an important opportunity to eliminate CML.
Collapse
|
23
|
Song IS, Nam SJ, Jeon JH, Park SJ, Choi MK. Enhanced Bioavailability and Efficacy of Silymarin Solid Dispersion in Rats with Acetaminophen-Induced Hepatotoxicity. Pharmaceutics 2021; 13:pharmaceutics13050628. [PMID: 33925040 PMCID: PMC8146637 DOI: 10.3390/pharmaceutics13050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
We evaluated the bioavailability, liver distribution, and efficacy of silymarin-D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) solid dispersion (silymarin-SD) in rats with acetaminophen-induced hepatotoxicity (APAP) compared with silymarin alone. The solubility of silybin, the major and active component of silymarin, in the silymarin-SD group increased 23-fold compared with the silymarin group. The absorptive permeability of silybin increased by 4.6-fold and its efflux ratio decreased from 5.5 to 0.6 in the presence of TPGS. The results suggested that TPGS functioned as a solubilizing agent and permeation enhancer by inhibiting efflux pump. Thus, silybin concentrations in plasma and liver were increased in the silymarin-SD group and liver distribution increased 3.4-fold after repeated oral administration of silymarin-SD (20 mg/kg as silybin) for five consecutive days compared with that of silymarin alone (20 mg/kg as silybin). Based on higher liver silybin concentrations in the silymarin-SD group, the therapeutic effects of silymarin-SD in hepatotoxic rats were evaluated and compared with silymarin administration only. Elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels were significantly decreased by silymarin-SD, silymarin, and TPGS treatments, but these decreases were much higher in silymarin-SD animals than in those treated with silymarin or TPGS. In conclusion, silymarin-SD (20 mg/kg as silybin, three times per day for 5 days) exhibited hepatoprotective properties toward hepatotoxic rats and these properties were superior to silymarin alone, which may be attributed to increased solubility, enhanced intestinal permeability, and increased liver distribution of the silymarin-SD formulation.
Collapse
Affiliation(s)
- Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| | - So-Jeong Nam
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| |
Collapse
|
24
|
Chen R, Wang Z, Wu S, Kuang X, Wang X, Yan G, Tang R. Chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug for significantly synergetic multidrug resistance reversal. J Biomater Appl 2020; 35:994-1004. [PMID: 33283586 DOI: 10.1177/0885328220975177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) and indomethacin (IDM) can reverse multidrug resistance (MDR) via inhibiting P-glycoprotein (P-gp) and multidrug resistance associated protein 1 (MRP1) respectively, but their drawbacks in physicochemical properties limit their clinical application. To overcome these defects and enhance MDR reversal, the amphiphilic TPGS-IDM twin drug was successfully synthesized via esterification, and could self-assemble into free and paclitaxel-loaded (PTX-loaded) micelles. The micelles exhibited lower CMC values (5.2 × 10-5 mg/mL), long-term stability in PBS (pH 7.4) for 7 days and SDS solution (5 mg/mL) for 3 days, and effective drug release at esterase/pH 5.0. Moreover, the micelles could down-regulate ATP levels and promote ROS production in MCF-7/ADR via the mitochondrial impairment, therefore achieving MDR reversal and cell apoptosis. Additionally, the PTX-loaded micelles could significantly inhibit the cell proliferation and promote apoptosis for MCF-7/ADR via the synergistic chemosensitizing effect of TPGS and IDM, and synergistic cytotoxic effect of TPGS and PTX. Thus, the chemosensitizing micelles self-assembled from amphiphilic TPGS-indomethacin twin drug have the great potentials for reversing MDR in clinical cancer therapy.
Collapse
Affiliation(s)
- Ran Chen
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Zhexiang Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Shuo Wu
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Xingyu Kuang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Xiu Wang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Science, Anhui Key Laboratory of Modern Biomanufacturing, 12487Anhui University, Hefei, China *Equal contributors
| |
Collapse
|
25
|
Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy. Colloids Surf B Biointerfaces 2020; 196:111303. [PMID: 32798988 DOI: 10.1016/j.colsurfb.2020.111303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
Nano-based drug delivery systems have been widely applied in cancer therapy, among that, particle sizes may affect the delivery efficiency of nanocarriers. The purpose of this study was to evaluate the potential impacts of particle size on tumor therapy, in consideration of this, lipid/glycocholic acid mixed micelles (LGs) were designed as the model nanocarriers. Doxorubicin (DOX) loaded LGs with two different particle sizes at around 10 nm and 100 nm, respectively, were successfully prepared by controlling the ratio of EPC to GAH. In vitro release study showed that the release behaviors of DOX in mixed micelles with two different particle sizes was basically consistent and showed sustained release. DOX-LGs at 10 nm exhibited higher cellular uptake capacity, compared with DOX-LGs at 100 nm. Besides, in vivo NIFR imaging also demonstrated that DOX-LGs at 10 nm had more accumulation in tumor site. Furthermore, DOX-LGs at 10 nm presented both higher in vitro cytotoxicity and superior in vivo antitumor activity than that of 100 nm. In vivo safety evaluations showed that the mixed micelles had lower toxicities than free DOX solution formulations. These results indicated that the nanoparticles with smaller particle size could improve the profiles in cellular uptake, tumor accumulation as well as anti-tumor efficacy, which would provide a theoretical principle for the design of nanoparticles.
Collapse
|