1
|
Howard RS, Holmes P, Dargan P. Neurological aspects of drug misuse. Pract Neurol 2025:pn-2023-003796. [PMID: 40425276 DOI: 10.1136/pn-2023-003796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
The misuse of illicit drugs and prescription medications may cause neurological complications from overdose, withdrawal and long-term chronic misuse. Drug-use disorder has become particularly important and complex because of different patterns of presentation associated with new psychoactive substances and the growing misuse of opioids, synthetic cannabinoids and stimulants. We review worldwide demographic data of drug-use disorder and discuss the individual classes of agents, newer developments relating to understanding the mechanisms of action and the patterns of administration, usage, toxicity and withdrawal. We consider the difficulties in assessment and the specific acute syndromes of toxicity that present with neurological manifestations. We review the neurological patterns of longer-term complications and consider the effects of drug misuse-related trauma, infection, seizures, stroke, toxic leucoencephalopathy, cognitive impairment, movement disorders and neuromuscular complications. The neurological consequences of drug-use disorder disproportionately affect the young and can have devastating effects on innocent lives. It is essential that neurologists recognise acute toxicity early and understand the longer-term consequences of drug-use disorder.
Collapse
Affiliation(s)
| | - Paul Holmes
- Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Dargan
- Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Jantorno GM, Xavier CH, Magalhães MEP, de Castro MB, McManus C, de Melo CB. Detection dogs fighting transnational narcotraffic: performance and challenges under real customs scenario in Brazil. Front Vet Sci 2024; 11:1380415. [PMID: 38818493 PMCID: PMC11137163 DOI: 10.3389/fvets.2024.1380415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Narcotic Detection Dogs (NDDs) are essential tools in the fight against drug trafficking, acting with high precision and improving efficiency at border posts. When trained efficiently, these dogs can detect a great variety of compounds, such as cocaine, marijuana and its derivatives, and synthetic drugs, among others. Most of the knowledge on canine detection processes and efficiency has been determined in experimentally controlled conditions, but narcotic seizures detected by dogs in realistic anti-drug operations have not yet been critically determined in a Country with continental dimensions such as Brazil. This study aimed to evaluate the data set concerning the performance, operations, efficiency, and success rate of NDDs used by the Brazilian Customs Authority (Aduana) in the fight against drug trafficking. Narcotic seizure rates increased in luggage and packages detected by NDDs working at border crossings from 2010 to 2020, with an estimated value of over US$ 2 billion in losses to the cocaine drug trafficking business. NDD units also increased most narcotic groups seized in the same period. The number of NDDs and anti-drug operations, and Customs Border Post (CBP) influenced the rates of drugs seized. NDDs provided an increase of 3,157 kg/animal of drugs seized for every new dog introduced into the inspection systems.
Collapse
Affiliation(s)
- Gustavo Machado Jantorno
- Graduate Program in Animal Sciences (PPGCA/FAV), University of Brasilia (UnB), Brasilia, Brazil
- Center for Detection Dogs (CNK9), Customs/Aduana, Vitória, Espirito Santo, Brazil
| | - Carlos Henrique Xavier
- Center for Detection Dogs (CNK9), Customs/Aduana, Vitória, Espirito Santo, Brazil
- Head of the Center for Detection Dogs (CNK9), Customs/Aduana, Vitória, Espirito Santo, Brazil
| | | | | | - Concepta McManus
- Graduate Program in Animal Sciences (PPGCA/FAV), University of Brasilia (UnB), Brasilia, Brazil
| | | |
Collapse
|
3
|
Selwe KP, Sallach JB, Dessent CEH. Nontargeted Screening of Contaminants of Emerging Concern in the Glen Valley Wastewater Treatment Plant, Botswana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:52-61. [PMID: 37877782 DOI: 10.1002/etc.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
There is growing concern about the prevalence and impact of contaminants of emerging concern (CECs). The environmental monitoring of CECs has, however, been limited in low- and middle-income countries due to the lack of advanced analytical instrumentation locally. In the present study we employed a nontargeted and suspect screening workflow via liquid chromatography coupled with high-resolution mass spectrometry (HRMS) to identify known and unknown pollutants in the Glen Valley wastewater treatment plant, Botswana, complemented by analysis of groundwater samples. The present study represents the first HRMS analysis of CECs in water samples obtained in Botswana. Suspect screening of 5942 compounds qualitatively identified 28 compounds, including 26 pharmaceuticals and two illicit drugs (2-ethylmethcathinone and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol). Nontargeted analysis tentatively identified the presence of 34 more compounds including (5ξ)-12,13-dihydroxypodocarpa-8,11,13-trien-7-one, 12-aminododecanoic acid, atenolol acid, brilliant blue, cyclo leucylprolyl, decanophenone, DL-carnitine, N,N'-dicyclohexylurea, N4-acetylsulfamethoxazole, NP-003672, and 24 polyethylene glycol polymers. The highest number of detections were in influent wastewater (26 CECs) followed by effluent wastewater (10 CECs) and, lastly, groundwater (4 CECs). Seventeen CECs detected in the influent water were not detected in the effluent waters, suggesting reduced emissions due to wastewater treatment. Two antiretroviral compounds (abacavir and tenofovir) were detected in the influent and effluent sources. This suggests that wastewater treatment plants are a major pathway of chemical pollution to the environment in Botswana and will help inform prioritization efforts for monitoring and remediation that is protective of these key ecosystems. Environ Toxicol Chem 2024;43:52-61. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kgato P Selwe
- Department of Chemistry, University of York, Heslington, York, United Kingdom
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | | |
Collapse
|
4
|
Acute toxic effects of new synthetic cannabinoid on brain: Neurobehavioral and Histological: Preclinical studies. Chem Biol Interact 2023; 370:110306. [PMID: 36528081 DOI: 10.1016/j.cbi.2022.110306] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The psychoactive effects of new synthetic cannabinoids (SCs), MDMB-4en-PINACA, are being marketed as a blend of herbs and spices. This study aims to determine the behavioral, neurochemical, histopathological, and immunohistochemical alterations associated with the acute toxicity of MDMB-4en-PINACA compounds. METHODS Adult male albino rats were administered various toxic doses of the drug (1.5, 3, and 6 mg/kg), and behavioral studies were conducted 2 and 24 h later; animals were then sacrificed. Histopathological and neurochemical examinations were performed. Two hours after intraperitoneal. RESULTS Intraperitoneal injection of MDMB-4en-PINACA, horizontal movement, the number of stops, and mobility ratio were significantly impaired, along with coordination and balance. In addition, it led to a decline in spatial learning and memory, and neurotransmitter concentrations decreased significantly in a dose-dependent manner. Further examination of the cerebral cortex and hippocampus histopathology revealed pathological degeneration of small pyramidal cells. CONCLUSION Thus, these findings revealed that MDMB-4en-PINACA interferes with hippocampal function and impairs cognitive performance, highlighting the cognitive risk associated with SC abuse.
Collapse
|
5
|
Pharmacology and adverse effects of new psychoactive substances: synthetic cannabinoid receptor agonists. Arch Pharm Res 2021; 44:402-413. [PMID: 33811300 DOI: 10.1007/s12272-021-01326-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 01/07/2023]
Abstract
Over the last decade, new psychoactive substances (NPS) have continuously been the focus of the international society since their emergence on the illicit drug market. NPS can be classified into six groups including; synthetic cannabinoid receptor agonists (SCRAs), stimulants, opioids, dissociatives, sedatives/hypnotics, and classic hallucinogens with psychoactive effects. These are sold as "herbal incense," "bath salts," "legal highs," and "research chemicals". They can be synthesized easily with slight changes in the chemical moieties of known psychoactive substances. NPS are sold worldwide via on- and off-line markets without proper scientific evaluation regarding their safety or harmfulness. Abuse of NPS poses a serious public health issue, and systematic studies on their adverse effects are lacking. Therefore, it would be meaningful to collect currently available data in order to understand NPS and to establish viable solutions to cope with the various health issues related to them. In this article, we reviewed the general pharmacological characteristics, recent findings, and adverse effects of representative NPS; SCRAs. SCRAs are known as the most commonly abused NPS. Most SCRAs, cannabinoid receptor 1 and cannabinoid receptor 2 agonists, are often associated with severe toxicities, including cardiotoxicity, immunotoxicity, and even death, unlike natural cannabinoid Δ9-Tetrahydrocannabinol.
Collapse
|
6
|
Peck Y, Clough AR, Culshaw PN, Liddell MJ. Multi-drug cocktails: Impurities in commonly used illicit drugs seized by police in Queensland, Australia. Drug Alcohol Depend 2019; 201:49-57. [PMID: 31181437 DOI: 10.1016/j.drugalcdep.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Impurities in commonly used illicit drugs raise concerns for unwitting consumers when pharmacologically active adulterants, especially new psychoactive substances (NPS), are used. This study examines impurities detected in illicit drugs seized in one Australian jurisdiction. METHODS Queensland Health Forensic and Scientific Services provided analytical data. Data described the chemical composition of 9346 samples of 11 illicit drugs seized by police during 2015-2016. Impurities present in primary drugs were summarized and tabulated. A systematic search for published evidence reporting similar analyses was conducted. RESULTS Methamphetamine was the primary drug in 6608 samples, followed by MDMA (1232 samples) and cocaine (516 samples). Purity of primary drugs ranged from ∼30% for cocaine, 2-CB and GHB to >90% for THC, methamphetamine, heroin and MDMA. Methamphetamine and MDMA contained the largest variety of impurities: 22 and 18 variants, respectively. Drug adulteration patterns were broadly similar to those found elsewhere, including NPS, but in some primary drugs impurities were found which had not been reported elsewhere. Psychostimulants were adulterated with each other. Levamisole was a common impurity in cocaine. Psychedelics were adulterated with methamphetamine and NPS. Opioids were quite pure, but some samples contained methamphetamine and synthetic opioids. CONCLUSIONS Impurities detected were mostly pharmacologically active adulterants probably added to enhance desired effects or for active bulking. Given the designer nature of these drug cocktails, the effects of the adulterated drugs on users from possible complex multi-drug interactions is unpredictable. Awareness-raising among users, research into complex multi-drug effects and ongoing monitoring is required.
Collapse
Affiliation(s)
- Yoshimi Peck
- College of Science and Engineering, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia.
| | - Alan R Clough
- College of Public Health, Medical and Vet Sciences, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia
| | - Peter N Culshaw
- Forensic Chemistry, Forensic and Scientific Services, Queensland Health, 39 Kessels Road, Coopers Plains, 4108, Queensland, Australia
| | - Michael J Liddell
- College of Science and Engineering, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia
| |
Collapse
|
7
|
Murakami T, Iwamuro Y, Ishimaru R, Chinaka S, Kato N, Sakamoto Y, Sugimura N, Hasegawa H. Energy-resolved mass spectrometry for differentiation of the fluorine substitution position on the phenyl ring of fluoromethcathinones. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:205-212. [PMID: 30471239 DOI: 10.1002/jms.4316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A reliable method for structural analysis is crucial for the forensic investigation of new psychoactive substances (NPSs). Towards this end, mass spectrometry is one of the most efficient and facile methods for the identification of NPSs. However, the differentiation among 2-, 3-, and 4-fluoromethcathinones (o-, m-, and p-FMCs), which are ring-fluorinated positional isomers part of the major class of NPSs referred to as synthetic cathinones, remains a challenge. This is mostly due to their similar retention properties and nearly identical full scan mass spectra, which hinder their identification. In this study, we describe a novel and practical method for differentiating the fluorine substitution position on the phenyl ring of FMCs, based on energy-resolved mass spectrometry (ERMS) using an electron ionization-triple quadrupole mass spectrometer. ERMS measurements showed that the three FMC positional isomers exhibited differences in relative abundances of both the fluorophenyl cation (m/z 95) and the fluorobenzoyl cation (m/z 123). The logarithmic plots of the abundance ratio of these two cations (m/z 95 to m/z 123) as a function of the collision energy (CE) followed the order of o-FMC < p-FMC < m-FMC at each CE, which allowed the three isomers to be unambiguously and reliably differentiated. The theoretical dissociation energy calculations confirmed the relationship obtained by ERMS analyses, and additional ERMS measurements of methylmethcathinone positional isomers showed that the differences in abundance among the FMCs were attributed to the differences in their collision-induced dissociation reactivities arising from the halogen-induced resonance effects on the phenyl ring. Moreover, the method for differentiation described herein was successfully applied to the actual samples containing seized drugs. We expect that the described methodology will also contribute significantly to the reliable and accurate structural identification of NPSs in the fields of therapeutic, clinical, and forensic toxicology.
Collapse
Affiliation(s)
- Takaya Murakami
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Iwamuro
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Reiko Ishimaru
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Satoshi Chinaka
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Noriyuki Kato
- Scientific Crime Laboratory, Kanagawa Prefectural Police Headquarters, Yokohama, Japan
| | | | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory, Waseda University, Tokyo, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
8
|
Development of a high throughput methodology to screen cathinones' toxicological impact. Forensic Sci Int 2019; 298:1-9. [PMID: 30870699 DOI: 10.1016/j.forsciint.2019.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 11/23/2022]
Abstract
Current trend of novel psychoactive substances (NPS) among teenagers is posing new clinical, scientific and forensic societal questions. Synthetic cathinones are among the most consumed groups of NPS appearing on the street market and internet on a regular basis. The properties of these substances change regularly, due to structural modification to circumvent legislation. This practice makes almost impossible to characterize its toxicological profiles on an acceptable time scale, mostly due to the time-consuming experiments that must be held in animal models or human cells by standard methods. Such an issue demands the development of a rapid and inexpensive methodology to be used as a high-throughput screening of cathinones' toxicity. The yeast Saccharomyces cerevisiae shares highly conserved molecular and cellular mechanisms with human cells and has been used before for pharmacological drugs. In the present work it is proposed to use S. cerevisiae growth curves as a high throughput screening method to profile synthetic cathinones toxicity in a short time scale. The results obtained by S. cerevisiae growth curves analysis were compared to differentiated SH-SY5Y human neuronal cells and similar responses were found. The screening tool methodology has shown able to prioritize the most toxics NPS and can be useful for early warning programs on NPS.
Collapse
|
9
|
Abstract
There are many challenges facing healthcare professionals. One such challenge is the continuous introduction of new synthetic drugs. Synthetic drugs pose many difficulties to providers, including identification of the drug ingested, management of symptoms, ensuring safety of the patient and his or her environment, and continual monitoring after the initial symptoms, because synthetic cathinones have many long-term effects on an individual. One such synthetic drug, flakka, is a potent second-generation synthetic cathinone. Because flakka inhibits the reuptake of norepinephrine and dopamine, which are involved in one's perception of pleasure, it causes inflated feelings and also causes signs and symptoms of psychosis. Flakka also induces various exaggerated symptoms, such as feelings of incredible strength, disorientation, aggression, and altered thought processes, and also can cause hyperthermia, coma, and death. Healthcare professionals need to understand the nature of flakka ingestion, the various symptoms a user may exhibit, and the long-term symptoms a person may have once the acute recovery phase has ended. Once the initial phase of ingestion is over and the patient is medically stabilized, the patient may experience signs and symptoms of psychosis or other psychiatric disorders. It is paramount that healthcare professionals are able to recognize the signs and symptoms of flakka ingestion, know the steps to take to ensure safety of the patient and those around him or her, and also know how to facilitate the patient's recovery.
Collapse
|
10
|
Murakami T, Iwamuro Y, Ishimaru R, Chinaka S, Hasegawa H. Molecularly imprinted polymer solid-phase extraction of synthetic cathinones from urine and whole blood samples. J Sep Sci 2018; 41:4506-4514. [PMID: 30358097 DOI: 10.1002/jssc.201800874] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/20/2023]
Abstract
In forensic drug analysis, extractive pretreatment is required prior to instrumental analysis to ensure successful detection of the target compounds. However, conventional extraction methods such as hydrophilic polymer-based solid-phase extraction and liquid-liquid extraction are unsuitable for an emerging class of new psychoactive substances, namely, synthetic cathinones, because they exhibit a lack of class selectivity and increased risk of target analyte decomposition during extraction. To address these issues, we describe a highly class-selective sample clean-up method for the extraction of synthetic cathinones from urine and whole blood samples, exploiting a molecularly imprinted polymer solid-phase extraction cartridge. In terms of the influence of the synthetic cathinone molecular structure on the extraction recovery, we showed that while longer alkyl side chains slightly reduced the extraction efficiency, substituent variation on the aromatic ring exerted no effect. Molecularly imprinted polymer solid-phase extraction of 11 synthetic cathinones from urine samples yielded higher recoveries than the two conventional extraction methods, and smaller matrix effect was observed than that with hydrophilic polymer-based solid-phase extraction. Molecularly imprinted polymer solid-phase extraction from whole blood samples gave recoveries comparable to those of urine samples. Therefore, the proposed method is applicable for the extraction and quantitative determination of synthetic cathinones in biological samples.
Collapse
Affiliation(s)
- Takaya Murakami
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan.,Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Yoshiaki Iwamuro
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Reiko Ishimaru
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Satoshi Chinaka
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, Kanazawa, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
11
|
Hataoka K, Kaizaki-Mitsumoto A, Numazawa S. Alpha-PVP induces the rewarding effect via activating dopaminergic neuron. J Toxicol Sci 2018; 42:539-543. [PMID: 28904288 DOI: 10.2131/jts.42.539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A synthetic cathinone, 1-phenyl-2-(1-pyrrolidinyl)-1-pentanone (α-PVP), was occasionally found in the "bath salt" type of designer drugs, as an active ingredient. It has been reported that drivers who consumed α-PVP were in an excited state and incapable of controlling their behavior, causing traffic accidents. Despite its acute excitatory effects, there is no information on the psychological dependency elicited by α-PVP use. The purpose of the present study was to clarify whether the reward pathway is activated with repeated doses of α-PVP in experimental animals. Treatment of male C57BL/6j mice with α-PVP (25 mg/kg, i.p.), once a day, for 3 days significantly increased the conditioned place preference scores. Therefore, repeated doses of α-PVP were shown to induce palatability in mice. α-PVP increases extracellular dopamine levels in the nucleus accumbens shell immediately after administration. The number of cells immunopositive for phosphorylated cAMP-regulatory element binding protein (CREB) was significantly increased in the α-PVP-treated mice in our study. These results indicate that the administration of α-PVP activates the phosphorylation of CREB in the nucleus accumbens shell. Our results suggest that α-PVP stimulates the reward pathway by increasing the extracellular dopamine levels and CREB phosphorylation in the nucleus accumbens shell, eventually causing positive reinforcement in mice.
Collapse
Affiliation(s)
- Kyoko Hataoka
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy
| | - Asuka Kaizaki-Mitsumoto
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy
| | - Satoshi Numazawa
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy
| |
Collapse
|
12
|
McGrew H, Ruble M. Updates on Novel Illicit Drugs: What Practitioners Should Be Aware Of. J Emerg Nurs 2017; 43:591-592. [PMID: 29100577 DOI: 10.1016/j.jen.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Guirguis A, Corkery JM, Stair JL, Kirton SB, Zloh M, Schifano F. Intended and unintended use of cathinone mixtures. Hum Psychopharmacol 2017; 32. [PMID: 28657191 DOI: 10.1002/hup.2598] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Cathinones are one of the most popular categories of new psychoactive substances (NPS) consumed. Cathinones have different pharmacological activities and receptor selectivity for monoamine transporters based on their chemical structures. They are incorporated into NPS mixtures and used with other NPS or 'traditional' drugs. Cathinone use represents significant health risks to individuals and is a public health burden. METHODS Evidence of poly-NPS use with cathinones, seizure information, and literature analyses results on NPS mixtures was systematically gathered from online database sources, including Google Scholar, Scopus, Bluelight, and Drugs-Forum. RESULTS AND DISCUSSION Results highlight the prevalence of NPS with low purity, incorporation of cathinones into NPS mixtures since 2008, and multiple members of the cathinone family being present in individual UK-seized samples. Cathinones were identified as adulterants in NPS marketed as being pure NPS, drugs of abuse, branded products, herbal blends, and products labelled "not for human consumption." Toxicity resulting from cathinone mixtures is unpredictable because key attributes remain largely unknown. Symptoms of intoxication include neuro-psychological, psychiatric, and metabolic symptoms. Proposed treatment includes holistic approaches involving psychosocial, psychiatric and pharmacological interventions. CONCLUSION Raising awareness of NPS, education, and training of health care professionals are paramount in reducing harms related to cathinone use.
Collapse
Affiliation(s)
- Amira Guirguis
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - John Martin Corkery
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Jacqueline Leslie Stair
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Stewart Brian Kirton
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Mire Zloh
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| | - Fabrizio Schifano
- School of Life and Medical Sciences, Department of Pharmacy, Pharmacology & Postgraduate Medicine, University of Hertfordshire, Hatfield, UK.,Psychopharmaology, Drug Misuse, & Novel Psychoactive Substances Research Unit, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
14
|
Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, Kornhuber J, Quednow BB, Müller CP. Novel Psychoactive Substances-Recent Progress on Neuropharmacological Mechanisms of Action for Selected Drugs. Front Psychiatry 2017; 8:152. [PMID: 28868040 PMCID: PMC5563308 DOI: 10.3389/fpsyt.2017.00152] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/15/2022] Open
Abstract
A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
15
|
Murakami T, Iwamuro Y, Ishimaru R, Chinaka S, Noda I, Higashibayashi S, Takayama N. Elucidation of the fluorine substitution position on the phenyl ring of synthetic cannabinoids by electron ionization-triple quadrupole mass spectrometry. ACTA ACUST UNITED AC 2017. [DOI: 10.3408/jafst.722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Takaya Murakami
- Forensic Science Laboratory, Ishikawa Prefectural Police H.Q
| | | | - Reiko Ishimaru
- Forensic Science Laboratory, Ishikawa Prefectural Police H.Q
| | - Satoshi Chinaka
- Forensic Science Laboratory, Ishikawa Prefectural Police H.Q
| | | | | | | |
Collapse
|
16
|
Ellefsen KN, Concheiro M, Huestis MA. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. Drug Metab Rev 2016; 48:237-65. [PMID: 27249313 DOI: 10.1080/03602532.2016.1188937] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Synthetic cathinones are commonly abused novel psychoactive substances (NPS). We present a comprehensive systematic review addressing in vitro and in vivo synthetic cathinone pharmacokinetics, analytical methods for detection and quantification in biological matrices, and toxicological findings from human performance and postmortem toxicology cases. Few preclinical administration studies examined synthetic cathinone pharmacokinetic profiles (absorption, distribution, metabolism, and excretion), and only one investigated metabolite pharmacokinetics. Synthetic cathinone metabolic profiling studies, primarily with human liver microsomes, elucidated metabolite structures and identified suitable biomarkers to extend detection windows beyond those provided by parent compounds. Generally, cathinone derivatives underwent ketone reduction, carbonylation of the pyrrolidine ring, and oxidative reactions, with phase II metabolites also detected. Reliable analytical methods are necessary for cathinone identification in biological matrices to document intake and link adverse events to specific compounds and concentrations. NPS analytical methods are constrained in their ability to detect new emerging synthetic cathinones due to limited commercially available reference standards and continuous development of new analogs. Immunoassay screening methods are especially affected, but also gas-chromatography and liquid-chromatography mass spectrometry confirmation methods. Non-targeted high-resolution-mass spectrometry screening methods are advantageous, as they allow for retrospective data analysis and easier addition of new synthetic cathinones to existing methods. Lack of controlled administration studies in humans complicate interpretation of synthetic cathinones in biological matrices, as dosing information is typically unknown. Furthermore, antemortem and postmortem concentrations often overlap and the presence of other psychoactive substances are typically found in combination with cathinones derivatives, further confounding result interpretation.
Collapse
Affiliation(s)
- Kayla N Ellefsen
- a Chemistry and Drug Metabolism, IRP , National Institute on Drug Abuse, National Institutes of Health , Baltimore , MD , USA ;,b Program in Toxicology , University of Maryland Baltimore , Baltimore , MD , USA
| | - Marta Concheiro
- c Department of Sciences, John Jay College of Criminal Justice , City University of New York , New York , NY , USA
| | - Marilyn A Huestis
- a Chemistry and Drug Metabolism, IRP , National Institute on Drug Abuse, National Institutes of Health , Baltimore , MD , USA
| |
Collapse
|
17
|
Miliano C, Serpelloni G, Rimondo C, Mereu M, Marti M, De Luca MA. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-Like Stimulants. Front Neurosci 2016; 10:153. [PMID: 27147945 PMCID: PMC4835722 DOI: 10.3389/fnins.2016.00153] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2016] [Indexed: 01/19/2023] Open
Abstract
New psychoactive substances (NPS) are a heterogeneous and rapidly evolving class of molecules available on the global illicit drug market (e.g smart shops, internet, “dark net”) as a substitute for controlled substances. The use of NPS, mainly consumed along with other drugs of abuse and/or alcohol, has resulted in a significantly growing number of mortality and emergency admissions for overdoses, as reported by several poison centers from all over the world. The fact that the number of NPS have more than doubled over the last 10 years, is a critical challenge to governments, the scientific community, and civil society [EMCDDA (European Drug Report), 2014; UNODC, 2014b; Trends and developments]. The chemical structure (phenethylamines, piperazines, cathinones, tryptamines, synthetic cannabinoids) of NPS and their pharmacological and clinical effects (hallucinogenic, anesthetic, dissociative, depressant) help classify them into different categories. In the recent past, 50% of newly identified NPS have been classified as synthetic cannabinoids followed by new phenethylamines (17%) (UNODC, 2014b). Besides peripheral toxicological effects, many NPS seem to have addictive properties. Behavioral, neurochemical, and electrophysiological evidence can help in detecting them. This manuscript will review existing literature about the addictive and rewarding properties of the most popular NPS classes: cannabimimetics (JWH, HU, CP series) and amphetamine-like stimulants (amphetamine, methamphetamine, methcathinone, and MDMA analogs). Moreover, the review will include recent data from our lab which links JWH-018, a CB1 and CB2 agonist more potent than Δ9-THC, to other cannabinoids with known abuse potential, and to other classes of abused drugs that increase dopamine signaling in the Nucleus Accumbens (NAc) shell. Thus the neurochemical mechanisms that produce the rewarding properties of JWH-018, which most likely contributes to the greater incidence of dependence associated with “Spice” use, will be described (De Luca et al., 2015a). Considering the growing evidence of a widespread use of NPS, this review will be useful to understand the new trends in the field of drug reward and drug addiction by revealing the rewarding properties of NPS, and will be helpful to gather reliable data regarding the abuse potential of these compounds.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari Cagliari, Italy
| | - Giovanni Serpelloni
- Advisory and Steering Group, URITo.N. - Unit for Research and Innovation on Forensic Toxicology, Neuroscience of Addiction and New Drugs. FT-DSS University of Florence Florence, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona Verona, Italy
| | - Maddalena Mereu
- Departmentof Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | | |
Collapse
|
18
|
Beyhun NE, Can G, Topbas M, Cankaya S, Ketenci HC. Are the last grade medical students aware of the danger of synthetic cannabinoids? J Forensic Leg Med 2015; 38:1-5. [PMID: 26694870 DOI: 10.1016/j.jflm.2015.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/03/2015] [Accepted: 11/15/2015] [Indexed: 11/25/2022]
Abstract
Synthetic cannabinoids are drugs which are increasingly used by especially adolescents and young people. In recent years hospital admissions even concluding with deaths have been observed. Therefore, the awareness of medical students, who will be in challenge with this new drug abuse, is an important issue. The aim of this study is to figure out the awareness of the last grade medical students and its correlates. This is a questionnaire based descriptive study with the participation of 148 students at Karadeniz Technical University Medical Faculty, Turkey. An awareness score was produced to measure awareness (cronbach alpha = 0.67). The 17.6% (26/148) of students who reported not knowing what synthetic cannabinoids were and hearing the name for the first time in this study. The 16.4% of students assumed that synthetic cannabinoid use was legal, and 16.2% assumed that synthetic cannabinoids are not drugs. The internet (including social media) (48.6%) and pharmacology lectures (40.5%) were identified as the most stated sources of information. The students who have synthetic cannabinoid user friends and social media account have significantly higher awareness scores (p < 0.05 for both). Last grade medical students have a lack of awareness towards synthetic cannabinoids which is an increasing threat that they have to challenge.
Collapse
Affiliation(s)
- Nazim Ercument Beyhun
- Karadeniz Technical University Medical Faculty, Dep. of Public Health, 61080 Trabzon, Turkey.
| | - Gamze Can
- Karadeniz Technical University Medical Faculty, Dep. of Public Health, 61080 Trabzon, Turkey.
| | - Murat Topbas
- Karadeniz Technical University Medical Faculty, Dep. of Public Health, 61080 Trabzon, Turkey.
| | - Sertac Cankaya
- Karadeniz Technical University Medical Faculty, Dep. of Public Health, 61080 Trabzon, Turkey.
| | | |
Collapse
|
19
|
Müller HH, Kornhuber J, Sperling W. The behavioral profile of spice and synthetic cannabinoids in humans. Brain Res Bull 2015; 126:3-7. [PMID: 26548494 DOI: 10.1016/j.brainresbull.2015.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023]
Abstract
The use of synthetic cannabinoids (spice) is increasing. The number of descriptions of (new) clinical side effects is also increasing. We screened relevant publications for articles about spice with a focus on the clinical manifestations of the use of this drug. Spice creates diffuse psychiatric and somatic effects that are only partially similar to those of natural cannabinoids. Most of the observed effects are related to sympathomimetic-cardiac effects and neuropsychiatric manifestations. Clinical treatment is primarily based on intensive apparative and laboratory monitoring and supportive therapy. Because the exact active ingredients of spice are often difficult to determine with standard specific toxicology testing, the assessment and analysis of consumed substances by specialized laboratories is recommended.
Collapse
Affiliation(s)
- Helge H Müller
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Psychiatry and Psychotherapy, Erlangen, Germany; Medical Campus University of Oldenburg, School of Medicine and Health Sciences, University Hospital, Department of Psychiatry and Psychotherapy (Head of Department: Prof. Dr. Alexandra Philipsen), Karl-Jaspers-Klinik, Hermann-Ehlers-Straße 7, D-26160 Bad Zwischenahn, Germany.
| | - Johannes Kornhuber
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Psychiatry and Psychotherapy, Erlangen, Germany
| | - Wolfgang Sperling
- Friedrich-Alexander University of Erlangen-Nuremberg, Department of Psychiatry and Psychotherapy, Erlangen, Germany
| |
Collapse
|
20
|
Bertol E, Vaiano F, Di Milia MG, Mari F. In vivo detection of the new psychoactive substance AM-694 and its metabolites. Forensic Sci Int 2015; 256:21-7. [PMID: 26295909 DOI: 10.1016/j.forsciint.2015.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/21/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023]
Abstract
AM-694 or 1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole is a synthetic cannabinoid that acts as a selective and a powerful agonist for CB1 receptor, inducing cannabinoid-like effects (euphoria, sedation, hallucinations and anxiety). Its spread, like for other synthetic cannabinoids, has increased in recent years and many web sources freely supply these kinds of new drugs. It can be taken by smoking or through oral consumption. A 25-years-old man was hospitalized at the local hospital following a major trauma after ingestion of alcohol and an unknown pill. Urine and blood samples were sent to our Forensic Toxicology Division to investigate on possible substance abuse. A general unknown screening of biological samples, extracted by liquid-liquid extraction (ethylacetate and dichloromethane) in basic, acidic and neutral conditions, was achieved to verify the presence of drugs of abuse and/or their metabolites, both in gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). For the quantification of AM-694, urine was extracted by solid phase extraction (SPE) on a Bond Elut Certify cartridge; an acidic hydrolysis (HCl 30%, 95°C, 60min) was necessary before liquid-liquid extraction of metabolites. For the detection of benzodiazepines and their metabolites, an enzymatic hydrolysis was applied (β-glucuronidase, pH 4.5, 50°C, 18h). Quantification of AM-694 (internal standard AM-2201), midazolam and α-hydroxymidazolam (internal standard halazepam) were performed by LC-MS/MS analysis in multiple reaction monitoring ([M+H](+): m/z 436→190, 272, AM-694; m/z 360→155, 127, AM-2201; m/z 326→291, 223, midazolam; m/z 342→168, 203, α-hydroxymidazolam; m/z 353→241, 222, halazepam). The general unknown screening revealed the presence of AM-694 (urine sample) and benzodiazepines (urine and blood). The concentration of AM-694, obtained by LC-MS/MS, was 0.084μg/L. Midazolam and α-hydroxymidazolam were detected in urine (0.97 and 74.58μg/L, respectively) and in blood (34.84 and 23.15μg/L, respectively). Qualitative information about the AM-694 metabolites was obtained by LC-MS/MS in selected-ion monitoring for the putative [M+H](+) ions: m/z 448, carboxylated metabolite; m/z 434, defluorinated metabolite; quantification was not possible since reference standards are not available. Our report is the first case of detection of AM-694 and its metabolites in human biological fluids in Italy. For this reason, this case constitutes a first worrisome alarm about the spread of this substance.
Collapse
Affiliation(s)
- Elisabetta Bertol
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy.
| | - Fabio Vaiano
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| | - Maria Grazia Di Milia
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| | - Francesco Mari
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| |
Collapse
|