1
|
Baltatu OC, Campos LA, Cipolla-Neto J. Circadian system coordination: new perspectives beyond classical models. Front Physiol 2025; 16:1553736. [PMID: 40144545 PMCID: PMC11936781 DOI: 10.3389/fphys.2025.1553736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background This review examines novel interaction mechanisms contributing to the robustness of circadian rhythms, focusing on enhanced communication between the suprachiasmatic nucleus (SCN) and peripheral clocks. While classical models explain biological clocks through molecular interactions and biochemical signaling, they incompletely account for several key features: precision maintenance despite cellular noise, rapid system-wide synchronization, and temperature compensation. We propose that the SCN, acting as a central hub, may utilize non-classical mechanisms to maintain robust synchronization of peripheral clocks, contributing to biological timekeeping stability. The clinical implications of this model are significant, potentially offering new approaches for treating circadian-related disorders through quantum-based interventions. Recent advances in quantum biosensors and diagnostic tools show promise for early detection and monitoring of circadian disruptions, while quantum-based therapeutic strategies may provide novel treatments for conditions ranging from sleep disorders to metabolic syndromes. Aim of review To evaluate classical models of circadian rhythm robustness and propose a novel synchronization model incorporating quantum mechanical principles, supported by recent advances in quantum biology and chronobiology, with emphasis on potential clinical applications. Key scientific concepts Recent research in quantum biology suggests potential mechanisms for enhanced circadian system coordination. The proposed model explores how quantum effects, including entanglement and coherence, may facilitate rapid system-wide synchronization and temporal coherence across tissues. These mechanisms could explain features not fully addressed by classical models: precision maintenance in noisy cellular environments, rapid resynchronization following environmental changes, temperature compensation of circadian periods, and sensitivity to weak electromagnetic fields. The framework integrates established chronobiology with quantum biological principles to explain system-wide temporal coordination and suggests new therapeutic approaches for circadian-related disorders.
Collapse
Affiliation(s)
- Ovidiu Constantin Baltatu
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University – Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | - Luciana Aparecida Campos
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University – Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Ní Néill T, Barcellona MN, Wilson N, O'Brien FJ, Dixon JE, Curtin CM, Buckley CT. In vitro and ex vivo screening of microRNA combinations with enhanced cell penetrating peptides to stimulate intervertebral disc regeneration. JOR Spine 2024; 7:e1366. [PMID: 39726900 PMCID: PMC11669629 DOI: 10.1002/jsp2.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 12/28/2024] Open
Abstract
Background Low back pain (LBP) is predominantly caused by degeneration of the intervertebral disc (IVD) and central nucleus pulposus (NP) region. Conservative treatments fail to restore disc function, motivating the exploration of nucleic acid therapies, such as the use of microRNAs (miRNAs). miRNAs have the potential to modulate expression of discogenic factors, while silencing the catabolic cascade associated with degeneration. To deliver these miRNAs, nonviral cell penetrating peptides (CPPs) are gaining favor given their low immunogenicity and strong targeting ability. Single miRNA therapies have been investigated for IVD repair, however dual miRNA delivery strategies have not been commonly examined and may augment regeneration. Materials and methods Transfection of four pro-discogenic miRNAs (miRNA mimics:140-5p; 149-5p and inhibitors: 141-3p; 221-3p) and dual delivery of six miRNA pairings was performed using two CPPs, RALA and GET peptide (FLR), in primary rat NP monolayer culture, and in an ex vivo organ culture model of rat caudal discs. Protein expression of discogenic (aggrecan, collagen type II, and SOX9) and catabolic markers (ADAMTS5 and MMP13) were assessed. Results Monolayer investigations signified enhanced discogenic marker expression following dual miRNA delivery, signifying a synergistic effect when compared to single miRNA transfection. Utilization of an appropriate model was emphasized in our ex vivo organ culture experiment, revealing the establishment of a regenerative microenvironment characterized by reduced catabolic enzyme activity and enhanced matrix deposition, particularly following concurrent delivery of FLR-miRNA-149-5p mimic and miRNA-221-3p inhibitor. Bioinformatics analysis of miRNA-149-5p mimic and miRNA-221-3p inhibitor identified distinct targets, pathways, and interactions, suggesting a mode of action for this amplified response. Conclusion Our findings suggest the potential of FLR-miRNA-149-5p + miRNA-221-3p inhibitor to create an anti-catabolic niche within the disc to foster regeneration in moderate cases of disc degeneration, which could be utilized in further studies with the overarching aim of developing treatments for LBP.
Collapse
Affiliation(s)
- Tara Ní Néill
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Niamh Wilson
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
| | - Fergal J. O'Brien
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| | - James E. Dixon
- Regenerative Medicine and Cellular TherapiesThe University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Caroline M. Curtin
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| | - Conor T. Buckley
- Trinity Centre for Biomedical EngineeringTrinity Biomedical Sciences Institute, Trinity College Dublin, The University of DublinDublinIreland
- Discipline of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College Dublin, The University of DublinDublinIreland
- Advanced Materials and Bioengineering Research (AMBER) CentreRoyal College of Surgeons in Ireland & Trinity College Dublin, The University of DublinDublinIreland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative MedicineRCSIDublinIreland
| |
Collapse
|
3
|
Oliveira MAB, de Abreu ACOV, Constantino DB, Tonon AC, Díez-Noguera A, Amaral FG, Hidalgo MP. Taking biological rhythms into account: From study design to results reporting. Physiol Behav 2024; 273:114387. [PMID: 37884108 DOI: 10.1016/j.physbeh.2023.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Numerous physiological and behavioral processes in living organisms exhibit strong rhythmicity and are regulated within a 24-hour cycle. These include locomotor activity and sleep patterns, feeding-fasting cycles, hormone synthesis, body temperature, and even mood and cognitive abilities, all of which are segregated into different phases throughout the day. These processes are governed by the internal timing system, a hierarchical multi-oscillator structure conserved across all organisms, from bacteria to humans. Circadian rhythms have been seen across multiple taxonomic kingdoms. In mammals, a hierarchical internal timing system is comprised of so-called central and periphereal clocks. Although these rhythms are intrinsic, they are under environmental influences, such as seasonal temperature changes, photoperiod variations, and day-night cycles. Recognizing the existence of biological rhythms and their primary external influences is crucial when designing and reporting experiments. Neglecting these physiological variations may result in inconsistent findings and misinterpretations. Thus, here we propose to incorporate biological rhythms into all stages of human and animal research, including experiment design, analysis, and reporting of findings. We also provide a flowchart to support decision-making during the design process, considering biological rhythmicity, along with a checklist outlining key factors that should be considered and documented throughout the study. This comprehensive approach not only benefits the field of chronobiology but also holds value for various other research disciplines. The insights gained from this study have the potential to enhance the validity, reproducibility, and overall quality of scientific investigations, providing valuable guidance for planning, developing, and communicating scientific studies.
Collapse
Affiliation(s)
- Melissa Alves Braga Oliveira
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Carolina Odebrecht Vergne de Abreu
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - André C Tonon
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antoni Díez-Noguera
- Department de Bioquimica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | | | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono do Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Core clock regulators in dexamethasone-treated HEK 293T cells at 4 h intervals. BMC Res Notes 2022; 15:23. [PMID: 35090555 PMCID: PMC8796574 DOI: 10.1186/s13104-021-05871-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The study of the circadian clock and its mechanisms is easily facilitated through clock resetting in cell culture. Among the various established synchronizers of the circadian clock in cell culture (temperature, serum shock, glucocorticoids), the artificial glucocorticoid Dexamethasone (DEX) is the most widely used. DEX treatment as a protocol to reset the circadian clock in culture gives simple readout with minimal laboratory requirements. Even though there are many studies regarding clock resetting in culture using DEX, reference points or expression patterns of core clock genes and their protein products are scarce and sometimes contradict other works with similar methodology. We synchronise a cell line of human origin with DEX to be used for studies on circadian rhythms. RESULTS We treat HEK 293T cells with DEX and describe the patterns of mRNA and proteins of core clock regulators, while making a clear point on how CLOCK is less than an ideal molecule to help monitor rhythms in this cell line.
Collapse
|
5
|
Bering T, Hertz H, Rath MF. The Circadian Oscillator of the Cerebellum: Triiodothyronine Regulates Clock Gene Expression in Granule Cells in vitro and in the Cerebellum of Neonatal Rats in vivo. Front Physiol 2021; 12:706433. [PMID: 34776993 PMCID: PMC8578874 DOI: 10.3389/fphys.2021.706433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The central circadian clock resides in the suprachiasmatic nucleus (SCN) of the hypothalamus, but an SCN-dependent molecular circadian oscillator is present in the cerebellar cortex. Recent findings suggest that circadian release of corticosterone is capable of driving the circadian oscillator of the rat cerebellum. To determine if additional neuroendocrine signals act to shape cerebellar clock gene expression, we here tested the role of the thyroid hormone triiodothyronine (T3) in regulation of the cerebellar circadian oscillator. In cultured cerebellar granule cells from mixed-gender neonatal rats, T3 treatment affected transcript levels of the clock genes Per2, Arntl, Nr1d1, and Dbp, suggesting that T3 acts directly on granule cells to control the circadian oscillator. We then used two different in vivo protocols to test the role of T3 in adult female rats: Firstly, a single injection of T3 did not influence clock gene expression in the cerebellum. Secondly, we established a surgical rat model combining SCN lesion with a programmable micropump infusing circadian physiological levels of T3; however, rhythmic infusion of T3 did not reestablish differential clock gene expression between day and night in SCN lesioned rats. To test if the effects of T3 observed in vitro were related to the developmental stage, acute injections of T3 were performed in mixed-gender neonatal rats in vivo; this procedure significantly affected cerebellar expression of the clock genes Per1, Per2, Nr1d1, and Dbp. Developmental comparisons showed rhythmic expression of all clock genes analyzed in the cerebellum of adult rats only, whereas T3 responsiveness was limited to neonatal animals. Thus, T3 shapes cerebellar clock gene profiles in early postnatal stages, but it does not represent a systemic circadian regulatory mechanism linking the SCN to the cerebellum throughout life.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hertz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Bioaminergic Responses in an In Vitro System Studying Human Gut Microbiota-Kiwifruit Interactions. Microorganisms 2020; 8:microorganisms8101582. [PMID: 33066564 PMCID: PMC7602194 DOI: 10.3390/microorganisms8101582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
Whole kiwifruit ('Hayward' and 'Zesy002') were examined for their bioaminergic potential after being subjected to in vitro gastrointestinal digestion and colonic fermentation. Controls included the prebiotic inulin and water, a carbohydrate-free vehicle. The dopamine precursor l-dihydroxyphenylalanine (L-DOPA) and the serotonin precursor 5-hydroxytryptophan were increased in the kiwifruit gastrointestinal digesta ('Hayward' > 'Zesy002') in comparison to the water digesta. Fermentation of the digesta with human fecal bacteria for 18 h modulated the concentrations of bioamine metabolites. The most notable were the significant increases in L-DOPA ('Zesy002' > 'Hayward') and γ-aminobutyric acid (GABA) ('Hayward' > 'Zesy002'). Kiwifruit increased Bifidobacterium spp. and Veillonellaceae (correlating with L-DOPA increase), and Lachnospira spp. (correlating with GABA). The digesta and fermenta were incubated with Caco-2 cells for 3 h followed by gene expression analysis. Effects were seen on genes related to serotonin synthesis/re-uptake/conversion to melatonin, gut tight junction, inflammation and circadian rhythm with different digesta and fermenta from the four treatments. These indicate potential effects of the substrates and the microbially generated organic acid and bioamine metabolites on intestinal functions that have physiological relevance. Further studies are required to confirm the potential bioaminergic effects of gut microbiota-kiwifruit interactions.
Collapse
|
7
|
Buijs RM, Guzmán Ruiz MA, Méndez Hernández R, Rodríguez Cortés B. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Auton Neurosci 2019; 218:43-50. [PMID: 30890347 DOI: 10.1016/j.autneu.2019.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
The suprachiasmatic nucleus (SCN) is responsible for determining circadian variations in physiological setpoints. The SCN achieves such control through projections to different target structures within and outside the hypothalamus. Thus the SCN prepares the physiology of the body every 24 h via hormones and autonomic nervous system (ANS), to coming changes in behavior. Resulting rhythms in hormones and ANS activity transmit a precise message to selective organs, adapting their sensitivity to coming hormones, metabolites or other essentials. Thus the SCN as autonomous clock gives rhythm to physiological processes. However when the body is challenged by infections, low or high temperature, food shortage or excess: physiological setpoints need to be changed. For example, under fasting conditions, setpoints for body temperature and glucose levels are lowered at the beginning of the sleep (inactive) phase. However, starting the active phase, a normal increase in glucose and temperature levels take place to support activities associated with the acquisition of food. Thus, the SCN adjusts physiological setpoints in agreement with time of the day and according to challenges faced by the body. The SCN is enabled to do this by receiving extensive input from brain areas involved in sensing the condition of the body. Therefore, when the body receives stimuli contradicting normal physiology, such as eating or activity during the inactive period, this information reaches the SCN, adapting its output to correct this disbalance. As consequence frequent violations of the SCN message, such as by shift work or night eating, will result in development of disease.
Collapse
Affiliation(s)
- Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico.
| | - Mara A Guzmán Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Rebeca Méndez Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| | - Betty Rodríguez Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, PC 04510 Mexico D.F., Mexico
| |
Collapse
|
8
|
Salt-induced Na+/K+-ATPase-α/β expression involves soluble adenylyl cyclase in endothelial cells. Pflugers Arch 2017; 469:1401-1412. [DOI: 10.1007/s00424-017-1999-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022]
|
9
|
Westphal N, Kleene R, Lutz D, Theis T, Schachner M. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain. Mol Cell Neurosci 2016; 74:114-27. [PMID: 27236020 DOI: 10.1016/j.mcn.2016.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023] Open
Abstract
In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm.
Collapse
Affiliation(s)
- Nina Westphal
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany; Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Thomas Theis
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA; Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China.
| |
Collapse
|
10
|
Carter SJ, Durrington HJ, Gibbs JE, Blaikley J, Loudon AS, Ray DW, Sabroe I. A matter of time: study of circadian clocks and their role in inflammation. J Leukoc Biol 2016; 99:549-60. [PMID: 26856993 DOI: 10.1189/jlb.3ru1015-451r] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
Circadian rhythms regulate changes in physiology, allowing organisms to respond to predictable environmental demands varying over a 24 h period. A growing body of evidence supports a key role for the circadian clock in the regulation of immune functions and inflammatory responses, which influence the understanding of infections and inflammatory diseases and their treatment. A variety of experimental methods have been used to assess the complex bidirectional crosstalk between the circadian clock and inflammation. In this review, we summarize the organization of the molecular clock, experimental methods used to study circadian rhythms, and both the inflammatory and immune consequences of circadian disturbance.
Collapse
Affiliation(s)
- Stuart J Carter
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hannah J Durrington
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Julie E Gibbs
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John Blaikley
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Andrew S Loudon
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David W Ray
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Sabroe
- *Department of Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry, and Health, University of Sheffield, United Kingdom; Faculty of Medical and Human Sciences, Institute of Human Development, Manchester, United Kingdom; and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Clock gene expression in different synovial cells of patients with rheumatoid arthritis and osteoarthritis. Acta Histochem 2014; 116:1199-207. [PMID: 25109449 DOI: 10.1016/j.acthis.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
Abstract
Patients with rheumatoid arthritis (RA) show modulated circadian rhythms of inflammatory cytokines and cortisol, which may be associated with a modified expression of clock genes. The expression of major clock genes was previously studied in synovial tissues and fibroblasts of patients with RA and osteoarthritis (OA). We therefore especially aimed to examine the localization of clock genes at the cellular level in synovial tissue. Furthermore we were interested in studying the expression of the D site of albumin promoter (albumin D-box) binding protein (DBP) at the immunohistochemical level in human samples. Methods used include the in situ expression of the clock genes Brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal 1), Circadian Locomotor Output Cycles Kaput (Clock), Period 1 and 2 (Per 1 and Per 2), and DBP was examined by immunohistochemistry in synovial tissues of patients with RA or OA. Additionally, expression profiles of different clock genes were determined over 24h by real time PCR in synovial fibroblasts (SFs) after a 2h serum shock or TNF-α. Results show that all clock genes investigated were found to be expressed both in RA and OA synovial tissues. Double staining against cell specific markers revealed that clock proteins were especially seen in macrophages, SFs and B-lymphocytes. Cell counting showed that clock proteins were found in approximately 5-20% of cells. Additionally, preliminary cell culture experiments showed that TNF-α treatment resulted in differential 24h expression profiles between RA and OA samples and also compared to the results obtained from the serum shock experiments. From our study we conclude that the major clock genes, including DBP, are expressed in samples from RA and OA patients, especially in macrophages and synovial fibroblasts, but also in B-lymphocytes. Preliminary experiments suggest that TNF-α seems to be able to modify clock gene expression in synovial fibroblasts.
Collapse
|
12
|
Uth K, Sleigh R. Deregulation of the circadian clock constitutes a significant factor in tumorigenesis: a clockwork cancer. Part I: clocks and clocking machinery. BIOTECHNOL BIOTEC EQ 2014; 28:176-183. [PMID: 26019503 PMCID: PMC4434034 DOI: 10.1080/13102818.2014.915155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022] Open
Abstract
Many physiological processes occur in a rhythmic fashion, consistent with a 24-h cycle. The central timing of the day/night rhythm is set by a master clock, located in the suprachiasmatic nucleus (a tiny region in the hypothalamus), but peripheral clocks exist in different tissues, adjustable by cues other than light (temperature, food, hormone stimulation, etc.), functioning autonomously to the master clock. Presence of unrepaired DNA damage may adjust the circadian clock so that the phase in which checking for damage and DNA repair normally occurs is advanced or extended. The expression of many of the genes coding for proteins functioning in DNA damage-associated response pathways and DNA repair is directly or indirectly regulated by the core clock proteins. Setting up the normal rhythm of the circadian cycle also involves oscillating changes in the chromatin structure, allowing differential activation of various chromatin domains within the 24-h cycle.
Collapse
Affiliation(s)
- Kristin Uth
- Centre for Molecular and Cellular Biosensor Research (CMCBR), Abertay University , Dundee , Scotland , UK
| | - Roger Sleigh
- Centre for Molecular and Cellular Biosensor Research (CMCBR), Abertay University , Dundee , Scotland , UK
| |
Collapse
|
13
|
Hardeland R, Madrid JA, Tan DX, Reiter RJ. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 2012; 52:139-66. [PMID: 22034907 DOI: 10.1111/j.1600-079x.2011.00934.x] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence is accumulating regarding the importance of circadian core oscillators, several associated factors, and melatonin signaling in the maintenance of health. Dysfunction of endogenous clocks, melatonin receptor polymorphisms, age- and disease-associated declines of melatonin likely contribute to numerous diseases including cancer, metabolic syndrome, diabetes type 2, hypertension, and several mood and cognitive disorders. Consequences of gene silencing, overexpression, gene polymorphisms, and deviant expression levels in diseases are summarized. The circadian system is a complex network of central and peripheral oscillators, some of them being relatively independent of the pacemaker, the suprachiasmatic nucleus. Actions of melatonin on peripheral oscillators are poorly understood. Various lines of evidence indicate that these clocks are also influenced or phase-reset by melatonin. This includes phase differences of core oscillator gene expression under impaired melatonin signaling, effects of melatonin and melatonin receptor knockouts on oscillator mRNAs or proteins. Cross-connections between melatonin signaling pathways and oscillator proteins, including associated factors, are discussed in this review. The high complexity of the multioscillator system comprises alternate or parallel oscillators based on orthologs and paralogs of the core components and a high number of associated factors with varying tissue-specific importance, which offers numerous possibilities for interactions with melatonin. It is an aim of this review to stimulate research on melatonin signaling in peripheral tissues. This should not be restricted to primary signal molecules but rather include various secondarily connected pathways and discriminate between direct effects of the pineal indoleamine at the target organ and others mediated by modulation of oscillators.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany.
| | | | | | | |
Collapse
|
14
|
Survival of exfoliated epithelial cells: a delicate balance between anoikis and apoptosis. J Biomed Biotechnol 2011; 2011:534139. [PMID: 22131811 PMCID: PMC3205804 DOI: 10.1155/2011/534139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/22/2011] [Indexed: 01/21/2023] Open
Abstract
The recovery of exfoliated cells from biological fluids is a noninvasive technology which is in high demand in the field of translational research. Exfoliated epithelial cells can be isolated from several body fluids (i.e., breast milk, urines, and digestives fluids) as a cellular mixture (senescent, apoptotic, proliferative, or quiescent cells). The most intriguing are quiescent cells which can be used to derive primary cultures indicating that some phenotypes retain clonogenic potentials. Such exfoliated cells are believed to enter rapidly in anoikis after exfoliation. Anoikis can be considered as an autophagic state promoting epithelial cell survival after a timely loss of contact with extracellular matrix and cell neighbors. This paper presents current understanding of exfoliation along with the influence of methodology on the type of gastrointestinal epithelial cells isolated and, finally, speculates on the balance between anoikis and apoptosis to explain the survival of gastrointestinal epithelial cells in the environment.
Collapse
|
15
|
Campbell SE, Musich PR, Whaley SG, Stimmel JB, Leesnitzer LM, Dessus-Babus S, Duffourc M, Stone W, Newman RA, Yang P, Krishnan K. Gamma Tocopherol Upregulates the Expression of 15-S-HETE and Induces Growth Arrest Through a PPAR Gamma-Dependent Mechanism in PC-3 Human Prostate Cancer Cells. Nutr Cancer 2009; 61:649-62. [DOI: 10.1080/01635580902825654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat 2009; 120:663-9. [PMID: 19649706 DOI: 10.1007/s10549-009-0484-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Mounting evidence suggests that neuronal PAS domain protein 2 (NPAS2) and other circadian genes are involved in tumorigenesis and tumor growth, possibly through their control of cancer-related biologic pathways. A missense polymorphism in NPAS2 (Ala394Thr) has been shown to be associated with risk of human tumors including breast cancer. The current study further examined the prognostic significance of NPAS2 in breast cancer by genotyping the Ala394Thr polymorphism and measuring NPAS2 expression. DNA extracted from 348 breast cancer tissue samples was analyzed for NPAS2 genotype using the TaqMan allelic discrimination assay. Of these, 287 also had total RNA available for use in real-time PCR assays to determine NPAS2 expression. NPAS2 genotypes and expression levels were analyzed for associations with prognostic outcomes, as well as correlations with clinical characteristics. A high level of NPAS2 expression was strongly associated with improved disease free survival (AHR = 0.43, 95% CI: 0.21-0.86, P trend = 0.022) and overall survival (AHR = 0.42, 95% CI: 0.19-0.96, P trend = 0.036). In addition, there was a borderline, but nonsignificant association between the NPAS2 genotype corresponding to Thr394Thr and disease free survival (AHR = 1.82, 95% CI: 0.96-3.46). The Ala/Ala, Ala/Thr, and Thr/Thr genotypes were also differentially distributed by tumor severity, as measured by TNM classification (chi (2) (6df, N = 344) = 14.96, P = 0.020). These findings provide the first evidence suggesting prognostic significance of the circadian gene NPAS2 in breast cancer.
Collapse
|
17
|
Chalmers JA, Martino TA, Tata N, Ralph MR, Sole MJ, Belsham DD. Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). Am J Physiol Regul Integr Comp Physiol 2008; 295:R1529-38. [DOI: 10.1152/ajpregu.90572.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian system in mammals is a hierarchy of oscillators throughout the organism that are coordinated by the circadian clock in the hypothalamic suprachiasmatic nucleus. Peripheral clocks act to integrate time-of-day information from neural or hormonal signals, regulating gene expression, and, subsequently, organ physiology. However, the mechanisms by which the central clock communicates with peripheral oscillators are not understood and are likely tissue specific. In this study, we establish a mouse vascular cell model suitable for investigations of these mechanisms at a molecular level. Using the immortalized vascular smooth muscle cell line Movas-1, we determined that these cells express the circadian clock machinery with robust rhythms in mRNA expression over a 36-h period after serum shock synchronization. Furthermore, norepinephrine and forskolin were able to synchronize circadian rhythms in bmal1. With synchronization, we observed cycling of specific genes, including the tissue inhibitor of metalloproteinase 1 and 3 ( timp1, timp3), collagen 3a1 ( col3a1), transgelin 1 ( sm22α), and calponin 1 ( cnn1). Diurnal expression of these genes was also found in vivo in mouse aortic tissue, using microarray and real-time RT-PCR analysis. Both of these revealed ultradian rhythms in genes similar to the cycling observed in Movas-1 in vitro. These findings highlight the cyclical nature of structurally important genes in the vasculature that is similar both in vivo and in vitro. This study establishes the Movas-1 cells as a novel cell model from which to further investigate the molecular mechanisms of clock regulation in the vasculature.
Collapse
|
18
|
Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes. J Mol Neurosci 2008; 36:132-40. [DOI: 10.1007/s12031-008-9063-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/05/2008] [Indexed: 11/26/2022]
|
19
|
Abstract
The mammalian genome encodes at least a dozen of genes directly involved in the regulation of the feedback loops constituting the circadian clock. The circadian system is built up on a multitude of oscillators organized according to a hierarchical model in which neurons of the suprachiasmatic nuclei of the hypothalamus may drive the central circadian clock and all the other somatic cells may possess the molecular components allowing tissues and organs to constitute peripheral clocks. Suprachiasmatic neurons are driving the central circadian clock which is reset by lighting cues captured and integrated by the melanopsin cells of the retina and define the daily rhythms of locomotor activity and associated physiological regulatory pathways like feeding and metabolism. This central clock entrains peripheral clocks which can be synchronized by non-photic environmental cues and uncoupled from the central one depending on the nature and the strength of the circadian signal. The human circadian clock and its functioning in central or peripheral tissues are currently being explored to increase the therapeutic efficacy of timed administration of drugs or radiation, and to offer better advice on lighting and meal timing useful for frequent travelers suffering from jet lag and for night workers' comfort. However, the molecular mechanism driving and coordinating the central and peripheral clocks through a wide range of synchronizers (lighting, feeding, physical or social activities) remains a mystery.
Collapse
Affiliation(s)
- Lissia Pardini
- CRNH de Nantes, INRA-PHAN (UMR 1280), Rue de la Géraudière, BP 71627, 44316 Nantes Cedex, France
| | | |
Collapse
|