1
|
Hoseini SM, Montazeri F. The influence of cell source on the senescence of human mesenchymal stem/stromal cells. Hum Cell 2025; 38:87. [PMID: 40221541 DOI: 10.1007/s13577-025-01213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
While mesenchymal stem/stromal cells (MSCs) exhibit the ability to self-renew, they are not immortal; they eventually reach a point of irreversible growth cessation and functional deterioration following a limited series of population doublings, referred to as replicative senescence. When evaluated according to the criteria set by the International Society for Cell Therapy (ISCT), MSCs show significant differences in their senescence patterns and other characteristics related to their phenotype and function. These differences are attributed to the source of the MSCs and the conditions in which they are grown. MSCs derived from fetal or adult sources have variations in their genome stability, as well as in the expression and epigenetic profile of the cells, which in turn affects their secretome. Understanding the key factors of MSC senescence based on cell source can help to develop effective strategies for regulating senescence and improving the therapeutic potential.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, No. 1. Safaeyeh. Bou-Al Ave., Yazd, 8916877391, Iran.
| |
Collapse
|
2
|
Akerman AW, Alexander KC, Caranasos TG, Ikonomidis JS. Therapeutic potential of mesenchymal stem cells and their secreted extracellular vesicles in thoracic aortic aneurysm disease. J Thorac Cardiovasc Surg 2024; 167:89-93.e1. [PMID: 37084818 PMCID: PMC10882625 DOI: 10.1016/j.jtcvs.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Adam W Akerman
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Kyle C Alexander
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - Thomas G Caranasos
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC
| | - John S Ikonomidis
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina-Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
3
|
Gao C, Xu YJ, Meng ZX, Gu S, Zhang L, Zheng L. BMSC-Derived Exosomes Carrying lncRNA-ZFAS1 Alleviate Pulmonary Ischemia/Reperfusion Injury by UPF1-Mediated mRNA Decay of FOXD1. Mol Neurobiol 2023; 60:2379-2396. [PMID: 36652050 DOI: 10.1007/s12035-022-03129-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) exert protective effects against pulmonary ischemia/reperfusion (I/R) injury; however, the potential mechanism involved in their protective ability remains unclear. Thus, this study aimed to explore the function and underlying mechanism of BMSC-derived exosomal lncRNA-ZFAS1 in pulmonary I/R injury. Pulmonary I/R injury models were established in mice and hypoxia/reoxygenation (H/R)-exposed primary mouse lung microvascular endothelial cells (LMECs). Exosomes were extracted from BMSCs. Target molecule expression was assessed by qRT-PCR and Western blotting. Pathological changes in the lungs, pulmonary edema, apoptosis, pro-inflammatory cytokine levels, SOD, MPO activities, and MDA level were measured. The proliferation, apoptosis, and migration of LMECs were detected by CCK-8, EdU staining, flow cytometry, and scratch assay. Dual-luciferase reporter assay, RNA pull-down, RIP, and ChIP assays were performed to validate the molecular interaction. In the mouse model of pulmonary I/R injury, BMSC-Exos treatment relieved lung pathological injury, reduced lung W/D weight ratio, and restrained apoptosis and inflammation, whereas exosomal ZFAS1 silencing abolished these beneficial effects. In addition, the proliferation, migration inhibition, apoptosis, and inflammation in H/R-exposed LMECs were repressed by BMSC-derived exosomal ZFAS1. Mechanistically, ZFAS1 contributed to FOXD1 mRNA decay via interaction with UPF1, thereby leading to Gal-3 inactivation. Furthermore, FOXD1 depletion strengthened the weakened protective effect of ZFAS1-silenced BMSC-Exos on pulmonary I/R injury. ZFAS1 delivered by BMSC-Exos results in FOXD1 mRNA decay and subsequent Gal-3 inactivation via direct interaction with UPF1, thereby attenuating pulmonary I/R injury.
Collapse
Affiliation(s)
- Cao Gao
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Yan-Jie Xu
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Zhi-Xiu Meng
- Departments of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Shuang Gu
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China
| | - Liang Zheng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Soochow University, No. 185, Juqian Road, Changzhou, 213000, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Harness EM, Mohamad-Fauzi N, Murray JD. MSC therapy in livestock models. Transl Anim Sci 2022; 6:txac012. [PMID: 35356233 PMCID: PMC8962450 DOI: 10.1093/tas/txac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.
Collapse
Affiliation(s)
- E M Harness
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
| | - N Mohamad-Fauzi
- Institute of Biological Sciences, Faculty of Science
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, MALAYSIA
| | - J D Murray
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
- Department of Population Health and Reproduction, University of California, Davis, One Shields Ave, Davis, CA, USA
| |
Collapse
|
6
|
Zhang C, Lin Y, Zhang K, Meng L, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic functions of mesenchymal stem cells for angiogenesis. Stem Cell Res Ther 2021; 12:456. [PMID: 34384486 PMCID: PMC8359078 DOI: 10.1186/s13287-021-02519-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. METHODS We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. RESULTS Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSCGDF11). After exposed to hypoxia and serum deprivation for 48 h, MSCGDF11 were significantly better in viability than control MSCs (MSCvector). MSCGDF11 also had higher mobility and better angiogenic paracrine effects. The cytokine antibody array showed more angiogenic cytokines in the conditioned medium of MSCGDF11 than that of MSCvector, such as epidermal growth factor, platelet-derived growth factor-BB, placenta growth factor. When MSCs (1 × 106 cells in 50 μl) were injected into ischemic hindlimb of mice after femoral artery ligation, MSCGDF11 had higher retention rate in the muscle than control MSCs. Injection of MSCGDF11 resulted in better blood reperfusion and limb salvage than that of control MSCs after 14 days. Significantly more CD31+ endothelial cells and α-SMA + smooth muscle cells were detected in the ischemic muscles that received MSCGDF11. The effects of GDF11 were through activating TGF-β receptor and PI3K/Akt signaling pathway. CONCLUSION Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Collapse
Affiliation(s)
- Chi Zhang
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Yinuo Lin
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Ke Zhang
- grid.13402.340000 0004 1759 700XDepartment of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang Province China
| | - Luyang Meng
- grid.440280.aDepartment of Vascular Surgery, Hangzhou Third People’s Hospital, Hangzhou, 310009 Zhejiang Province China
| | - Xinyang Hu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Jinghai Chen
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Wei Zhu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Hong Yu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| |
Collapse
|
7
|
Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73:101600. [PMID: 34371292 DOI: 10.1016/j.tice.2021.101600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Due to delicate its structure, the cornea is susceptible to physical, chemical, and genetic damages. Corneal transplantation is the main treatment for serious corneal damage, but it faces significant challenges, including donor shortages and severe complications. In recent years, cell therapy is suggested as a novel alternative method for corneal regeneration. Regarding the unique characteristics of Mesenchymal stem cells including the potential to differentiate into discrete cell types, secretion of growth factors, mobilization potency, and availability from different sources; special attention has been paid to these cells in corneal engineering. Differentiation of MSCs into specialized corneal cells such as keratocytes, epithelial and endothelial cells is reported. Potential for Treatment of keratitis, reducing inflammation, and inhibition of neovascularization by MSCs, introducing them as novel agents for corneal repairing. In this review, various types of MSCs used to treat corneal injuries as well as their potential for restoring different corneal layers was investigated.
Collapse
|
8
|
Han Y, Jia B, Lian M, Sun B, Wu Q, Sun B, Qiao Z, Dai K. High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater 2021; 6:2173-2186. [PMID: 33511315 PMCID: PMC7814104 DOI: 10.1016/j.bioactmat.2020.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 02/09/2023] Open
Abstract
Articular cartilage injury is a common disease in the field of orthopedics. Because cartilage has poor self-repairing ability, medical intervention is needed. Using melt electro-writing (MEW) technology, tissue engineering scaffolds with high porosity and high precision can be prepared. However, ordinary materials, especially natural polymer materials, are difficult to print. In this study, gelatin was mixed with poly (lactic-co-glycolic acid) to prepare high-concentration and high-viscosity printer ink, which had good printability and formability. A composite scaffold with full-layer TGF-β1 loading mixed with hydroxyapatite was prepared, and the scaffold was implanted at the cartilage injury site; microfracture surgery was conducted to induce the mesenchyme in the bone marrow. Quality stem cells thereby promoted the repair of damaged cartilage. In summary, this study developed a novel printing method, explored the molding conditions based on MEW printing ink, and constructed a bioactive cartilage repair scaffold. The scaffold can use autologous bone marrow mesenchymal stem cells and induce their differentiation to promote cartilage repair.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bo Jia
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Binbin Sun
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qiang Wu
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Benlin Sun
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhiguang Qiao
- Department of Orthopedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Kerong Dai
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
9
|
Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, Dai K. Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics 2020; 10:10214-10230. [PMID: 32929344 PMCID: PMC7481411 DOI: 10.7150/thno.47909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Articular cartilage injury is quite common. However, post-injury cartilage repair is challenging and often requires medical intervention, which can be aided by 3D printed tissue engineering scaffolds. Specifically, the high accuracy of Melt Electro-Writing (MEW) technology facilitates the printing of scaffolds that imitate the structure and composition of natural cartilage to promote repair. Methods: MEW and Inkjet printing technology was employed to manufacture a composite scaffold that was then implanted into a cartilage injury site through microfracture surgery. While printing polycaprolactone (PCL) or PCL/hydroxyapatite (HA) scaffolds, cytokine-containing microspheres were sprayed alternately to form multiple layers containing transforming growth factor-β1 and bone morphogenetic protein-7 (surface layer), insulin-like growth factor-1 (middle layer), and HA (deep layer). Results: The composite biological scaffold was conducive to adhesion, proliferation, and differentiation of mesenchymal stem cells recruited from the bone marrow and blood. Meanwhile, the environmental differences between the scaffold's layers contributed to the regional heterogeneity of chondrocytes and secreted proteins to promote functional cartilage regeneration. The biological effect of the composite scaffold was validated both in vitro and in vivo. Conclusion: A cartilage repair scaffold was established with high precision as well as promising mechanical and biological properties. This scaffold can promote the repair of cartilage injury by using, and inducing the differentiation and expression of, autologous bone marrow mesenchymal stem cells.
Collapse
|
10
|
Zhang C, Lin Y, Liu Q, He J, Xiang P, Wang D, Hu X, Chen J, Zhu W, Yu H. Growth differentiation factor 11 promotes differentiation of MSCs into endothelial-like cells for angiogenesis. J Cell Mol Med 2020; 24:8703-8717. [PMID: 32588524 PMCID: PMC7412688 DOI: 10.1111/jcmm.15502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ-R/ERK/EIF4E pathway.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Pingping Xiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci 2020; 30:839-855. [PMID: 31203262 DOI: 10.1515/revneuro-2019-0002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of injury-related mortality and morbidity in the USA and around the world. The survivors may suffer from cognitive and memory deficits, vision and hearing loss, movement disorders, and different psychological problems. The primary insult causes neuronal damage and activates astrocytes and microglia which evokes immune responses causing further damage to the brain. Clinical trials of drugs to recover the neuronal loss are not very successful. Regenerative approaches for TBI using mesenchymal stem cells (MSCs) seem promising. Results of preclinical research have shown that transplantation of MSCs reduced secondary neurodegeneration and neuroinflammation, promoted neurogenesis and angiogenesis, and improved functional outcome in the experimental animals. The functional improvement is not necessarily related to cell engraftment; rather, immunomodulation by molecular factors secreted by MSCs is responsible for the beneficial effects of this therapy. However, MSC therapy has a few drawbacks including tumor formation, which can be avoided by the use of MSC-derived exosomes. This review has focused on the research works published in the field of regenerative therapy using MSCs after TBI and its future direction.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA.,Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
12
|
Gerace D, Martiniello-Wilks R, Habib R, Simpson AM. Luciferase-based reporting of suicide gene activity in murine mesenchymal stem cells. PLoS One 2019; 14:e0220013. [PMID: 31318955 PMCID: PMC6638968 DOI: 10.1371/journal.pone.0220013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Due to their ease of isolation, gene modification and tumor-homing properties, mesenchymal stem cells (MSCs) are an attractive cellular vehicle for the delivery of toxic suicide genes to a variety of cancers in pre-clinical models. In addition, the incorporation of suicide genes in stem cell-derived cell replacement therapies improves their safety profile by permitting graft destruction in the event of unexpected tumorigeneses or unwanted differentiation. Due to the functional requirement of ATP for the Firefly luciferase gene Luc2 to produce light, luciferase-based reporting of cytotoxicity can be engineered into potential cell therapies. Consequently, we nucleofected mammalian expression plasmids containing both the Luc2 and the yeast fusion cytosine deaminase uracil phosphoribosyltransferase (CDUPRT) genes for expression in murine MSCs to assess luciferase as a reporter of suicide gene cytotoxicity, and MSC as vehicles of suicide gene therapy. In vitro bioluminescence imaging (BLI) showed that following the addition of the non-toxic prodrug fluorocytosine (5-FC), CDUPRT-expressing MSCs displayed enhanced cytotoxicity in comparison to Luc2 reporter MSC controls. This study demonstrates the utility of luciferase as a reporter of CDUPRT-mediated cytotoxicity in murine MSC using BLI.
Collapse
Affiliation(s)
- Dario Gerace
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Rosetta Martiniello-Wilks
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
- Translational Cancer Research Group, University of Technology Sydney, Sydney, Australia
| | - Rosaline Habib
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
| | - Ann Margaret Simpson
- The School of Life Sciences and the Centre for Health Technologies, University of Technology Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
13
|
High-Efficiency Lentiviral Gene Modification of Primary Murine Bone-Marrow Mesenchymal Stem Cells. Methods Mol Biol 2019. [PMID: 31273744 DOI: 10.1007/978-1-4939-9631-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Lentiviral vectors are the method of choice for stable gene modification of a variety of cell types. However, the efficiency with which they transduce target cells varies significantly, in particular their typically poor capacity to transduce primary stem cells. Here we describe the isolation and enrichment of murine bone-marrow mesenchymal stem cells (MSCs) via fluorescence-activated cell sorting (FACS); the cloning, production, and concentration of high-titer second generation lentiviral vectors via combined tangential flow filtration (TFF) and ultracentrifugation; and the subsequent high-efficiency gene modification of MSCs into insulin-producing cells via overexpression of the furin-cleavable human insulin (INS-FUR) gene.
Collapse
|
14
|
Adhikari R, Chen C, Waters E, West FD, Kim WK. Isolation and Differentiation of Mesenchymal Stem Cells From Broiler Chicken Compact Bones. Front Physiol 2019; 9:1892. [PMID: 30723419 PMCID: PMC6350342 DOI: 10.3389/fphys.2018.01892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Chicken mesenchymal stem cells (MSCs) can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways and to identify unique bioactive nutrients and molecules which can promote or inhibit these pathways. MSCs could also be used as a model to study various developmental, physiological, and therapeutic processes in avian and other species. MSCs are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. MSCs have been isolated from numerous sources including human, mouse, rabbit, and chicken with potential clinical and agricultural applications. MSCs from chicken compact bones have not been isolated and characterized yet. In this study, MSCs were isolated from compact bones of the femur and tibia of day-old male broiler chicks to investigate the biological characteristics of the isolated cells. Isolated cells took 8–10 days to expand, demonstrated a monolayer growth pattern and were plastic adherent. Putative MSCs were spindle-shaped with elongated ends and showed rapid proliferation. MSCs demonstrated osteoblastic, adipocytic, and myogenic differentiation when induced with specific differentiation media. Cell surface markers for MSCs such as CD90, CD105, CD73, CD44 were detected positive and CD31, CD34, and CD45 cells were detected negative by PCR assay. The results suggest that MSCs isolated from broiler compact bones (cBMSCs) possess similar biological characteristics as MSCs isolated from other chicken tissue sources.
Collapse
Affiliation(s)
- Roshan Adhikari
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Elizabeth Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.,Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, Tan JJ. Guided evaluation and standardisation of mesenchymal stem cell culture conditions to generate conditioned medium favourable to cardiac c-kit cell growth. Cell Tissue Res 2018; 375:383-396. [PMID: 30232595 DOI: 10.1007/s00441-018-2918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
Collapse
Affiliation(s)
- Wai Hoe Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Mimi Zulaikha Umar Fuaad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Siti Maisura Azmi
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yin Yee Leong
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Angela Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
16
|
Jia Z, Liang Y, Xu X, Li X, Liu Q, Ou Y, Duan L, Zhu W, Lu W, Xiong J, Wang D. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 2017; 42:262-271. [PMID: 29068101 DOI: 10.1002/cbin.10903] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSCs) are the primary source of cells used for cell-based therapy in tissue engineering. MSCs are found in synovial fluid, a source that could be conveniently used for cartilage tissue engineering. However, the purification and characterization of SF-MSCs has been poorly documented in the literature. Here, we outline an easy-to-perform approach for the isolation and culture of MSCs derived from human synovial fluid (hSF-MSCs). We have successfully purified hSF-MSCs using magnetic-activated cell sorting (MACS) using the MSC surface marker, CD90. Purified SF-MSCs demonstrate significant renewal capacity following several passages in culture. Furthermore, we demonstrated that MACS-sorted CD90+ cells could differentiated into osteoblasts, adipocytes, and chondrocytes in vitro. In addition, we show that these cells can generate cartilage tissue in micromass culture as well. This study demonstrates that MACS is a useful tool that can be used for the purification of hSF-MSCs from synovial fluid. The proliferation properties and ability to differentiate into chondrocytes make these hSF-MSCs a promising source of stem cells for applications in cartilage repair.
Collapse
Affiliation(s)
- Zhaofeng Jia
- Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China.,Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Yujie Liang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Shenzhen Key Laboratory for Psychological Healthcare, Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong Province, China
| | - Xiao Xu
- Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China.,Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Xingfu Li
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Qisong Liu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Yangkan Ou
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Weimin Zhu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Wei Lu
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| | - Daping Wang
- Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China.,Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Department of Orthopedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, Guangdong Province, China.,Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen 518035, Guangdong Province, China
| |
Collapse
|
17
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
18
|
Hosseini S, Shamekhi MA, Jahangir S, Bagheri F, Eslaminejad MB. The Robust Potential of Mesenchymal Stem Cell-Loaded Constructs for Hard Tissue Regeneration After Cancer Removal. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1084:17-43. [DOI: 10.1007/5584_2017_131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Kim DR, Lee JE, Shim KJ, Cho JH, Lee HC, Park SK, Chang MS. Effects of herbal Epimedium on the improvement of bone metabolic disorder through the induction of osteogenic differentiation from bone marrow-derived mesenchymal stem cells. Mol Med Rep 2016; 15:125-130. [PMID: 27959402 PMCID: PMC5355742 DOI: 10.3892/mmr.2016.6015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Herbal Epimedium (HE) has been commonly used as a tonic, antirheumatic agent and in the treatment of bone-associated diseases including osteoporosis. Treatment for osteoporosis is important to increase bone mass density and maintain to balance of bone remodeling. The present study was performed to investigate the effects of HE on mouse bone marrow mesenchymal stem cell (mBMMSC) proliferation and osteogenic differentiation, using MTT assays, proliferating cell nuclear antigen (PCNA) detection and apoptosis and differentiation assays. HE was demonstrated to inhibit the proliferation of mBMMSCs up to 45.43±3.33% and to decrease the level of PCNA expression compared with untreated cells. HE also induced late apoptosis at 24 and 48 h after treatment up to 71.93 and 67.03%, respectively, while only 14.93% of untreated cells exhibited apoptosis. By contrast, HE induced differentiation of mBMMSCs into an osteogenic lineage at the beginning of three weeks after commencement of treatment. This suggested that HE is a candidate as an inducer of osteogenesis from bone marrow mesenchymal stem cells, and additionally has potential for use in the treatment of bone metabolic disorders such as osteoporosis.
Collapse
Affiliation(s)
- Do Rim Kim
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Eun Lee
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Jun Shim
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Hyoung Cho
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho Chul Lee
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong Kyu Park
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Karimi T, Barati D, Karaman O, Moeinzadeh S, Jabbari E. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr Biol (Camb) 2015; 7:112-27. [PMID: 25387395 DOI: 10.1039/c4ib00197d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Articular cartilage is organized into multiple zones including superficial, middle and calcified zones with distinct cellular and extracellular components to impart lubrication, compressive strength, and rigidity for load transmission to bone, respectively. During native cartilage tissue development, changes in biochemical, mechanical, and cellular factors direct the formation of stratified structure of articular cartilage. The objective of this work was to investigate the effect of combined gradients in cell density, matrix stiffness, and zone-specific growth factors on the zonal organization of articular cartilage. Human mesenchymal stem cells (hMSCs) were encapsulated in acrylate-functionalized lactide-chain-extended polyethylene glycol (SPELA) gels simulating cell density and stiffness of the superficial, middle and calcified zones. The cell-encapsulated gels were cultivated in a medium supplemented with growth factors specific to each zone and the expression of zone-specific markers was measured with incubation time. Encapsulation of 60 × 10(6) cells per mL hMSCs in a soft gel (80 kPa modulus) and cultivation with a combination of TGF-β1 (3 ng mL(-1)) and BMP-7 (100 ng mL(-1)) led to the expression of markers for the superficial zone. Conversely, encapsulation of 15 × 10(6) cells per mL hMSCs in a stiff gel (320 MPa modulus) and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and hydroxyapatite (3%) led to the expression of markers for the calcified zone. Further, encapsulation of 20 × 10(6) cells per mL hMSCs in a gel with 2.1 MPa modulus and cultivation with a combination of TGF-β1 (30 ng mL(-1)) and IGF-1 (100 ng mL(-1)) led to up-regulation of the middle zone markers. Results demonstrate that a developmental approach with gradients in cell density, matrix stiffness, and zone-specific growth factors can potentially regenerate zonal structure of the articular cartilage.
Collapse
Affiliation(s)
- Tahereh Karimi
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Swearingen Engineering Center, Rm 2C11, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
21
|
Mohamad-Fauzi N, Ross PJ, Maga EA, Murray JD. Impact of source tissue and ex vivo expansion on the characterization of goat mesenchymal stem cells. J Anim Sci Biotechnol 2015; 6:1. [PMID: 25838897 PMCID: PMC4382838 DOI: 10.1186/2049-1891-6-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats. RESULTS Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection. CONCLUSIONS Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.
Collapse
Affiliation(s)
- Nuradilla Mohamad-Fauzi
- Department of Animal Science, University of California, Davis, California 95616 USA ; Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California 95616 USA
| | - Elizabeth A Maga
- Department of Animal Science, University of California, Davis, California 95616 USA
| | - James D Murray
- Department of Animal Science, University of California, Davis, California 95616 USA ; Department of Population Health and Reproduction, University of California, Davis, California 95616 USA
| |
Collapse
|
22
|
An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat 2014; 3:26-33. [PMID: 30035037 PMCID: PMC5982388 DOI: 10.1016/j.jot.2014.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs) are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1) After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2) Our culture medium is not supplemented with any additional growth factor. (3) Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4) Our method has been carefully tested in several mouse strains and the results are reproducible. (5) We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.
Collapse
|
23
|
Brückner S, Tautenhahn HM, Winkler S, Stock P, Dollinger M, Christ B. A fat option for the pig: hepatocytic differentiated mesenchymal stem cells for translational research. Exp Cell Res 2013; 321:267-75. [PMID: 24200501 DOI: 10.1016/j.yexcr.2013.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 02/07/2023]
Abstract
STUDY BACKGROUND Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention in the pig model. METHODS Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. RESULTS MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. CONCLUSION The hepatocyte differentiation of porcine adipose tissue-derived MSC was shown for the first time yielding hepatocyte-like cells with specific functions similar in bone marrow and subcutaneous adipose tissue-derived MSC. That makes them good pre-clinical candidates for supportive approaches after liver resection in the pig.
Collapse
Affiliation(s)
- Sandra Brückner
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103, Germany.
| | - Hans-Michael Tautenhahn
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103, Germany; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103, Germany.
| | - Sandra Winkler
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103, Germany.
| | - Peggy Stock
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103, Germany.
| | - Matthias Dollinger
- University Hospital Ulm, First Department of Medicine, Albert-Einstein-Allee 23, Ulm D-89081, Germany.
| | - Bruno Christ
- University Hospital Leipzig, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Liebigstraße 21, Leipzig D-04103, Germany; TRM, Translational Centre for Regenerative Medicine, Philipp-Rosenthal-Str. 55, Leipzig D-04103, Germany.
| |
Collapse
|
24
|
Lei J, Hui D, Huang W, Liao Y, Yang L, Liu L, Zhang Q, Qi G, Song W, Zhang Y, Xiang AP, Zhou Q. Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells. Int J Biochem Cell Biol 2013; 45:2431-43. [PMID: 23911306 DOI: 10.1016/j.biocel.2013.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/13/2022]
Abstract
Although mesenchymal stromal cells (MSCs) have demonstrated great therapeutic potential, the heterogeneity of MSCs may be responsible for the incongruent data obtained in MSC-based preclinical studies and clinical trials. Here, four mouse clonal MSC lines, termed MSC1, MSC2, MSC3, and MSC4, were isolated and extensively characterized. MSC4 cells grew most rapidly and formed colonies of the largest size, whereas MSC3 cells exhibited the slowest growth and formed only a few tiny clusters. MSC4 cells could differentiate into adipocytes, osteoblasts, and chondrocytes in vitro, and more importantly, establish hematopoietic microenvironment in vivo; whereas the other lines displayed uni-adipogenic, osteo-chondrogenic, or non-differentiation potential. All lines were positive for Sca-1, CD106, and CD44; MSC4 was also positive for CD90.2. In terms of immunosuppressive capacity, MSC2, MSC3, and MSC4 cells exerted clear inhibitory effects on lymphocyte proliferation, whereas MSC1 did not. Further investigation revealed that the NO and not the PGE2 pathway may play a role in the different immunomodulatory effects of the cell lines. To clarify the molecular basis of this heterogeneity, we employed RNA sequencing to compare the gene expression profiles of the four subtypes, revealing a relationship between gene expression and variability in subtype function. This study provides novel information about the heterogeneity of MSCs and insight into the selection of optimal cell sources for therapeutic applications.
Collapse
Affiliation(s)
- Junxia Lei
- Center for Stem Cell Biology and Tissue Engineering, The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aconiti Lateralis Preparata Radix Activates the Proliferation of Mouse Bone Marrow Mesenchymal Stem Cells and Induces Osteogenic Lineage Differentiation through the Bone Morphogenetic Protein-2/Smad-Dependent Runx2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:586741. [PMID: 23983792 PMCID: PMC3745886 DOI: 10.1155/2013/586741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/01/2013] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells have the capacity for self-renewal and under appropriate stimulation give rise to osteogenic, adipogenic, and chondrogenic lineages. To advance the clinical use of stem cell therapy, such as stem cell transplantation, it is important to find substances that promote endogenous stem cell proliferation and differentiation. We investigated whether medicinal herbs have the potential to promote stem cell proliferation and differentiation, using a cell cycle analysis and differentiation assay. We found that Aconiti Lateralis Preparata Radix (ALR) promoted the proliferation rate of mouse bone marrow mesenchymal stem cells (mBMMSCs) up to 122.24% compared to untreated cells. Fluorescence-activated cell sorter analysis showed that the percentage of cells in the G2/M phase increased to 17.33% in ALR-treated cells compared to 5.65% in normal cells. Signaling pathway analysis indicated that this was mediated through the extracellular signal-regulated kinase 1/2 pathway. A differentiation assay showed that ALR induced differentiation of mBMMSCs into an osteogenic lineage 2 weeks after treatment, whereas traditional osteogenic induction medium treatment did not promote differentiation for 3 weeks. This osteogenic differentiation was signaled by the bone morphogenetic protein-2/Smad-dependent Runx2 pathway. We found that ALR could promote mBMMSC proliferation and differentiation into the osteogenic lineage.
Collapse
|
26
|
Effect of ex vivo culture conditions on immunosuppression by human mesenchymal stem cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:154919. [PMID: 23862134 PMCID: PMC3687591 DOI: 10.1155/2013/154919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/20/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023]
Abstract
A microarray analysis was performed to investigate whether ex vivo culture conditions affect the characteristics of MSCs. Gene expression profiles were mainly influenced by the level of cell confluence rather than initial seeding density. The analysis showed that 276 genes were upregulated and 230 genes downregulated in MSCs harvested at ~90% versus ~50% confluence (P < 0.05, FC > 2). The genes that were highly expressed in MSCs largely corresponded to chemotaxis, inflammation, and immune responses, indicating direct or indirect involvement in immunomodulatory functions. Specifically, PTGES and ULBP1 were up-regulated in MSCs harvested at high density. Treatment of MSCs with PTGES or ULBP1 siRNA reversed their inhibition of T-cell proliferation in vitro. The culture conditions such as cell confluence at harvest seem to be important for gene expression profile of MSCs; therefore, the results of this study may provide useful guidelines for the harvest of MSCs that can appropriately suppress the immune response.
Collapse
|
27
|
Ghasemzadeh-Hasankolaei M, Eslaminejad M, Batavani R, Sedighi-Gilani M. Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia 2012; 46:24-35. [DOI: 10.1111/and.12037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - M.B. Eslaminejad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| | - R. Batavani
- Department of Clinical Sciences; Faculty of Veterinary Medicine; Urmia University; Urmia Iran
| | - M. Sedighi-Gilani
- Department of Andrology; Reproductive Biomedicine Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| |
Collapse
|
28
|
An improved harvest and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells. J Biomed Biotechnol 2010; 2010:105940. [PMID: 21197440 PMCID: PMC3010643 DOI: 10.1155/2010/105940] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 01/14/2023] Open
Abstract
Compared to bone marrow (BM) derived mesenchymal stem cells (MSCs) from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs) is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F) assay showed that this modified isolation
method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs) are uniformly positive for stem cell antigen-1 (Sca-1), CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.
Collapse
|