1
|
Vertegel P, Milkin P, Murashko A, Parker M, Peranidze K, Emashova N, Minko S, Reukov V. Cell detachment: A review of techniques, challenges, and opportunities for advancing biomedical research and applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:50-68. [PMID: 40023326 DOI: 10.1016/j.pbiomolbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Culturing living cells outside the body is a complex process involving various techniques. Despite advances, harvesting cells remains challenging, especially in light of new emerging and scaled-up cell culture technologies. Enzymatic adherent cell harvesting is the most used and robust technology but can harm cells. Non-enzymatic detachment methods offer advantages but also present challenges. Thermo-responsive polymers require precise control of the molecular characteristics and thickness of the thermoresponsive films, which makes this method less robust and more expensive. This review highlights the importance of controlling harvested cell quality and its relationship to cell binding and detachment mechanisms. Many alternative methods have not been extensively analyzed, and their impact on cell quality beyond standard viability assays is not yet known. Developing robust cell harvesting methods for bioreactor microcarriers is a rapidly growing challenge as the cell manufacturing industry expands. Microcarriers with stimuli-responsive coatings face challenges similar to those observed for laboratory-scale cell dishes and bring an additional aspect of the need for microbead recycling consideration. All that together underlines the importance of the research in biomaterials and biotechnology for cell manufacturing.
Collapse
|
2
|
Kowalski WJ, Vatti S, Sakamoto T, Li W, Odutola SR, Liu C, Chen G, Boehm M, Mukouyama YS. In vivo transplantation of mammalian vascular organoids onto the chick chorioallantoic membrane reveals the formation of a hierarchical vascular network. Sci Rep 2025; 15:7150. [PMID: 40021912 PMCID: PMC11871353 DOI: 10.1038/s41598-025-91826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
The dynamic remodeling of the nascent vascular network into a mature hierarchy is essential for embryo survival. Cell behaviors and signaling mechanisms are often investigated with animal models and perfused microchannels, giving insights into this process. To support these studies and enrich our understanding, we demonstrate a complementary approach using vascular organoids. Organoids initially form a primitive endothelial plexus lined with NG2+/PDGFRβ+ mural cell progenitors containing immature pericytes, but there is no formation of large-diameter vessels covered with αSMA+ cells containing immature vascular smooth muscle cells (vSMCs). After transplantation to the chick chorioallantoic membrane, the network reorganizes into a branched architecture with large-diameter vessels covered by αSMA+ cells. We additionally show that blood flow from the host circulation perfuses the organoid. Compared with the developing skin vasculature in mouse embryos, organoids successfully recapitulate vascular morphogenesis, both in vitro and after transplantation. The model described here presents a further approach to enhance the study of vascular remodeling.
Collapse
Affiliation(s)
- William J Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shravani Vatti
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tyler Sakamoto
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Rose Odutola
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Harvard College, Cambridge, MA, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guibin Chen
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Heredero Berzal A, Wagstaff EL, ten Asbroek ALMA, ten Brink JB, Bergen AA, Boon CJF. The Analysis of Embryoid Body Formation and Its Role in Retinal Organoid Development. Int J Mol Sci 2024; 25:1444. [PMID: 38338722 PMCID: PMC10855324 DOI: 10.3390/ijms25031444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.
Collapse
Affiliation(s)
- Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Anneloor L. M. A. ten Asbroek
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Jacoline B. ten Brink
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
| | - Arthur A. Bergen
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Human Genetics, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.L.W.); (A.L.M.A.t.A.); (J.B.t.B.)
- Emma Center for Personalized Medicine, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam University Medical Center (UMC), University of Amsterdam (UvA), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden University, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Behnam M, Asadpour R, Topraggaleh TR, Hamali H. Improvement of post-thaw quality and fertilizing ability of bull spermatozoa using Rho kinase inhibitor in freezing extender. Front Vet Sci 2023; 10:1155048. [PMID: 37483290 PMCID: PMC10359164 DOI: 10.3389/fvets.2023.1155048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, it was hypothesized that the addition of an appropriate concentration of Y-27632 (a ROCK inhibitor) to the freezing extender prevents cryopreservation-induced apoptosis and improves embryonic development after in vitro fertilization (IVF). Semen samples were collected from five fertile Simmental bulls using an artificial vagina twice a week for 4 weeks. Selected samples were pooled and diluted with Tris-egg-yolk-glycerol (TEYG) extender containing different concentrations of Y-27632 (0, 10, 20, 30, and 40 μM) and then frozen in liquid nitrogen. After thawing, computer-assisted semen analysis (CASA), plasma membrane integrity, and acrosome intactness were evaluated in terms of morphological abnormalities, intracellular generation of reactive oxygen species (ROS), DNA fragmentation, phosphatidylserine (PS) externalization, and apoptotic-related gene expression. Finally, groups of frozen and thawed spermatozoa were used for bovine oocyte IVF. The results show that the semen extender at a concentration of 20 μM Y-27632 effectively improved total motility (TM), curvilinear velocity (VCL), as well as the plasma membrane and acrosome integrity compared to the control group (p < 0.05). Intracellular ROS levels were significantly (p < 0.05) lower in samples treated with 30 μM Y-27632 compared to the control specimen. Furthermore, supplementation of the semen extender with 20 μM Y-27632 resulted in more viable spermatozoa compared with the control group (p < 0.05). According to qRT-PCR results, the expression levels of BAX and CASPASE-9 genes in samples treated with 30 μM Y-27632 were significantly downregulated, while the expression of BCL2 was increased compared to the control (p < 0.05). The results of IVF demonstrated that the treatment of frozen-thawed spermatozoa with 20 μM Y-27632 increased blastocyst rates compared to the control group (p < 0.05). In conclusion, the addition of 20 μM Y-27632 into the freezing extender can improve the functionality and the fertilizing capacity of frozen spermatozoa due to its antioxidative and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mina Behnam
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tohid Rezaei Topraggaleh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Anatomical Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Hamali
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Different methods of detaching adherent cells and their effects on the cell surface expression of Fas receptor and Fas ligand. Sci Rep 2022; 12:5713. [PMID: 35383242 PMCID: PMC8983651 DOI: 10.1038/s41598-022-09605-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
In cell culture environment, some cells adhere firmly to the culture plates and may be vulnerable to cell detachment during passage. Therefore, it is important to harvest cells with a proper detaching method to maintain the viability of cells after detachment. Trypsinization is frequently used for cellular dissociation and detachment. However, most surface proteins and the extracellular matrix are degraded by enzymatic digestion. A mild cell detachment buffer, accutase, is recommended for the replacement of trypsin to dissociate adherent cells and thereby avoid cellular damage. In this study, we demonstrated that use of accutase for cellular detachment may compromise some surface proteins. Compared with ethylenediaminetetraacetic acid (EDTA)-based nonenzymatic cell dissociation buffers, accutase was associated with significant decreases in the surface Fas ligands and Fas receptors. Moreover, we found that accutase may be able to cleave surface Fas ligands into pieces. Our results also illustrated that surface proteins required 20 h to recover after accutase treatment. We demonstrated that using accutase to dissociate adherent cells compromised the expression of Fas ligands and Fas receptors on the cell surface. These findings indicate that it is important to choose suitable cell detachment buffers and allow cells to recover after detachment before experiments.
Collapse
|
6
|
Uhrig M, Ezquer F, Ezquer M. Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells. Cells 2022; 11:799. [PMID: 35269421 PMCID: PMC8909336 DOI: 10.3390/cells11050799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Achieving good cell recovery after cryopreservation is an essential process when working with induced pluripotent stem cells (iPSC). Optimized freezing and thawing methods are required for good cell attachment and survival. In this review, we concentrate on these two aspects, freezing and thawing, but also discuss further factors influencing cell recovery such as cell storage and transport. Whenever a problem occurs during the thawing process of iPSC, it is initially not clear what it is caused by, because there are many factors involved that can contribute to insufficient cell recovery. Thawing problems can usually be solved more quickly when a certain order of steps to be taken is followed. Under optimized conditions, iPSC should be ready for further experiments approximately 4-7 days after thawing and seeding. However, if the freezing and thawing protocols are not optimized, this time can increase up to 2-3 weeks, complicating any further experiments. Here, we suggest optimization steps and troubleshooting options for the freezing, thawing, and seeding of iPSC on feeder-free, Matrigel™-coated, cell culture plates whenever iPSC cannot be recovered in sufficient quality. This review applies to two-dimensional (2D) monolayer cell culture and to iPSC, passaged, frozen, and thawed as cell aggregates (clumps). Furthermore, we discuss usually less well-described factors such as the cell growth phase before freezing and the prevention of osmotic shock during thawing.
Collapse
Affiliation(s)
- Markus Uhrig
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| | | | - Marcelo Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile;
| |
Collapse
|
7
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
8
|
Saadeldin IM, Tukur HA, Aljumaah RS, Sindi RA. Rocking the Boat: The Decisive Roles of Rho Kinases During Oocyte, Blastocyst, and Stem Cell Development. Front Cell Dev Biol 2021; 8:616762. [PMID: 33505968 PMCID: PMC7829335 DOI: 10.3389/fcell.2020.616762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
The rho-associated coiled-coil-containing proteins (ROCKs or rho kinase) are effectors of the small rho-GTPase rhoA, which acts as a signaling molecule to regulate a variety of cellular processes, including cell proliferation, adhesion, polarity, cytokinesis, and survival. Owing to the multifunctionality of these kinases, an increasing number of studies focus on understanding the pleiotropic effects of the ROCK signaling pathway in the coordination and control of growth (proliferation, initiation, and progression), development (morphology and differentiation), and survival in many cell types. There is growing evidence that ROCKs actively phosphorylate several actin-binding proteins and intermediate filament proteins during oocyte cytokinesis, the preimplantation embryos as well as the stem cell development and differentiation. In this review, we focus on the participation of ROCK proteins in oocyte maturation, blastocyst formation, and stem cell development with a special focus on the selective targeting of ROCK isoforms, ROCK1, and ROCK2. The selective switching of cell fate through ROCK inhibition would provide a novel paradigm for in vitro oocyte maturation, experimental embryology, and clinical applications.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S Aljumaah
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramya A Sindi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2019; 2:14. [PMID: 31754635 PMCID: PMC6854877 DOI: 10.12688/wellcomeopenres.10535.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Collapse
Affiliation(s)
- Karl J Morten
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michelle Potter
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Luned Badder
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pamela Sivathondan
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rebecca Dragovic
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abigale Neumann
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - James Gavin
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Roshan Shrestha
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Kanchan Phadwal
- BRC Translational Immunology Lab, NIHR, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tiffany A Lodge
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Angela Borzychowski
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sharon Cookson
- Institute of Cellular Medicine, Haematological Sciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Corey Mitchell
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | | - Johanna Uusimaa
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | - James Hynes
- Luxcel BioSciences Ltd, BioInnovation Centre, University College Cork, Cork, Ireland
| | - Joanna Poulton
- Nuffield Department of Obstetrics & Gynaecology, The Women's Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
10
|
Abstract
The system-level identification and analysis of molecular networks in mammals can be accelerated by 'next-generation' genetics, defined as genetics that does not require crossing of multiple generations of animals in order to achieve the desired genetic makeup. We have established a highly efficient procedure for producing knock-in (KI) mice within a single generation, by optimizing the genome-editing protocol for KI embryonic stem (ES) cells and the protocol for the generation of fully ES-cell-derived mice (ES mice). Using this protocol, the production of chimeric mice is eliminated, and, therefore, there is no requirement for the crossing of chimeric mice to produce mice that carry the KI gene in all cells of the body. Our procedure thus shortens the time required to produce KI ES mice from about a year to ∼3 months. Various kinds of KI ES mice can be produced with a minimized amount of work, facilitating the elucidation of organism-level phenomena using a systems biology approach. In this report, we describe the basic technologies and protocols for this procedure, and discuss the current challenges for next-generation mammalian genetics in organism-level systems biology studies.
Collapse
|
11
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2017; 2:14. [DOI: 10.12688/wellcomeopenres.10535.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Collapse
|
12
|
Abstract
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Collapse
Affiliation(s)
- Etsuo A Susaki
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, , Kawaguchi, Saitama 332-0012 Japan
| | - Hideki Ukai
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, , Bunkyo-ku, Tokyo 113-0033 Japan.,Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, 1-3 Yamadaoka, , Suita, Osaka 565-0871 Japan
| |
Collapse
|
13
|
Morten KJ, Potter M, Badder L, Sivathondan P, Dragovic R, Neumann A, Gavin J, Shrestha R, Reilly S, Phadwal K, Lodge TA, Borzychowski A, Cookson S, Mitchell C, Morovat A, Simon AK, Uusimaa J, Hynes J, Poulton J. Insights into pancreatic β cell energy metabolism using rodent β cell models. Wellcome Open Res 2017; 2:14. [DOI: 10.12688/wellcomeopenres.10535.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background:Mitochondrial diabetes is primarily caused by β-cell failure, but there are gaps in our understanding of pathogenesis.Methods:By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function.Results:Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy.Conclusions:Insulinoma cell lines provide a useful model of mechanisms affecting β-cell mitochondrial function or studying mitochondrial associated drug toxicity.
Collapse
|
14
|
Metral E, Bechetoille N, Demarne F, Rachidi W, Damour O. α6 Integrin (α6 high)/Transferrin Receptor (CD71) low Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells. Int J Mol Sci 2017; 18:ijms18020282. [PMID: 28134816 PMCID: PMC5343818 DOI: 10.3390/ijms18020282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC) and Transitory Amplifying (TA) cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i) the rapid adhesion method on coated substrate and (ii) the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71). Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6high/CD71low) phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6high/CD71low cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6high/CD71low phenotype.
Collapse
Affiliation(s)
- Elodie Metral
- Gattefossé, 36 chemin de Genas, F-69800 Saint-Priest, France.
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | | | | | - Walid Rachidi
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | - Odile Damour
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
| |
Collapse
|
15
|
Lv D, Ma QH, Duan JJ, Wu HB, Zhao XL, Yu SC, Bian XW. Optimized dissociation protocol for isolating human glioma stem cells from tumorspheres via fluorescence-activated cell sorting. Cancer Lett 2016; 377:105-15. [PMID: 27091400 DOI: 10.1016/j.canlet.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/12/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022]
Abstract
Fluorescence-activated cell sorting (FACS) based on the surface marker CD133 is the most common method for isolating glioma stem cells (GSCs) from heterogeneous glioma cell populations. Optimization of this method will have profound implications for the future of GSC research. Five commonly used digestion reagents, Liberase-TL, trypsin, TrypLE, Accutase, and non-enzymatic cell dissociation solution (NECDS), were used to dissociate glioma tumorspheres derived from two primary glioma specimens (091214 and 090116) and the cell lines U87 and T98G. The dissociation time, cell viability, retention of CD133, and stemness capacity were assessed. The results showed that single cells derived from the Liberase-TL (200 µg/ml) group exhibited high viability and less damage to the antigen CD133. However, the efficiency of NECDS for dissociating the tumorspheres into single cells was fairly low. Meanwhile, the use of this digestion reagent resulted in obvious cellular and antigenic impairments. Taken together, Liberase-TL (200 µg/ml) is an ideal reagent for isolating GSCs from tumorspheres. In contrast, the use of NECDS for such a protocol should be carefully considered.
Collapse
Affiliation(s)
- Donglai Lv
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Qing-Hua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Hai-Bo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Xi-Long Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| |
Collapse
|
16
|
Liu H, Ren C, Zhu B, Wang L, Liu W, Shi J, Lin J, Xia X, Zeng F, Chen J, Jiang X. High-Efficient Transfection of Human Embryonic Stem Cells by Single-Cell Plating and Starvation. Stem Cells Dev 2016; 25:477-91. [PMID: 26772602 DOI: 10.1089/scd.2015.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the low efficiency of small interfering RNA (siRNA) or plasmid DNA (pDNA) transfection is a critical issue in genetic manipulation of human embryonic stem (hES) cells. Development of an efficient transfection method for delivery of siRNAs and plasmids into hES cells becomes more and more imperative. In this study, we tried to modify the traditional transfection protocol by introducing two crucial processes, single-cell plating and starvation, to increase the transfection efficiency in hES cells. Furthermore, we comparatively examined the transfection efficiency of some commercially available siRNA or pDNA transfection reagents in hES cells. Our results showed that the new developed method markedly enhanced the transfection efficiency without influencing the proliferation and pluripotency of hES cells. Lipofectamine RNAiMAX exhibited much higher siRNA transfection efficiency than the other reagents, and FuGENE HD was identified as the best suitable reagent for efficient pDNA transfection of hES cells among the tested reagents.
Collapse
Affiliation(s)
- Hui Liu
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Caiping Ren
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Bin Zhu
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Lei Wang
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Weidong Liu
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Jia Shi
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Jianxing Lin
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Xiaomeng Xia
- 2 Department of Gynecology and Obstetrics, the Second Xiangya Hospital, Central South University , Changsha, People's Republic of China
| | - Fei Zeng
- 3 Department of Gynecology and Obstetrics, the Third Xiangya Hospital, Central South University , Changsha, People's Republic of China
| | - Jiawen Chen
- 1 Key Laboratory for Carcinogenesis of Chinese Ministry of Health, Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University , Changsha, People's Republic of China
| | - Xingjun Jiang
- 4 Department of Neurosurgery, Xiangya Hospital, Central South University , Changsha, People's Republic of China
| |
Collapse
|
17
|
Huang S, Ding C, Mai Q, Xu Y, Zhou C. Inhibition of Rho‑associated protein kinase increases the ratio of formation of blastocysts from single human blastomeres. Mol Med Rep 2016; 13:2046-52. [PMID: 26783117 PMCID: PMC4768968 DOI: 10.3892/mmr.2016.4766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 09/25/2015] [Indexed: 11/05/2022] Open
Abstract
Y‑27632 is a specific inhibitor of Rho‑associated protein kinases (ROCKs), which are downstream effectors of Rho GTPase. The present study aimed to determine the effect of the specific ROCK inhibitor, Y‑27632, on fresh human embryos and on single blastomeres obtained from discarded human embryos. A total of 784 poor‑quality embryos were included, of which 526 were allocated to blastocyst culture directly and the remaining 258 were allocated to blastomere isolation. Embryos and single blastomeres were cultured either with, or without, Y‑27632. Embryonic development was observed and recorded daily from day 5 onwards. Y‑27632 did not affect the ratio of blastocyst formation or the quality of the human embryos. The duration of blastocyst formation was compared between the two groups in the embryo culture. On day 5, the blastocyst formation ratio in the experimental group was 11.4% (26/228), which was significantly (P=0.015) lower than the corresponding rate (19.7%; 44/223) in the control group. Survival analysis of the blastocyst formation duration showed that the median formation duration in the experimental group was significantly higher than that of the control group. The present study also obtained 1,192 blastomeres from 258 discarded day 3 embryos, and sibling blastomeres of similar sizes were equally allocated to experimental and control groups (n=596 in each). Treatment with Y‑27632 increased the blastocyst formation ratio of human individual blastomeres, with 82 blastocysts of 596 blastomeres (13.8%), and 51 blastocysts of 596 blastomeres (8.6%) formed in the presence and absence of Y‑27632, respectively (P=0.004). Compared with the control group, the mRNA and protein expression levels of E‑cadherin in the blastocysts from blastomeres were enhanced by Y‑27632 (P=0.022). In conclusion, the present study demonstrated that Y‑27632 has different effects on the cleavage‑stage of embryos and single blastomeres. Y‑27632 increases the ratio of formation of blastocysts from single human blastomeres, but inhibits the direct formation of blastocysts from discarded human embryos.
Collapse
Affiliation(s)
- Sunxing Huang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chenhui Ding
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qingyun Mai
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanwen Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
18
|
Arenas-Hernandez M, Sanchez-Rodriguez EN, Mial TN, Robertson SA, Gomez-Lopez N. Isolation of Leukocytes from the Murine Tissues at the Maternal-Fetal Interface. J Vis Exp 2015:e52866. [PMID: 26067389 PMCID: PMC4542974 DOI: 10.3791/52866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immune tolerance in pregnancy requires that the immune system of the mother undergoes distinctive changes in order to accept and nurture the developing fetus. This tolerance is initiated during coitus, established during fecundation and implantation, and maintained throughout pregnancy. Active cellular and molecular mediators of maternal-fetal tolerance are enriched at the site of contact between fetal and maternal tissues, known as the maternal-fetal interface, which includes the placenta and the uterine and decidual tissues. This interface is comprised of stromal cells and infiltrating leukocytes, and their abundance and phenotypic characteristics change over the course of pregnancy. Infiltrating leukocytes at the maternal-fetal interface include neutrophils, macrophages, dendritic cells, mast cells, T cells, B cells, NK cells, and NKT cells that together create the local micro-environment that sustains pregnancy. An imbalance among these cells or any inappropriate alteration in their phenotypes is considered a mechanism of disease in pregnancy. Therefore, the study of leukocytes that infiltrate the maternal-fetal interface is essential in order to elucidate the immune mechanisms that lead to pregnancy-related complications. Described herein is a protocol that uses a combination of gentle mechanical dissociation followed by a robust enzymatic disaggregation with a proteolytic and collagenolytic enzymatic cocktail to isolate the infiltrating leukocytes from the murine tissues at the maternal-fetal interface. This protocol allows for the isolation of high numbers of viable leukocytes (>70%) with sufficiently conserved antigenic and functional properties. Isolated leukocytes can then be analyzed by several techniques, including immunophenotyping, cell sorting, imaging, immunoblotting, mRNA expression, cell culture, and in vitro functional assays such as mixed leukocyte reactions, proliferation, or cytotoxicity assays.
Collapse
Affiliation(s)
| | | | - Tara N Mial
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine
| | - Sarah A Robertson
- School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, the Robinson Research Institute, The University of Adelaide
| | - Nardhy Gomez-Lopez
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine; Department of Immunology & Microbiology, Wayne State University School of Medicine; Perinatology Research Branch, NICHD/NIH/DHHS;
| |
Collapse
|
19
|
Xu Y, Plazyo O, Romero R, Hassan SS, Gomez-Lopez N. Isolation of Leukocytes from the Human Maternal-fetal Interface. J Vis Exp 2015:e52863. [PMID: 26067211 DOI: 10.3791/52863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pregnancy is characterized by the infiltration of leukocytes in the reproductive tissues and at the maternal-fetal interface (decidua basalis and decidua parietalis). This interface is the anatomical site of contact between maternal and fetal tissues; therefore, it is an immunological site of action during pregnancy. Infiltrating leukocytes at the maternal-fetal interface play a central role in implantation, pregnancy maintenance, and timing of delivery. Therefore, phenotypic and functional characterizations of these leukocytes will provide insight into the mechanisms that lead to pregnancy disorders. Several protocols have been described in order to isolate infiltrating leukocytes from the decidua basalis and decidua parietalis; however, the lack of consistency in the reagents, enzymes, and times of incubation makes it difficult to compare these results. Described herein is a novel approach that combines the use of gentle mechanical and enzymatic dissociation techniques to preserve the viability and integrity of extracellular and intracellular markers in leukocytes isolated from the human tissues at the maternal-fetal interface. Aside from immunophenotyping, cell culture, and cell sorting, the future applications of this protocol are numerous and varied. Following this protocol, the isolated leukocytes can be used to determine DNA methylation, expression of target genes, in vitro leukocyte functionality (i.e., phagocytosis, cytotoxicity, T-cell proliferation, and plasticity, etc.), and the production of reactive oxygen species at the maternal-fetal interface. Additionally, using the described protocol, this laboratory has been able to describe new and rare leukocytes at the maternal-fetal interface.
Collapse
Affiliation(s)
- Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS
| | | | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS; Department of Obstetrics and Gynecology, University of Michigan; Department of Epidemiology and Biostatistics, Michigan State University; Department of Molecular Obstetrics and Genetics, Wayne State University
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS; Department of Obstetrics and Gynecology, Wayne State University School of Medicine
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS; Department of Obstetrics and Gynecology, Wayne State University School of Medicine; Department of Immunology and Microbiology, Wayne State University School of Medicine;
| |
Collapse
|
20
|
Liu W, Morgan KM, Pine SR. Activation of the Notch1 Stem Cell Signaling Pathway during Routine Cell Line Subculture. Front Oncol 2014; 4:211. [PMID: 25147757 PMCID: PMC4123601 DOI: 10.3389/fonc.2014.00211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/23/2014] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wenyu Liu
- Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA
| | | | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey , New Brunswick, NJ , USA ; Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey , New Brunswick, NJ , USA
| |
Collapse
|
21
|
Izumikawa T, Sato B, Kitagawa H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci Rep 2014; 4:3701. [PMID: 24424429 PMCID: PMC3892716 DOI: 10.1038/srep03701] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/18/2013] [Indexed: 11/23/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.
Collapse
Affiliation(s)
- Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Ban Sato
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
22
|
Identifying nuclear protein-protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol Biol 2014; 1188:207-26. [PMID: 25059614 DOI: 10.1007/978-1-4939-1142-4_15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many cellular proteins assemble into macromolecular protein complexes. Therefore, identifying protein-protein interactions (PPIs) is essential to gain insight into the function of proteins. Recently established quantitative mass spectrometry-based techniques have significantly improved the unbiased search for PPIs. In this chapter, we describe a single-step GFP affinity purification method combined with SILAC-based quantitative mass spectrometry that can be used to identify nuclear PPIs in mammalian cells.
Collapse
|
23
|
Jin L, Ji S, Sun A. Efficient generation of biliary epithelial cells from rabbit intrahepatic bile duct by Y-27632 and Matrigel. In Vitro Cell Dev Biol Anim 2013; 49:433-9. [PMID: 23670599 DOI: 10.1007/s11626-013-9627-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/24/2013] [Indexed: 11/26/2022]
Abstract
Efficient culture of primary biliary epithelial cells (BECs) from adult liver is useful for both experimental studies and clinical applications of tissue engineering. However, an effective culture system for long-term proliferation of adult BECs is still unachieved. Laboratory rabbit has been used in a large number of studies; however, there are no reports of BECs from normal adult rabbit. As little as 5 g of normal rabbit liver tissue were minced, digested, and then clonally cultured in medium containing FBS and ITS. Cells were characterized by cell morphology, immunoassaying, and growth rate assay. Different combination of growth factors and substrates, including Y-27632 and Matrigel, were employed to assess their effect on cell proliferation. In the primary culture, the BECs cellular sheets consisting of cuboidal cells, as well as fibroblast-like cells and other hepatic cells, emerged with time of culture. The BECs cellular sheets were then manually split into cells clumps for further characterization. The subcultured cells had typical cell morphology of cholangiocytes, expressed the specific markers of BECs, including GGT, cytokeratin (CK18), and CK19, and possessed the capacity to form duct-like structure in three-dimensional Matrigel. Y-27632 and Matrigel-treated BECs had a steady growth rate as well as colony-formation capacity. The BECs were maintained in Y-27632 and Matrigel culture system for more than 3 mo. This is the first example, to our knowledge, of the successful culture of BECs from normal adult rabbit liver. Furthermore, our results indicate that treatment of BECs with Y-27632 and Matrigel is a simple method for efficient output of BECs.
Collapse
Affiliation(s)
- Lifang Jin
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China.
| | | | | |
Collapse
|