1
|
Madkor HR, Abd El-Aziz MK, Abd El-Maksoud MS, Ibrahim IM, Ali FEM. Stem Cells Reprogramming in Diabetes Mellitus and Diabetic Complications: Recent Advances. Curr Diabetes Rev 2025; 21:21-37. [PMID: 38173073 DOI: 10.2174/0115733998275428231210055650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND The incidence of diabetes mellitus (DM) is dramatically increasing worldwide, and it is expected to affect 700 million cases by 2045. Diabetes influences health care economics, human quality of life, morbidity, and mortality, which were primarily seen extensively in developing countries. Uncontrolled DM, which results in consistent hyperglycemia, may lead to severe life-threatening complications such as nephropathy, retinopathy, neuropathy, and cardiovascular complications. METHODOLOGY In addition to traditional therapies with insulin and oral anti-diabetics, researchers have developed new approaches for treatment, including stem cell (SC) therapy, which exhibits promising outcomes. Besides its significant role in treating type one DM (T1DM) and type two DM (T2DM), it can also attenuate diabetic complications. Furthermore, the development of insulin- producing cells can be achieved by using the different types of SCs, such as embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and multiple types of adult stem cells, such as pancreatic, hepatic, and mesenchymal stem cells (MSC). All these types have been extensively studied and proved their ability to develop insulin-producing cells, but every type has limitations. CONCLUSION This review aims to enlighten researchers about recent advances in stem cell research and their potential benefits in DM and diabetic complications.
Collapse
Affiliation(s)
- Hafez R Madkor
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | | | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Li Y, Xiong L, Tang J, Dai R, Li S, Li L. Facilitation of mouse skin-derived precursor growth and yield by optimizing plating density. Open Life Sci 2021; 16:1293-1302. [PMID: 34966853 PMCID: PMC8665902 DOI: 10.1515/biol-2021-0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
Multiple methodologies have been reported to facilitate skin-derived precursor (SKP) growth, but the impact of plating density on SKP growth has not been studied. To determine the optimal plating density, we used six plating densities and two types of flasks for mouse SKP (mSKP) culture. On the 14th day, the number, diameter, and viability of mSKP spheres were compared by morphological assessment and cell counting kit 8, and we found the optimal plating density was 2.5 × 105–5 × 105 cells/mL. In addition, we investigated the correlation between the SKP spheres and the adherent cell colonies in the serum-free culture system. We treated the adherent cell colonies with two culture conditions and characterized the cells generated from two conditions by immunocytochemistry and induced differentiation, respectively. The results elucidated that the adherent cell colonies differentiated into either mSKPs or dermal mesenchymal stem cells under appropriate culture conditions. In conclusion, mSKP spheres differentiated from the adherent cell colonies. The optimal plating density significantly promoted and advanced the proliferation of adherent cell colonies, which optimized mSKP growth and yield. The adherent cell colonies possessed the capacity of differentiating into different types of cells under appropriate culture conditions.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan Province 610041, China
| | - Lidan Xiong
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Jie Tang
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Ru Dai
- Department of Dermatology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310009, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Gaopeng Avenue, Gaoxin District, Chengdu, Sichuan Province 610041, China
| | - Li Li
- Department of Dermatology and Venerology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
3
|
Salman IS, Al-Shammari AM, Haba MK. Direct Reprogramming of Mice Skin Fibroblasts into Insulin-Producing Cells In Vitro. Cell Reprogram 2021; 24:271-282. [PMID: 34637623 DOI: 10.1089/cell.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transdifferentiation means mature cell conversion into other mature cells. Ethical issues, epigenetic failure, or teratoma development are found in cellular reprogramming strategies. Thus, new methods are needed. This study aimed to develop a new novel formula of chemical molecules and growth factors that differentiate skin fibroblasts into insulin-producing cells (IPCs). Newborn mice fibroblasts differentiated using four induction methods into IPCs to search for the best method. Fibroblasts, stem cells, and pancreatic markers were identified using an immunocytochemistry (ICC) assay. Insulin was measured using ELISA and dithizone (DTZ) assays. The skin fibroblasts were induced successfully into IPCs. The best method to obtain IPCs was indicated by measuring insulin concentration in differentiated cell supernatant from all induced cells by the four methods. The protein expression of the pancreatic markers of induced cells increased with time, as indicated by the ICC assay. OCT3/4 increased on day 9, after which the expression tended to decrease. DTZ-positive clusters were observed on day 16. Secreted insulin of differentiated cells was injected in streptozotocin-induced diabetic mice, which decreased blood glucose levels after injection. This study indicated an efficient new chemical method for transdifferentiating skin fibroblasts into functional IPCs, which is a promising method for diabetes mellitus therapy.
Collapse
Affiliation(s)
- Israa S Salman
- Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center of Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Mukhtar Khamis Haba
- Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
Inflammation Alters the Secretome and Immunomodulatory Properties of Human Skin-Derived Precursor Cells. Cells 2020; 9:cells9040914. [PMID: 32276503 PMCID: PMC7226778 DOI: 10.3390/cells9040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Human skin-derived precursors (SKP) represent a group of somatic stem/precursor cells that reside in dermal skin throughout life that harbor clinical potential. SKP have a high self-renewal capacity, the ability to differentiate into multiple cell types and low immunogenicity, rendering them key candidates for allogeneic cell-based, off-the-shelf therapy. However, potential clinical application of allogeneic SKP requires that these cells retain their therapeutic properties under all circumstances and, in particular, in the presence of an inflammation state. Therefore, in this study, we investigated the impact of pro-inflammatory stimulation on the secretome and immunosuppressive properties of SKP. We demonstrated that pro-inflammatory stimulation of SKP significantly changes their expression and the secretion profile of chemo/cytokines and growth factors. Most importantly, we observed that pro-inflammatory stimulated SKP were still able to suppress the graft-versus-host response when cotransplanted with human PBMC in severe-combined immune deficient (SCID) mice, albeit to a much lesser extent than unstimulated SKP. Altogether, this study demonstrates that an inflammatory microenvironment has a significant impact on the immunological properties of SKP. These alterations need to be taken into account when developing allogeneic SKP-based therapies.
Collapse
|
5
|
Li Y, Li X, Xiong L, Tang J, Li L. Comparison of phenotypes and transcriptomes of mouse skin-derived precursors and dermal mesenchymal stem cells. Differentiation 2018; 102:30-39. [PMID: 30056221 DOI: 10.1016/j.diff.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Both skin-derived precursors (SKPs) and dermal mesenchymal stem cells (dMSCs) are promising candidates for cellular therapy and regenerative medicine. To date the comparison of phenotypes and transcriptomes of mouse SKPs (mSKPs) and dMSCs has never been reported. Here we characterized and compared the biological properties and transcriptomes of mSKP and dMSCs from the same mouse dermis sample. Firstly, we analyzed mSKPs and dMSCs by use of immunocytochemistry, cell cycle analysis, and CD antigen expression. Then we conducted the osteogenic, adipogenic, and chondrogenic induced differentiation for both cell types. Lastly, we compared their genomic profiles by RNA-sequencing (RNA-Seq), and verified the results of RNA-Seq by quantitative real time reverse transcription PCR (qRT-PCR). The results suggested that mSKPs and dMSCs shared similarities in certain positive stem cells markers expression, but demonstrated difference in Nanog and Oct4 expression. mSKPs and dMSCs demonstrated similar cell cycle distribution and CD antigen expression. Both types of cells could be induced differentiated into osteocytes, adipocytes, and chondrocytes. However, RNA-Seq and qRT-PCR results indicated that mSKPs and dMSCs had distinct transcriptome profiles. The majority of enriched differentially expressed genes (DEGs) from mSKPs was immune-related, while the majority of enriched DEGs from dMSCs was differentiation/development/disease-related. Transcriptome profiles suggested that mSKPs and dMSCs might have potential usage in the relevant morbidity management. These results may indicate a molecular basis for novel stem cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Yiming Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China; Department of dermatology and venerology, the First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Ave, Xindu district, Chengdu, Sichuan Province, PR China
| | - Xiaohua Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Lidan Xiong
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Jie Tang
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China
| | - Li Li
- Department of Dermatology and Venerology, Huaxi Hospital, Chengdu, Sichuan Province, PR China.
| |
Collapse
|
6
|
The Human Skin-Derived Precursors for Regenerative Medicine: Current State, Challenges, and Perspectives. Stem Cells Int 2018; 2018:8637812. [PMID: 30123295 PMCID: PMC6079335 DOI: 10.1155/2018/8637812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 02/05/2023] Open
Abstract
Skin-derived precursors (SKPs) are an adult stem cell source with self-renewal and multipotent differentiation. Although rodent SKPs have been discussed in detail in substantial studies, human SKPs (hSKPs) are rarely reported. Understanding the biological properties and possible mechanisms underlying hSKPs has important implications for regenerative medicine particularly clinical applications, as human-derived sources are more suitable for clinical transplantation. The finding that hSKPs derivatives, such as neural and mesodermal progeny, have both in vitro and in vivo function without any genetical modification makes hSKPs a trustable, secure, and accessible resource for cell-based therapy. Here, we provide an overview of hSKPs, describing their characteristics, originations and niches, and potential applications. A comparison between traditional and innovative culture methods used for hSKPs is also introduced. Furthermore, we discuss the challenges and the future perspectives towards the field of hSKPs. With this review, we hope to point out the current stage of hSKPs and highlight the problems that remain in this field.
Collapse
|
7
|
Im GB, Bhang SH. Recent research trend in cell and drug delivery system for type 1 diabetes treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-017-0380-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Budel L, Djabali K. Rapid isolation and expansion of skin-derived precursor cells from human primary fibroblast cultures. Biol Open 2017; 6:1745-1755. [PMID: 29141956 PMCID: PMC5703604 DOI: 10.1242/bio.025130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Skin-derived precursor (SKP) cells have self-renewal and multipotent abilities and are found in the dermis. SKP cells have been isolated previously from pre-established dermal fibroblast cultures. In these procedures, long-term culture and low yield remain the crucial aspects requiring improvement. In this study, we exposed pre-established dermal fibroblasts to 30-min acid stress prior to isolating SKP cells (termed pH-SKP) and compared the yield to the previously published trypsin- and no-stress methods. Spheroid formation was confirmed and analyzed at days 3, 5 and 7. Stemness was investigated by immunohistochemistry for the stem cell markers Nestin, CD9, vimentin and NG2. Multipotency was investigated by differentiation into adipocytes, smooth muscle cells and fibroblasts. The pH-SKP spheroid yield at day 5 was four- and threefold higher than those obtained using trypsin- and no-stress methods, respectively. The expression of stem cell markers Nestin, CD9, vimentin and NG2 were significantly expressed in pH-SKPs compared to the fibroblast origin. Successful pH-SKP spheroid formation and differentiation were achieved and validated in 11 distinct human primary fibroblast lines. These results demonstrate that acute acidic stress treatment of dermal fibroblast cultures greatly improves SKP isolation, growth, yield and multipotency compared to previous methods. Summary: Exposure of human dermal fibroblast cultures to a short period of acidic stress results in rapid isolation of skin-derived precursor (SKP) cells under the three-dimensional SKP culture conditions.
Collapse
Affiliation(s)
- Leithe Budel
- Epigenetics of Aging, Department of Dermatology, TUM school of Medicine, Technical University of Munich (TUM), 85748 Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM school of Medicine, Technical University of Munich (TUM), 85748 Garching-Munich, Germany
| |
Collapse
|
9
|
Donadel G, Pastore D, Della-Morte D, Capuani B, Lombardo MF, Pacifici F, Bugliani M, Grieco FA, Marchetti P, Lauro D. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes. Int J Mol Sci 2017; 18:2234. [PMID: 29068419 PMCID: PMC5713204 DOI: 10.3390/ijms18112234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.
Collapse
Affiliation(s)
- Giulia Donadel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy.
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco F Lombardo
- Agenzia regionale per la protezione ambientale (ARPA) Lazio, Sezione di Roma, 00173 Rome, Italy.
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Marco Bugliani
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Fabio A Grieco
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.
| | - Piero Marchetti
- Endocrinology and Metabolism of Transplantation, Azienda Ospedaliero-Universitaria (A.O.U.) Pisana, 56126 Pisa, Italy.
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
10
|
Peng SY, Chou CW, Kuo YH, Shen PC, Shaw SWS. Potential differentiation of islet-like cells from pregnant cow-derived placental stem cells. Taiwan J Obstet Gynecol 2017; 56:306-311. [PMID: 28600038 DOI: 10.1016/j.tjog.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Type 1 diabetes is an autoimmune disease that destroys islet cells and results in insufficient insulin secretion by pancreatic β-cells. Islet transplantation from donors is an approach used for treating patients with diabetes; however, this therapy is difficult to implement because of the lack of donors. Nevertheless, several stem cells have the potential to differentiate from islet-like cells and enable insulin secretion for treating diabetes in animal models. For example, placenta is considered a waste material and can be harvested noninvasively during delivery without ethical or moral concerns. To date, the differentiation of islet-like cells from cow-derived placental stem cells (CPSCs) has yet to be demonstrated. MATERIALS AND METHODS The investigation of potential differentiation of islet-like cells from CPSCs was conducted by supplementation with nicotinamide, exendin-4, glucose, and poly-d-lysine and was detected through reverse transcription polymerase chain reaction, dithizone staining, and immunocytochemical methods. RESULTS Our results indicated that CPSCs are established and express mesenchymal stem cell surface antigen markers, such as CD73, CD166, β-integrin, and Oct-4, but not hematopoietic stem cell surface antigen markers, such as CD45. After induction, the CPSCs successfully differentiated into islet-like cells. The CPSC-derived islet-like cells expressed islet cell development-related genes, such as insulin, glucagon, pax-4, Nkx6.1, pax-6, and Fox. Moreover, CPSC-derived islet-like cells can be stained with zinc ions, which are widely distributed in the islet cells and enable insulin secretion. CONCLUSION Altogether, islet-like cells have the potential to be differentiated from CPSCs without gene manipulation, and can be used in diabetic animal models in the future for preclinical and drug testing trial investigations.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chien-Wen Chou
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Hsuan Kuo
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - S W Steven Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan, Taiwan; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
11
|
Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, Mollard P, Schaeffer M, Fernandez A, Lamb NJC. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res Ther 2017; 8:86. [PMID: 28420418 PMCID: PMC5395782 DOI: 10.1186/s13287-017-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency. Results In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10–12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2–4 weeks. Conclusion These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0539-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violeta Mitutsova
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Wendy Wai Yeng Yeo
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Romain Davaze
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Celine Franckhauser
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - El-Habib Hani
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Syahril Abdullah
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Patrice Mollard
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Marie Schaeffer
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| | - Ned J C Lamb
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| |
Collapse
|
12
|
陈 若, 苗 勇, 胡 志. [Research progress of skin-derived precursor cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:420-422. [PMID: 28377365 PMCID: PMC6780441 DOI: 10.3969/j.issn.1673-4254.2017.03.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/07/2023]
Abstract
As a novel population of neural crest-origin precursor cells, skin-derived precursor cells (SKPs) can be isolated from both embryonic and adult dermis. These cells have important values for research and potential clinical application in wound healing, organ regeneration and disease treatment for advantages in the abundance of cell sources, accessibility, potential of multipotent differentiation, and absence of ethical concerns. Here we review the developmental and anatomical origins of SKPs and their potential application in regenerative medicine. SKPs originate from the embryonic neural crest, and their sources may vary in different areas of the body. SKPs are widely found in the dermis, especially in the dermal papilla (DP), which was known as a niche of SKPs. The multipotent SKPs can used for autologous transplantation and are of vital importance in tissue repair.
Collapse
Affiliation(s)
- 若思 陈
- 南方医科大学南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 约翰·霍普金斯大学医学院,马里兰州 巴尔的摩市Medical College,The Johns Hopkins University, Baltimore, United States of America
| | - 勇 苗
- 南方医科大学南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 志奇 胡
- 南方医科大学南方医院,广东 广州 510515Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Xiao J, Li Q, Qu P, Zhang Z, Pan S, Wang Y, Zhang Y. Isolation of Bovine Skin-Derived Precursor Cells and Their Developmental Potential After Nuclear Transfer. Cell Reprogram 2016; 18:411-418. [PMID: 27906583 DOI: 10.1089/cell.2016.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Nuclei from less differentiated stem cells yield high cloning efficiency. However, pluripotent stem cells are rather difficult to obtain from bovines. Skin-derived precursor (SKPs) cells exhibit a certain degree of pluripotency, which has been shown to enhance the efficiency of nuclear transfer (NT) in pigs. In this study, bovine SKPs were isolated and characterized. Results showed that bovine SKPs expressed nestin, fibronectin, vimentin, pluripotency-related genes, and characteristic neural crest markers, such as NGFR, PAX3, SOX9, SNAI2, and OCT4. Bovine SKPs and fibroblasts were used as NT donor cells to examine and compare the preimplantation developmental potential of reconstructed embryos after somatic cell nuclear transfer (SCNT). Bovine SKP-cloned embryos displayed higher developmental competence in terms of blastocyst formation rate and total cell number in blastocysts compared with the bovine embryonic fibroblast-cloned embryos. This study revealed that bovine SKPs may be considered excellent candidate nuclear donors for SCNT and may provide a promising platform for transgenic cattle generation.
Collapse
Affiliation(s)
- Jiajia Xiao
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Qiaoqiao Li
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Pengxiang Qu
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Zihan Zhang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Shaohui Pan
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Yongsheng Wang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| | - Yong Zhang
- 1 College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi, 712100 China .,2 Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi, 712100 China
| |
Collapse
|
14
|
Girlovanu M, Susman S, Soritau O, Rus-Ciuca D, Melincovici C, Constantin AM, Mihu CM. Stem cells - biological update and cell therapy progress. ACTA ACUST UNITED AC 2015; 88:265-71. [PMID: 26609255 PMCID: PMC4632881 DOI: 10.15386/cjmed-483] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
Abstract
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.
Collapse
Affiliation(s)
- Mihai Girlovanu
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Susman
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | - Dan Rus-Ciuca
- Department of Pathology, Karlstad Central Hospital, Sweden
| | - Carmen Melincovici
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anne-Marie Constantin
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Morphological Sciences Department 1, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|