1
|
Triolo E, Khegai O, McGarry M, Lam T, Veraart J, Alipour A, Balchandani P, Kurt M. Characterizing brain mechanics through 7 tesla magnetic resonance elastography. Phys Med Biol 2024; 69:205011. [PMID: 39321962 DOI: 10.1088/1361-6560/ad7fc9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive method for determining the mechanical response of tissues using applied harmonic deformation and motion-sensitive MRI. MRE studies of the human brain are typically performed at conventional field strengths, with a few attempts at the ultra-high field strength, 7T, reporting increased spatial resolution with partial brain coverage. Achieving high-resolution human brain scans using 7T MRE presents unique challenges of decreased octahedral shear strain-based signal-to-noise ratio (OSS-SNR) and lower shear wave motion sensitivity. In this study, we establish high resolution MRE at 7T with a custom 2D multi-slice single-shot spin-echo echo-planar imaging sequence, using the Gadgetron advanced image reconstruction framework, applying Marchenko-Pastur Principal component analysis denoising, and using nonlinear viscoelastic inversion. These techniques allowed us to calculate the viscoelastic properties of the whole human brain at 1.1 mm isotropic imaging resolution with high OSS-SNR and repeatability. Using phantom models and 7T MRE data of eighteen healthy volunteers, we demonstrate the robustness and accuracy of our method at high-resolution while quantifying the feasible tradeoff between resolution, OSS-SNR, and scan time. Using these post-processing techniques, we significantly increased OSS-SNR at 1.1 mm resolution with whole-brain coverage by approximately 4-fold and generated elastograms with high anatomical detail. Performing high-resolution MRE at 7T on the human brain can provide information on different substructures within brain tissue based on their mechanical properties, which can then be used to diagnose pathologies (e.g. Alzheimer's disease), indicate disease progression, or better investigate neurodegeneration effects or other relevant brain disorders,in vivo.
Collapse
Affiliation(s)
- Emily Triolo
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Oleksandr Khegai
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Tyson Lam
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Jelle Veraart
- Center for Biomedical Imaging, Department Radiology, New York University Grossman School of Medicine, New York City, NY, United States of America
| | - Akbar Alipour
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| | - Mehmet Kurt
- Department Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NY, New York City, United States of America
| |
Collapse
|
2
|
Ivanov I, Miraglia B, Prodanova D, Newcorn JH. Sleep Disordered Breathing and Risk for ADHD: Review of Supportive Evidence and Proposed Underlying Mechanisms. J Atten Disord 2024; 28:686-698. [PMID: 38353411 DOI: 10.1177/10870547241232313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Accumulating evidence suggests that sleep disordered breathing (SDB) is under-recognized in youth and adults with ADHD. SDB may contribute to exacerbating pre-existing ADHD symptoms and may play a role in the development of cognitive deficits that may mimic ADHD symptoms. METHOD We conducted a focused review of publications on cross-prevalence, overlapping clinical and neurobiological characteristics and possible mechanisms linking SDB and ADHD. RESULTS Exiting studies suggest that co-occurrence of SDB and ADHD is as high as 50%, with frequent overlap of clinical symptoms such as distractibility and inattention. Mechanisms linking these conditions may include hypoxia during sleep, sleep fragmentation and activation of inflammation, all of which may affect brain structure and physiology to produce disturbances in attention. CONCLUSIONS The relationship between SDB and ADHD symptoms appear well-supported and suggests that more research is needed to better optimize procedures for SDB assessment in youth being evaluated and/or treated for ADHD.
Collapse
|
3
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
4
|
Duan H, Wang YJ, Lei X. The effect of sleep deprivation on empathy for pain: An ERP study. Neuropsychologia 2021; 163:108084. [PMID: 34762907 DOI: 10.1016/j.neuropsychologia.2021.108084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/23/2021] [Accepted: 11/06/2021] [Indexed: 02/04/2023]
Abstract
Empathy for pain has a strong adaptive function. It plays a protective role in survival and exerts a vital impact on successful social interaction. Sleep loss, however, is commonplace in current society, and people are increasingly plagued by it. Previous studies have investigated whether sleep loss affects empathy for pain, yet the results were undecided. We aimed to determine whether this effect is existed and further explore the temporal and frequency dynamics of neural activities involved in this effect by recording the electroencephalogram (EEG) signals. We recruited 25 healthy adults (11 females) who were required to perform a pain judgement and unpleasantness rating about the presented nociceptive and neutral pictures after nocturnal sleep (NS) and sleep deprivation (SD), and their neuronal activities were recorded by event-related potentials (ERPs). Results showed a significantly decreased amplitude in the early components (N2, N340) of vicarious pain processing after SD. In further time-frequency (TF) analysis, a reduced energy occurred in theta2 (5-7 Hz) band under SD condition. Moreover, the decreased theta2 was positively correlated with the subjective ratings of both other's pain and self-unpleasantness only under SD condition. Our results indicated that SD impairs affective sharing of empathy for pain.
Collapse
Affiliation(s)
- Huimin Duan
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Ya-Jie Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
5
|
Liu L, Zhang L, Li L, Chen M, Wang Z, Shen Y, Huang J, Tang L. Sleep deprivation aggravated lipopolysaccharide/D-galactosamine-induced acute liver injury by suppressing melatonin production. Inflamm Res 2020; 69:1133-1142. [PMID: 32809047 DOI: 10.1007/s00011-020-01393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Sleep loss is common in patients with liver injury, but the effects of sleep deprivation (SD) on liver injury remain unclear. In the present study, the potential effects of SD on acute liver injury and the underlying mechanisms have been investigated. METHODS The sleep of male BALB/c mice has been deprived by using a modified multiple platform water bath for 3 days and acute liver injury was induced by intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). The degree of liver injury was detected by aminotransferase determination, histopathology and survival rate analysis. Inflammatory response and melatonin (MT) were measured by enzyme-linked immunosorbent assay (ELISA). In addition, hepatocyte apoptosis was determined by caspase activity measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS We observed that SD increased plasma aminotransferases, TUNEL-positive hepatocytes, histological abnormalities and mortality rates in mice with LPS/D-Gal treatment. SD also promoted LPS/D-Gal-induced production of TNF-α and upregulated hepatic caspase-8, caspase-9, and caspase-3 activities in LPS/D-Gal-exposed mice. In addition, SD significantly decreased MT contents in plasma of mice with acute liver injury, but supplementation with MT reversed these SD-promoted changes. CONCLUSION Our data suggested that SD exacerbated LPS/D-Gal-induced liver injury via decreasing melatonin production.
Collapse
Affiliation(s)
- Lu Liu
- Department of Rehabilitation Medicine and Physical Therapy, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Mengting Chen
- Department of Neurology, The Affiliated Rehabilitation Hospital of Chongqing Medical University, 50 Xiejiawan Cultural Seventh Village, Jiulongpo District, Chongqing, 400050, China
| | - Zhe Wang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
6
|
Leung TK, Lee CM, Gasbarri M, Chen YC. Base on concept of traditional Chinese medicine: Experimental studies on efficacy of BIOCERAMIC Resonance to alleviate drug withdrawal symptoms. J Tradit Complement Med 2019; 9:257-262. [PMID: 31453120 PMCID: PMC6702142 DOI: 10.1016/j.jtcme.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
Abstract
Those who are challenged by dependency on prescription drugs or suffer drug addictions have few options available to them for recovery, such as psychotherapy and physiotherapy. Here we present a new approach with clinical examples involving stimulant addiction or overdose of hypnotic drugs that were received BIOCERAMIC Resonance, which was developed based on concept of 12 meridian channels of traditional Chinese medicine, and has successful withdrawal or dose reduction benefits. We describe the whole process and the clinical outcome. And by help of our previous publication on functional MRI, we discuss the possible brain locations response to BIOCERAMIC Resonance that may be corresponding to the beneficial effects of relief of depression, sleep deprivation and other mental symptoms that associate with substance abuse and withdrawal effects. We suggest this could be potentially widely application on substances abuse.
Collapse
|
7
|
Javaheripour N, Shahdipour N, Noori K, Zarei M, Camilleri JA, Laird AR, Fox PT, Eickhoff SB, Eickhoff CR, Rosenzweig I, Khazaie H, Tahmasian M. Functional brain alterations in acute sleep deprivation: An activation likelihood estimation meta-analysis. Sleep Med Rev 2019; 46:64-73. [PMID: 31063939 PMCID: PMC7279069 DOI: 10.1016/j.smrv.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a common problem in modern societies, which leads to cognitive dysfunctions including attention lapses, impaired working memory, hindering decision making, impaired emotional processing, and motor vehicle accidents. Numerous neuroimaging studies have investigated the neural correlates of SD, but these studies have reported inconsistent results. Thus, we aimed to identify convergent patterns of abnormal brain functions due to acute SD. Based on the preferred reporting for systematic reviews and meta-analyses statement, we searched the PubMed database and performed reference tracking and finally retrieved 31 eligible functional neuroimaging studies. Then, we applied activation estimation likelihood meta-analysis and found reduced activity mainly in the right intraparietal sulcus and superior parietal lobule. The functional decoding analysis using the BrainMap database indicated that this region is mostly related to visuospatial perception, memory and reasoning. The significant co-activation of this region using the BrainMap database were found in the left superior parietal lobule, intraparietal sulcus, bilateral occipital cortex, left fusiform gyrus and thalamus. This region also connected with the superior parietal lobule, intraparietal sulcus, insula, inferior frontal gyrus, precentral, occipital and cerebellum through resting-state functional connectivity in healthy subjects. Taken together, our findings highlight the role of superior parietal cortex in SD.
Collapse
Affiliation(s)
- Nooshin Javaheripour
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Shahdipour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Khadijeh Noori
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Julia A Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; South Texas Veterans Healthcare System University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1; INM-7), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Ivana Rosenzweig
- Sleep Disorders Centre, Guy's and St Thomas' Hospital, GSTT NHS, London, UK; Sleep and Brain Plasticity Centre, Department of Neuroimaging, IOPPN, King's College London, London, UK
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
8
|
Chen L, Qi X, Zheng J. Altered Regional Cortical Brain Activity in Healthy Subjects After Sleep Deprivation: A Functional Magnetic Resonance Imaging Study. Front Neurol 2018; 9:588. [PMID: 30116216 PMCID: PMC6082940 DOI: 10.3389/fneur.2018.00588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Objective: To investigate acute sleep deprivation (SD)-related regional brain activity changes and their relationships with behavioral performances. Methods: Twenty-two female subjects underwent an MRI scan and an attention network test at rested wakefulness (RW) status and after 24 h SD. The amplitude of low-frequency fluctuations (ALFF) was used to investigate SD-related regional brain activity changes. We used the receiver operating characteristic (ROC) curve to evaluate the ability of the ALFF differences in regional brain areas to distinguish the SD status from the RW status. We used Pearson correlations to evaluate the relationships between the ALFF differences in brain areas and the behavioral performances during the SD status. Results: Subjects at the SD status exhibited a lower accuracy rate and a longer reaction time relative to the RW status. Compared with RW, SD showed significant lower ALFF values in the right cerebellum anterior lobe, and higher ALFF areas in the bilateral inferior occipital gyrus, left thalamus, left insula, and bilateral postcentral gyrus. The area under the curve values of the specific ALFF differences in brain areas were (mean ± std, 0.851 ± 0.045; 0.805–0.93). Further, the ROC curve analysis demonstrated that the ALFF differences in those regional brain areas alone discriminated the SD status from the RW status with high degrees of sensitivities (82.16 ± 7.61%; 75–93.8%) and specificities (81.23 ± 11.39%; 62.5–93.7%). The accuracy rate showed negative correlations with the left inferior occipital gyrus, left thalamus, and left postcentral gyrus, and showed a positive correlation with the right cerebellum. Conclusions: The ALFF analysis is a potential indicator for detecting the excitation–inhibition imbalance of regional cortical activations disturbed by acute SD with high performances.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Pediatric Internal Medicine, Linyi Central Hospital, Yishui, China
| | - Xueliang Qi
- Department of Pediatric Internal Medicine, Linyi Central Hospital, Yishui, China
| | - Jiyong Zheng
- Department of Medical Imaging, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
9
|
Kong D, Liu R, Song L, Zheng J, Zhang J, Chen W. Altered Long- and Short-Range Functional Connectivity Density in Healthy Subjects After Sleep Deprivations. Front Neurol 2018; 9:546. [PMID: 30061857 PMCID: PMC6054999 DOI: 10.3389/fneur.2018.00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Objective: To investigate the brain functional organization induced by sleep deprivation (SD) using functional connectivity density (FCD) analysis. Methods: Twenty healthy subjects (12 female, 8 male; mean age, 20.6 ± 1.9 years) participated a 24 h sleep deprivation (SD) design. All subjects underwent the MRI scan and attention network test twice, once during rested wakefulness (RW) status, and the other was after 24 h acute SD. FCD was divided into the shortFCD and longFCD. Receiver operating characteristic (ROC) curve was used to evaluate the discriminating ability of those FCD differences in brain areas during the SD status from the RW status, while Pearson correlations was used to evaluate the relationships between those differences and behavioral performances. Results: Subjects at SD status exhibited lower accuracy rate and longer reaction time relative to RW status. Compared with RW, SD had a significant decreased shortFCD in the left cerebellum posterior lobe, right cerebellum anterior lobe, and right orbitofrontal cortex, and increased shortFCD in the left occipital gyrus, bilateral thalamus, right paracentral lobule, bilateral precentral gyrus, and bilateral postcentral gyrus. Compared with RW, SD had a significant increased longFCD in the right precentral gyrus, bilateral postcentral gyrus, and right visuospatial network, and decreased longFCD in the default mode network. The area under the curve values of those specific FCD differences in brain areas were (mean ± std, 0.933 ± 0.035; 0.863~0.977). Further ROC curve analysis demonstrated that the FCD differences in those brain areas alone discriminated the SD status from the RW status with high degree of sensitivities (89.19 ± 6%; 81.3~100%) and specificities (89.15 ± 6.87%; 75~100%). Reaction time showed a negative correlation with the right orbitofrontal cortex (r = −0.48, p = 0.032), and accuracy rate demonstrated a positive correlation with the right default mode network (r = 0.573, p = 0.008). Conclusions: The longFCD and shortFCD analysis might be potential indicator biomarkers to locate the underlying altered intrinsic brain functional organization disturbed by SD. SD sustains the cognitive performance by the decreased high-order cognition related areas and the arousal and sensorimotor related areas.
Collapse
Affiliation(s)
- Dan Kong
- Department of Medical Imaging, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Run Liu
- Department of Radiology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lixiao Song
- Department of Hematology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jiyong Zheng
- Department of Medical Imaging, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jiandong Zhang
- Department of Medical Imaging, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Wei Chen
- Department of Interventional Radiology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
10
|
Effects of total sleep deprivation on divided attention performance. PLoS One 2017; 12:e0187098. [PMID: 29166387 PMCID: PMC5699793 DOI: 10.1371/journal.pone.0187098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/15/2017] [Indexed: 11/19/2022] Open
Abstract
Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1) performed alone (single task); 2) performed simultaneously with a visual Go/No-Go task (dual task); and 3) performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task). Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.
Collapse
|
11
|
Tüshaus L, Balsters JH, Schläpfer A, Brandeis D, O’Gorman Tuura R, Achermann P. Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity. Brain Topogr 2017; 30:757-773. [DOI: 10.1007/s10548-017-0575-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/06/2017] [Indexed: 12/26/2022]
|
12
|
Pilcher JJ, Jennings KS, Phillips GE, McCubbin JA. Auditory Attention and Comprehension During a Simulated Night Shift: Effects of Task Characteristics. HUMAN FACTORS 2016; 58:1031-1043. [PMID: 27307380 DOI: 10.1177/0018720816654377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The current study investigated performance on a dual auditory task during a simulated night shift. BACKGROUND Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. METHOD Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. RESULTS The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. CONCLUSION These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. APPLICATION The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork.
Collapse
|
13
|
Sacco K, Galetto V, Dimitri D, Geda E, Perotti F, Zettin M, Geminiani GC. Concomitant Use of Transcranial Direct Current Stimulation and Computer-Assisted Training for the Rehabilitation of Attention in Traumatic Brain Injured Patients: Behavioral and Neuroimaging Results. Front Behav Neurosci 2016; 10:57. [PMID: 27065823 PMCID: PMC4814724 DOI: 10.3389/fnbeh.2016.00057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/09/2016] [Indexed: 02/04/2023] Open
Abstract
Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20’ of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant’s specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40’. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations.
Collapse
Affiliation(s)
- Katiuscia Sacco
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Neuroscience Institute of Turin, University of TurinTurin, Italy
| | - Valentina Galetto
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Centro PuzzleTurin, Italy
| | - Danilo Dimitri
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Centro PuzzleTurin, Italy
| | - Elisabetta Geda
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin Turin, Italy
| | - Francesca Perotti
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin Turin, Italy
| | - Marina Zettin
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Centro PuzzleTurin, Italy
| | - Giuliano C Geminiani
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of TurinTurin, Italy; Neuroscience Institute of Turin, University of TurinTurin, Italy
| |
Collapse
|
14
|
Wang L, Chen Y, Yao Y, Pan Y, Sun Y. Sleep deprivation disturbed regional brain activity in healthy subjects: evidence from a functional magnetic resonance-imaging study. Neuropsychiatr Dis Treat 2016; 12:801-7. [PMID: 27110113 PMCID: PMC4835129 DOI: 10.2147/ndt.s99644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE The aim of this study was to use amplitude of low-frequency fluctuation (ALFF) to explore regional brain activities in healthy subjects after sleep deprivation (SD). MATERIALS AND METHODS A total of 16 healthy subjects (eight females, eight males) underwent the session twice: once was after normal sleep (NS), and the other was after SD. ALFF was used to assess local brain features. The mean ALFF-signal values of the different brain areas were evaluated to investigate relationships with clinical features and were analyzed with a receiver-operating characteristic curve. RESULTS Compared with NS subjects, SD subjects showed a lower response-accuracy rate, longer response time, and higher lapse rate. Compared with NS subjects, SD subjects showed higher ALFF area in the right cuneus and lower ALFF area in the right lentiform nucleus, right claustrum, left dorsolateral prefrontal cortex, and left inferior parietal cortex. ALFF differences in regional brain areas showed high sensitivity and specificity. In the SD group, mean ALFF of the right claustrum showed a significant positive correlation with accuracy rate (r=0.687, P=0.013) and a negative correlation with lapse rate (r=-0.706, P=0.01). Mean ALFF of the dorsolateral prefrontal cortex showed a significant positive correlation with response time (r=0.675, P=0.016). CONCLUSION SD disturbed the regional brain activity of the default-mode network, its anticorrelated "task-positive" network, and the advanced cognitive function brain areas.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yin Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ying Yao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yu Pan
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Sun
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 2015; 38:233-240. [PMID: 25409102 PMCID: PMC4288604 DOI: 10.5665/sleep.4404] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/15/2014] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Attention is a cognitive domain that can be severely affected by sleep deprivation. Previous neuroimaging studies have used different attention paradigms and reported both increased and reduced brain activation after sleep deprivation. However, due to large variability in sleep deprivation protocols, task paradigms, experimental designs, characteristics of subject populations, and imaging techniques, there is no consensus regarding the effects of sleep loss on the attending brain. The aim of this meta-analysis was to identify brain activations that are commonly altered by acute total sleep deprivation across different attention tasks. DESIGN Coordinate-based meta-analysis of neuroimaging studies of performance on attention tasks during experimental sleep deprivation. METHODS The current version of the activation likelihood estimation (ALE) approach was used for meta-analysis. The authors searched published articles and identified 11 sleep deprivation neuroimaging studies using different attention tasks with a total of 185 participants, equaling 81 foci for ALE analysis. RESULTS The meta-analysis revealed significantly reduced brain activation in multiple regions following sleep deprivation compared to rested wakefulness, including bilateral intraparietal sulcus, bilateral insula, right prefrontal cortex, medial frontal cortex, and right parahippocampal gyrus. Increased activation was found only in bilateral thalamus after sleep deprivation compared to rested wakefulness. CONCLUSION Acute total sleep deprivation decreases brain activation in the fronto-parietal attention network (prefrontal cortex and intraparietal sulcus) and in the salience network (insula and medial frontal cortex). Increased thalamic activation after sleep deprivation may reflect a complex interaction between the de-arousing effects of sleep loss and the arousing effects of task performance on thalamic activity.
Collapse
Affiliation(s)
- Ning Ma
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David F. Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Liu X, Yan Z, Wang T, Yang X, Feng F, Fan L, Jiang J. Connectivity pattern differences bilaterally in the cerebellum posterior lobe in healthy subjects after normal sleep and sleep deprivation: a resting-state functional MRI study. Neuropsychiatr Dis Treat 2015; 11:1279-89. [PMID: 26064046 PMCID: PMC4451850 DOI: 10.2147/ndt.s84204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to use functional magnetic resonance imaging (fMRI) technique to explore the resting-state functional connectivity (rsFC) differences of the bilaterial cerebellum posterior lobe (CPL) after normal sleep (NS) and after sleep deprivation (SD). METHODS A total of 16 healthy subjects (eight males, eight females) underwent an fMRI scan twice at random: once following NS and the other following 24 hours' SD, with an interval of 1 month between the two scans. The fMRI scanning included resting state and acupuncture stimulation. The special activated regions located during the acupuncture stimulation were selected as regions of interest for rsFC analysis. RESULTS Bilateral CPLs were positively activated by acupuncture stimulation. In the NS group, the left CPL showed rsFC with the bilateral CPL, bilateral frontal lobe (BFL), left precuneus and right inferior parietal lobule, while the right CPL showed rsFC with the bilateral temporal lobe, right cerebellum anterior lobe, right CPL, left frontal lobe, left anterior cingulate, right posterior cingulate, and bilateral inferior parietal lobule. In the SD group, the left CPL showed rsFC with the left posterior cingulate gyrus bilateral CPL, left precuneus, left precentral gyrus, BFL, and the left parietal lobe, while the right CPL showed rsFC with bilateral cerebellum anterior lobe, bilateral CPL, left frontal lobe and left temporal lobe. Compared with the NS group, the left CPL had increased rsFC in the SD group with the right inferior frontal gyrus, right fusiform gyrus, right cingulate gyrus, right thalamus, and bilateral precuneus, and decreased rsFC with the BFL, while the right CPL had increased rsFC with the left superior frontal gyrus and decreased rsFC with the left precentral gyrus, right superior temporal gyrus, and the BFL. CONCLUSION Bilateral CPL are possibly involved in acupuncture stimulation in different manners, and the right CPL showed more rsFC impairment.
Collapse
Affiliation(s)
- Xuming Liu
- Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhihan Yan
- Department of Radiology, The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tingyu Wang
- Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaokai Yang
- Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Feng Feng
- Peking Union Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Luping Fan
- Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jian Jiang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
17
|
Deguil J, Ravasi L, Auffret A, Babiloni C, Bartres Faz D, Bragulat V, Cassé-Perrot C, Colavito V, Herrero Ezquerro MT, Lamberty Y, Lanteaume L, Pemberton D, Pifferi F, Richardson JC, Schenker E, Blin O, Tarragon E, Bordet R. Evaluation of symptomatic drug effects in Alzheimer's disease: strategies for prediction of efficacy in humans. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e329-42. [PMID: 24179995 DOI: 10.1016/j.ddtec.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment. In recent years, research has contributed to the emergence of new tools to assess brain activity relying on innovative technologies of imaging and electrophysiology. However, the relevance of the use of these newer markers in treatment response assessment is waiting for validation. This review shows how the early clinical assessment of symptomatic drugs could benefit from the inclusion of suitable pharmacodynamic markers. This review also emphasizes the importance of re-evaluating a step-by-step strategy in drug development.
Collapse
|
18
|
Hartzler BM. Fatigue on the flight deck: the consequences of sleep loss and the benefits of napping. ACCIDENT; ANALYSIS AND PREVENTION 2014; 62:309-318. [PMID: 24215936 DOI: 10.1016/j.aap.2013.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 10/10/2013] [Indexed: 06/02/2023]
Abstract
The detrimental effects of fatigue in aviation are well established, as evidenced by both the number of fatigue-related mishaps and numerous studies which have found that most pilots experience a deterioration in cognitive performance as well as increased stress during the course of a flight. Further, due to the nature of the average pilot's work schedule, with frequent changes in duty schedule, early morning starts, and extended duty periods, fatigue may be impossible to avoid. Thus, it is critical that fatigue countermeasures be available which can help to combat the often overwhelming effects of sleep loss or sleep disruption. While stimulants such as caffeine are typically effective at maintaining alertness and performance, such countermeasures do nothing to address the actual source of fatigue - insufficient sleep. Consequently, strategic naps are considered an efficacious means of maintaining performance while also reducing the individual's sleep debt. These types of naps have been advocated for pilots in particular, as opportunities to sleep either in the designated rest facilities or on the flight deck may be beneficial in reducing both the performance and alertness impairments associated with fatigue, as well as the subjective feelings of sleepiness. Evidence suggests that strategic naps can reduce subjective feelings of fatigue and improve performance and alertness. Despite some contraindications to implementing strategic naps while on duty, such as sleep inertia experienced upon awakening, both researchers and pilots agree that the benefits associated with these naps far outweigh the potential risks. This article is a literature review detailing both the health and safety concerns of fatigue among commercial pilots as well as benefits and risks associated with strategic napping to alleviate this fatigue.
Collapse
Affiliation(s)
- Beth M Hartzler
- Naval Medical Research Unit Dayton, 2624 Q Street, Building 851, Area B, Wright Patterson AFB, OH 45433-7955, United States.
| |
Collapse
|
19
|
Jackson ML, Croft RJ, Kennedy GA, Owens K, Howard ME. Cognitive components of simulated driving performance: Sleep loss effects and predictors. ACCIDENT; ANALYSIS AND PREVENTION 2013; 50:438-444. [PMID: 22721550 DOI: 10.1016/j.aap.2012.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
Driving is a complex task, which can be broken down into specific cognitive processes. In order to determine which components contribute to drowsy driving impairments, the current study examined simulated driving and neurocognitive performance after one night of sleep deprivation. Nineteen professional drivers (age 45.3±9.1) underwent two experimental sessions in randomised order: one after normal sleep and one after 27h total sleep deprivation. A simulated driving task (AusEd), the psychomotor vigilance test (PVT), and neurocognitive tasks selected from the Cognitive Drug Research computerised neurocognitive assessment battery (simple and choice RT, Stroop Task, Digit Symbol Substitution Task, and Digit Vigilance Task) were administered at 10:00h in both sessions. Mixed-effects ANOVAs were performed to examine the effect of sleep deprivation versus normal sleep on performance measures. To determine if any neurocognitive tests predicted driving performance (lane position variability, speed variability, braking RT), neurocognitive measures that were significantly affected by sleep deprivation were then added as a covariate to the ANOVAs for driving performance. Simulated driving performance and neurocognitive measures of vigilance and reaction time were impaired after sleep deprivation (p<0.05), whereas tasks examining processing speed and executive functioning were not significantly affected by sleep loss. PVT performance significantly predicted specific aspects of simulated driving performance. Thus, psychomotor vigilance impairment may be a key cognitive component of driving impairment when sleep deprived. The generalisability of this finding to real-world driving remains to be investigated.
Collapse
Affiliation(s)
- M L Jackson
- School of Social Sciences and Psychology, Victoria University, Victoria, Australia.
| | | | | | | | | |
Collapse
|
20
|
Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:155-90. [PMID: 23899598 DOI: 10.1016/b978-0-12-396971-2.00007-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep-wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed.
Collapse
Affiliation(s)
- Namni Goel
- Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
21
|
Galván A, Van Leijenhorst L, McGlennen KM. Considerations for imaging the adolescent brain. Dev Cogn Neurosci 2012; 2:293-302. [PMID: 22669033 PMCID: PMC6987696 DOI: 10.1016/j.dcn.2012.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/30/2022] Open
Abstract
In recent years the number of functional neuroimaging studies on adolescence has exploded. These studies have led to important new insights about the relation between functional brain development and behavior. However, special consideration is warranted when working with adolescents. In this review, we review variables, including pubertal stage, sleep patterns and pregnancy, which are particularly relevant for developmental cognitive neuroscience studies involving adolescents. Consideration of the unique challenges associated with adolescence will help the growing field of developmental neuroimaging standardize procedures and will eventually facilitate interpretation across studies.
Collapse
Affiliation(s)
- Adriana Galván
- Department of Psychology, University of California, Los Angeles, CA 90095-1563, USA.
| | | | | |
Collapse
|
22
|
Poor sleep quality and reduced cognitive function in persons with heart failure. Int J Cardiol 2012; 156:248-9. [PMID: 22360947 DOI: 10.1016/j.ijcard.2012.01.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 11/22/2022]
|