1
|
Järvinen L, Santavirta S, Putkinen V, Karlsson HK, Seppälä K, Sun L, Hudson M, Hirvonen J, Nuutila P, Nummenmaa L. Reward responses to vicarious feeding depend on body mass index. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01265-5. [PMID: 39966303 DOI: 10.3758/s13415-025-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Eating is inherently social for humans. Yet, most neuroimaging studies of appetite and food-induced reward have focused on studying brain responses to food intake or viewing pictures of food alone. We used functional magnetic resonance imaging (fMRI) to measure haemodynamic responses to "vicarious" feeding. The subjects (n = 97) viewed series of short videos representing naturalistic episodes of social eating intermixed with videos without feeding/appetite-related content. Viewing the vicarious feeding (versus control) videos activated motor and premotor cortices, thalamus, and dorsolateral prefrontal cortices, consistent with somatomotor and affective engagement. Responses to the feeding videos were negatively correlated with the participants' body mass index. Altogether these results suggest that seeing others eating engages the corresponding motor and affective programs in the viewers' brain, potentially increasing appetite and promoting mutual feeding.
Collapse
Affiliation(s)
- Lili Järvinen
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland.
| | - Severi Santavirta
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Vesa Putkinen
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku , Finland
| | - Henry K Karlsson
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Department of Adolescent Psychiatry, University of Turku, Turku, Finland
- The Wellbeing Services County of Satakunta , Psychiatric Care Division, Pori, Finland
| | - Kerttu Seppälä
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Huashan Institute of Medicine, Huashan Hospital , Fudan University, Shanghai, China
| | - Matthew Hudson
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- School of Psychology, University of Plymouth, Plymouth, United Kingdom
- Brain Research & Imaging Centre, University of Plymouth, Plymouth, United Kingdom
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku and Turku University Hospital, 20520, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Fuchs BA, Pearce AL, Rolls BJ, Wilson SJ, Rose EJ, Geier CF, Garavan H, Keller KL. The Cerebellar Response to Visual Portion Size Cues Is Associated with the Portion Size Effect in Children. Nutrients 2024; 16:738. [PMID: 38474866 DOI: 10.3390/nu16050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The neural mechanisms underlying susceptibility to eating more in response to large portions (i.e., the portion size effect) remain unclear. Thus, the present study examined how neural responses to portion size relate to changes in weight and energy consumed as portions increase. Associations were examined across brain regions traditionally implicated in appetite control (i.e., an appetitive network) as well as the cerebellum, which has recently been implicated in appetite-related processes. Children without obesity (i.e., BMI-for-age-and-sex percentile < 90; N = 63; 55% female) viewed images of larger and smaller portions of food during fMRI and, in separate sessions, ate four meals that varied in portion size. Individual-level linear and quadratic associations between intake (kcal, grams) and portion size (i.e., portion size slopes) were estimated. The response to portion size in cerebellar lobules IV-VI was associated with the quadratic portion size slope estimated from gram intake; a greater response to images depicting smaller compared to larger portions was associated with steeper increases in intake with increasing portion sizes. Within the appetitive network, neural responses were not associated with portion size slopes. A decreased cerebellar response to larger amounts of food may increase children's susceptibility to overeating when excessively large portions are served.
Collapse
Affiliation(s)
- Bari A Fuchs
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alaina L Pearce
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara J Rolls
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma J Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles F Geier
- Human Development and Family Science, University of Georgia, Athens, GA 31793, USA
| | - Hugh Garavan
- Department of Psychological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Kathleen L Keller
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Alabdulkader S, Al-Alsheikh AS, Miras AD, Goldstone AP. Obesity surgery and neural correlates of human eating behaviour: A systematic review of functional MRI studies. Neuroimage Clin 2024; 41:103563. [PMID: 38237270 PMCID: PMC10828606 DOI: 10.1016/j.nicl.2024.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Changes in eating behaviour including reductions in appetite and food intake, and healthier food cue reactivity, reward, hedonics and potentially also preference, contribute to weight loss and its health benefits after obesity surgery. Functional magnetic resonance imaging (fMRI) has been increasingly used to interrogate the neural correlates of eating behaviour in obesity, including brain reward-cognitive systems, changes after obesity surgery, and links with alterations in the gut-hormone-brain axis. Neural responses to food cues can be measured by changes in blood oxygen level dependent (BOLD) signal in brain regions involved in reward processing, including caudate, putamen, nucleus accumbens, insula, amygdala, orbitofrontal cortex, and top-down inhibitory control, including dorsolateral prefrontal cortex (dlPFC). This systematic review aimed to examine: (i) results of human fMRI studies involving obesity surgery, (ii) important methodological differences in study design across studies, and (iii) correlations and associations of fMRI findings with clinical outcomes, other eating behaviour measures and mechanistic measures. Of 741 articles identified, 23 were eligible for inclusion: 16 (69.6%) longitudinal, two (8.7%) predictive, and five (21.7%) cross-sectional studies. Seventeen studies (77.3%) included patients having Roux-en-Y gastric bypass (RYGB) surgery, six (26.1%) vertical sleeve gastrectomy (VSG), and five (21.7%) laparoscopic adjustable gastric banding (LAGB). The majority of studies (86.0%) were identified as having a very low risk of bias, though only six (27.3%) were controlled interventional studies, with none including randomisation to surgical and control interventions. The remaining studies (14.0%) had a low risk of bias driven by their control groups not having an active treatment. After RYGB surgery, food cue reactivity often decreased or was unchanged in brain reward systems, and there were inconsistent findings as to whether reductions in food cue reactivity was greater for high-energy than low-energy foods. There was minimal evidence from studies of VSG and LAGB surgeries for changes in food cue reactivity in brain reward systems, though effects of VSG surgery on food cue reactivity in the dlPFC were more consistently found. There was consistent evidence for post-operative increases in satiety gut hormones glucagon-like-peptide 1 (GLP-1) and peptide YY (PYY) mediating reduced food cue reactivity after RYGB surgery, including two interventional studies. Methodological heterogeneity across studies, including nutritional state, nature of food cues, post-operative timing, lack of control groups for order effects and weight loss or dietary/psychological advice, and often small sample sizes, limited the conclusions that could be drawn, especially for correlational analyses with clinical outcomes, other eating behaviour measures and potential mediators. This systematic review provides a detailed data resource for those performing or analysing fMRI studies of obesity surgery and makes suggestions to help improve reporting and design of such studies, as well as future directions.
Collapse
Affiliation(s)
- Shahd Alabdulkader
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia; Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| | - Alhanouf S Al-Alsheikh
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Alexander D Miras
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London W12 0NN, UK; Ulster University, School of Medicine, Faculty of Life & Health Sciences, Londonderry, Northern Ireland BT48 7JL, UK.
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.
| |
Collapse
|
4
|
Choi H, Byeon K, Lee J, Hong S, Park B, Park H. Identifying subgroups of eating behavior traits unrelated to obesity using functional connectivity and feature representation learning. Hum Brain Mapp 2024; 45:e26581. [PMID: 38224537 PMCID: PMC10789215 DOI: 10.1002/hbm.26581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Eating behavior is highly heterogeneous across individuals and cannot be fully explained using only the degree of obesity. We utilized unsupervised machine learning and functional connectivity measures to explore the heterogeneity of eating behaviors measured by a self-assessment instrument using 424 healthy adults (mean ± standard deviation [SD] age = 47.07 ± 18.89 years; 67% female). We generated low-dimensional representations of functional connectivity using resting-state functional magnetic resonance imaging and estimated latent features using the feature representation capabilities of an autoencoder by nonlinearly compressing the functional connectivity information. The clustering approaches applied to latent features identified three distinct subgroups. The subgroups exhibited different levels of hunger traits, while their body mass indices were comparable. The results were replicated in an independent dataset consisting of 212 participants (mean ± SD age = 38.97 ± 19.80 years; 35% female). The model interpretation technique of integrated gradients revealed that the between-group differences in the integrated gradient maps were associated with functional reorganization in heteromodal association and limbic cortices and reward-related subcortical structures such as the accumbens, amygdala, and caudate. The cognitive decoding analysis revealed that these systems are associated with reward- and emotion-related systems. Our findings provide insights into the macroscopic brain organization of eating behavior-related subgroups independent of obesity.
Collapse
Affiliation(s)
- Hyoungshin Choi
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
| | | | - Jong‐eun Lee
- Department of Electrical and Computer EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
| | - Seok‐Jun Hong
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- Center for the Developing BrainChild Mind InstituteNew YorkUSA
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Bo‐yong Park
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- Department of Data ScienceInha UniversityIncheonRepublic of Korea
- Department of Statistics and Data ScienceInha UniversityIncheonRepublic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwonRepublic of Korea
- School of Electronic and Electrical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
5
|
Zhao B, Li T, Li Y, Fan Z, Xiong D, Wang X, Gao M, Smith SM, Zhu H. An atlas of trait associations with resting-state and task-evoked human brain functional organizations in the UK Biobank. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:1-23. [PMID: 38770197 PMCID: PMC11105703 DOI: 10.1162/imag_a_00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used to identify brain regions linked to critical functions, such as language and vision, and to detect tumors, strokes, brain injuries, and diseases. It is now known that large sample sizes are necessary for fMRI studies to detect small effect sizes and produce reproducible results. Here we report a systematic association analysis of 647 traits with imaging features extracted from resting-state and task-evoked fMRI data of more than 40,000 UK Biobank participants. We used a parcellation-based approach to generate 64,620 functional connectivity measures to reveal fine-grained details about cerebral cortex functional organizations. The difference between functional organizations at rest and during task was examined, and we have prioritized important brain regions and networks associated with a variety of human traits and clinical outcomes. For example, depression was most strongly associated with decreased connectivity in the somatomotor network. We have made our results publicly available and developed a browser framework to facilitate the exploration of brain function-trait association results (http://fmriatlas.org/).
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- These authors contributed equally to this work
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mufeng Gao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen M. Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Li Z, Wu X, Gao H, Xiang T, Zhou J, Zou Z, Tong L, Yan B, Zhang C, Wang L, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Li H, Zeng Q, Li Y. Intermittent energy restriction changes the regional homogeneity of the obese human brain. Front Neurosci 2023; 17:1201169. [PMID: 37600013 PMCID: PMC10434787 DOI: 10.3389/fnins.2023.1201169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Intermittent energy restriction (IER) is an effective weight loss strategy. However, the accompanying changes in spontaneous neural activity are unclear, and the relationship among anthropometric measurements, biochemical indicators, and adipokines remains ambiguous. Methods Thirty-five obese adults were recruited and received a 2-month IER intervention. Data were collected from anthropometric measurements, blood samples, and resting-state functional magnetic resonance imaging at four time points. The regional homogeneity (ReHo) method was used to explore the effects of the IER intervention. The relationships between the ReHo values of altered brain regions and changes in anthropometric measurements, biochemical indicators, and adipokines (leptin and adiponectin) were analyzed. Results Results showed that IER significantly improved anthropometric measurements, biochemical indicators, and adipokine levels in the successful weight loss group. The IER intervention for weight loss was associated with a significant increase in ReHo in the bilateral lingual gyrus, left calcarine, and left postcentral gyrus and a significant decrease in the right middle temporal gyrus and right cerebellum (VIII). Follow-up analyses showed that the increase in ReHo values in the right LG had a significant positive correlation with a reduction in Three-factor Eating Questionnaire (TFEQ)-disinhibition and a significant negative correlation with an increase in TFEQ-cognitive control. Furthermore, the increase in ReHo values in the left calcarine had a significant positive correlation with the reduction in TFEQ-disinhibition. However, no significant difference in ReHo was observed in the failed weight loss group. Conclusion Our study provides objective evidence that the IER intervention reshaped the ReHo of some brain regions in obese individuals, accompanied with improved anthropometric measurements, biochemical indicators, and adipokines. These results illustrated that the IER intervention for weight loss may act by decreasing the motivational drive to eat, reducing reward responses to food cues, and repairing damaged food-related self-control processes. These findings enhance our understanding of the neurobiological basis of IER for weight loss in obesity.
Collapse
Affiliation(s)
- Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Tianyuan Xiang
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huimin Ma
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Na Mi
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Hao Li
- Department of Oral Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Qiang Zeng
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Xinyuan L, Ximei C, Qingqing L, Guangcan X, Wei L, Mingyue X, Xiaoli D, Shiqing S, Yong L, Hong C. Altered resting-state functional connectivity of medial frontal cortex in overweight individuals: Link to food-specific intentional inhibition and weight gain. Behav Brain Res 2022; 433:114003. [PMID: 35811002 DOI: 10.1016/j.bbr.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Numerous findings from functional neuroimaging research suggest that overweight may be associated with alterations in reactive inhibition. However, there is a dearth of research investigating the functional connectivity that mediates intentional inhibition in overweight individuals. To explore this issue, 55 overweight and 45 normal-weight adults completed an assessment consisting of a resting-state functional magnetic resonance imaging scan, a behavioural task measuring food-specific intentional inhibition, and a 1-year longitudinal measurement of BMI change. A seed-based approach was employed to examine the group-difference of the resting-state functional connectivity (rsFC) of the medial frontal cortex (MFC) (dorsal fronto-medial cortex [dFMC], pre-supplementary motor area, and premotor cortex) regions involved in intentional inhibition. Compared with normal-weight adults, the overweight individuals exhibited higher rsFC between the MFC seeds and (i) cerebellum, (ii) postcentral gyrus, (iii) middle temporal gyrus, and (iv) posterior cingulate cortex, while lower rsFC strength were observed between MFC seeds and (i) putamen and (ii) insula. The overweight individuals with higher dFMC-cerebellum rsFC strength showed poorer performance in food-specific intentional inhibition and gained more weight a year later than those of normal-weight participants. Results suggested that altered functional connections between MFC and regions associated with reward and maladaptive eating may be key neural mechanisms of food-specific intentional inhibition in overweight status. Therefore, individuals are encouraged to make informed decisions about their health and reduce their consumption of obesogenic foods from the perspective of intentional inhibition.
Collapse
Affiliation(s)
- Liu Xinyuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Ximei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Qingqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiang Guangcan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiao Mingyue
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Du Xiaoli
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Song Shiqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Liu Yong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Hong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
8
|
Syan SK, McIntyre-Wood C, Minuzzi L, Hall G, McCabe RE, MacKillop J. Dysregulated resting state functional connectivity and obesity: A systematic review. Neurosci Biobehav Rev 2021; 131:270-292. [PMID: 34425125 DOI: 10.1016/j.neubiorev.2021.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Obesity has been variously linked to differences in brain functional connectivity in regions associated with reward, emotional regulation and cognition, potentially revealing neural mechanisms contributing to its development and maintenance. This systematic review summarizes and critically appraises the existing literature on differences in resting state functional connectivity (Rs-FC) between overweight and individuals with obesity in relation healthy-BMI controls. Twenty-nine studies were identified and the results consistently support the hypothesis that obesity is associated with differences in Rs-FC. Specifically, obesity/overweight was consistently associated with (i) DMN hypoconnectivity and salience network hyperconnectivity; (ii) increased Rs-FC between the hypothalamus and reward, limbic and salience networks, and decreased Rs-FC between the hypothalamus and cognitive regions; (iii) increased power within regions associated with inhibition/emotional reasoning; (iv) decreased nodal efficiency, degree centrality, and global efficiency. Collectively, the results suggest obesity is associated with disrupted connectivity of brain networks responsible for cognition, reward, self-referential processing and emotional regulation.
Collapse
Affiliation(s)
- Sabrina K Syan
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Carly McIntyre-Wood
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada
| | - Luciano Minuzzi
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Randi E McCabe
- Anxiety Treatment and Research Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Nakamura Y, Koike S. Association of Disinhibited Eating and Trait of Impulsivity With Insula and Amygdala Responses to Palatable Liquid Consumption. Front Syst Neurosci 2021; 15:647143. [PMID: 34012386 PMCID: PMC8128107 DOI: 10.3389/fnsys.2021.647143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Eating behavior is not only influenced by the current energy balance, but also by the behavioral characteristics of eating. One of the recognized eating behavior constructs is ‘disinhibited eating,’ which refers to the tendency to overeat in response to negative emotional states or the presence of highly palatable foods. Food-related disinhibition is involved in binge eating, weight gain, and obesity and is also associated with the trait of impulsivity, which in turn, is linked to weight gain or maladaptive eating. However, the relationships among food-related disinhibition, the trait of impulsivity, and the neural substrates of eating behaviors in adolescence remain unclear. Therefore, we designed a functional magnetic resonance imaging (fMRI) study to examine the associations between brain responses to palatable liquid consumption and disinhibited eating behavior or impulsivity in healthy adolescents. Thirty-four adolescents (mean age ± standard deviation = 17.12 ± 1.91 years, age range = 14–19 years, boys = 15, girls = 19) participated in this study. Disinhibited eating was assessed with the disinhibition subscale of the Three-Factor Eating Questionnaire, while impulsivity was assessed using the Barratt impulsiveness scale. Participants received two fMRI sessions−a palatable liquid consumption fMRI and a resting-state fMRI. The fMRI experiment showed that increased disinhibited eating was positively associated with a greater insular response to palatable liquid consumption, while increased impulsivity was positively correlated with a greater amygdala response. The resting-state fMRI experiment showed that increased disinhibited eating was positively correlated with strengthened intrinsic functional connectivity between the insula and the amygdala, adjusting for sex (estimates of the beta coefficients = 0.146, standard error = 0.068, p = 0.040). Given that the amygdala and insular cortex are structurally and functionally connected and involved in trait impulsivity and ingestive behavior, our findings suggest that increased disinhibited eating would be associated with impulsivity via strengthened intrinsic functional connectivity between the insula and amygdala and linked to maladaptive eating.
Collapse
Affiliation(s)
- Yuko Nakamura
- UTokyo Center for Integrative Science of Human Behavior, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- UTokyo Center for Integrative Science of Human Behavior, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.,UTokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.,Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Haynos AF, Camchong J, Pearson CM, Lavender JM, Mueller BA, Peterson CB, Specker S, Raymond N, Lim KO. Resting State Hypoconnectivity of Reward Networks in Binge Eating Disorder. Cereb Cortex 2021; 31:2494-2504. [PMID: 33415334 DOI: 10.1093/cercor/bhaa369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical presentation of binge eating disorder (BED) and data emerging from task-based functional neuroimaging research suggests that this disorder may be associated with alterations in reward processing. However, there is a dearth of research investigating the functional organization of brain networks that mediate reward in BED. To address this gap, 27 adults with BED and 21 weight-matched healthy controls (WMC) completed a multimodel assessment consisting of a resting functional magnetic resonance imaging scan, behavioral tasks measuring reward-based decision-making (i.e., delay discounting and reversal learning), and self-report assessing clinical symptoms. A seed-based approach was employed to examine the resting state functional connectivity (rsFC) of the striatum (nucleus accumbens [NAcc] and ventral and dorsal caudate), a collection of regions implicated in reward processing. Compared with WMC, the BED group exhibited lower rsFC of striatal seeds, with frontal regions mediating executive functioning (e.g., superior frontal gyrus [SFG]) and posterior, parietal, and temporal regions implicated in emotional processing. Lower NAcc-SFG rsFC was associated with more difficulties with reversal learning and binge eating frequency in the BED group. Results suggest that hypoconnectivity of striatal networks that integrate self-regulation and reward processing may promote the clinical phenomenology of BED. Interventions for BED may benefit from targeting these circuit-based disturbances.
Collapse
Affiliation(s)
- Ann F Haynos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Jazmin Camchong
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Carolyn M Pearson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Jason M Lavender
- Military Cardiovascular Outcomes Research (MiCOR) Program, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, 20814 MD, USA.,Metis Foundation, San Antonio, 78205 TX, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Carol B Peterson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Sheila Specker
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA
| | - Nancy Raymond
- Department of Psychiatry, University of Wisconsin, Madison, 53719 WI, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, 55454 MN, USA.,Minneapolis VA Health Care System, Minneapolis, 55417 MN, USA
| |
Collapse
|
11
|
Nechifor RE, Ciobanu D, Vonica CL, Popita C, Roman G, Bala C, Mocan A, Inceu G, Craciun A, Rusu A. Social jetlag and sleep deprivation are associated with altered activity in the reward-related brain areas: an exploratory resting-state fMRI study. Sleep Med 2020; 72:12-19. [PMID: 32540632 DOI: 10.1016/j.sleep.2020.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this research was to assess the effect of social jetlag (SJL) and its interaction with partial sleep deprivation on resting-state brain activity using the fractional amplitude of low-frequency fluctuation (fALFF) during free-living conditions. METHODS A total of 28 normal weight healthy subjects were enrolled in four study groups (with SJL [with sleep deprivation and without sleep deprivation] and without SJL [with sleep deprivation and without sleep deprivation]), matched 1:1:1:1 for age, gender, and body mass index (BMI). Resting-state functional magnetic resonance imaging (fMRI) scans were collected with SIEMENS 3T scanner while subjects were in a fasting state. RESULTS Participants with SJL had significantly higher fALFF values in right lingual gyrus and right putamen and significantly lower fALFF values in left and right inferior parietal lobe in comparison with participants without SJL and without sleep deprivation. Subjects with sleep deprivation had significantly higher fALFF in the thalamus and left superior frontal gyrus. In those with both SJL and sleep deprivation, we observed higher fALFF values in right Brodmann Area (BA)18 and lower values in left and right parietal inferior lobe. Subjects with SJL alone had significantly lower fALFF values in left frontal mid gyrus (BA6) than those with sleep deprivation alone. CONCLUSIONS SJL was associated with altered resting-state brain activity in regions that have been shown to be involved in hedonic feeding. The effect of SJL was independent of effects induced by short sleep duration. These alterations might represent the substrate for the increased risk of obesity observed in those with SJL.
Collapse
Affiliation(s)
- Ruben Emanuel Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Dana Ciobanu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Larisa Vonica
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Popita
- Department of Radiology and Medical Imaging, The Oncology Institute "Prof. Dr. Ion Chiricuţă", Cluj-Napoca, Romania.
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Cornelia Bala
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Andreia Mocan
- Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Georgeta Inceu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Craciun
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Rusu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Shapiro ALB, Johnson SL, Sutton B, Legget KT, Dabelea D, Tregellas JR. Eating in the absence of hunger in young children is related to brain reward network hyperactivity and reduced functional connectivity in executive control networks. Pediatr Obes 2019; 14:e12502. [PMID: 30659756 PMCID: PMC6684353 DOI: 10.1111/ijpo.12502] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Recent work has implicated disinhibited eating behaviours (DEB) as a potential pathway toward obesity development in children. However, the underlying neurobiology of disinhibited eating behaviours in young, healthy weight children, prior to obesity development, remains unknown. OBJECTIVES This study tested the relationship between DEB and intrinsic neuronal activity and connectivity in young children without obesity. METHODS Brain networks implicated in overeating including reward, salience and executive control networks, and the default mode network were investigated. DEB was measured by the eating in the absence of hunger (EAH) paradigm with postlunch kilocalories consumed from highly palatable foods (EAH kcal) used as the predictor. Intrinsic neuronal activity within and connectivity between specified networks were measured via resting-state functional magnetic resonance imaging. Eighteen typically developing children (mean age = 5.8 years) were included. RESULTS EAH kcal was positively associated with activity of the nucleus accumbens, a major reward network hub (P < 0.05, corrected). EAH kcal was negatively associated with intrinsic prefrontal cortex connectivity to the striatum (P < 0.01, corrected). CONCLUSIONS These results suggest that neural aspects of DEB are detectable in young children without obesity, providing a potential tool to better understand the development of obesity in this population.
Collapse
Affiliation(s)
- Allison L. B. Shapiro
- Department of Psychiatry, School of Medicine, University of Colorado at Anschutz Medical Campus (CU-Anschutz)
| | | | - Brianne Sutton
- Department of Psychiatry, School of Medicine, University of Colorado at Anschutz Medical Campus (CU-Anschutz)
| | - Kristina T. Legget
- Department of Psychiatry, School of Medicine, University of Colorado at Anschutz Medical Campus (CU-Anschutz)
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, CU-Anschutz
| | - Jason R. Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado at Anschutz Medical Campus (CU-Anschutz)
- Research Service, Denver Veteran’s Administration Medical Center
| |
Collapse
|
13
|
Al-Zubaidi A, Heldmann M, Mertins A, Brabant G, Nolde JM, Jauch-Chara K, Münte TF. Impact of Hunger, Satiety, and Oral Glucose on the Association Between Insulin and Resting-State Human Brain Activity. Front Hum Neurosci 2019; 13:162. [PMID: 31178708 PMCID: PMC6544009 DOI: 10.3389/fnhum.2019.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
To study the interplay of metabolic state (hungry vs. satiated) and glucose administration (including hormonal modulation) on brain function, resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were obtained in 24 healthy normal-weight men in a repeated measurement design. Participants were measured twice: once after a 36 h fast (except water) and once under satiation (three meals/day for 36 h). During each session, rs-fMRI and hormone concentrations were recorded before and after a 75 g oral dose of glucose. We calculated the amplitude map from blood-oxygen-level-dependent (BOLD) signals by using the fractional amplitude of low-frequency fluctuation (fALFF) approach for each volunteer per condition. Using multiple linear regression analysis (MLRA) the interdependence of brain activity, plasma insulin and blood glucose was investigated. We observed a modulatory impact of fasting state on intrinsic brain activity in the posterior cingulate cortex (PCC). Strikingly, differences in plasma insulin levels between hunger and satiety states after glucose administration at the time of the scan were negatively related to brain activity in the posterior insula and superior frontal gyrus (SFG), while plasma glucose levels were positively associated with activity changes in the fusiform gyrus. Furthermore, we could show that changes in plasma insulin enhanced the connectivity between the posterior insula and SFG. Our results indicate that hormonal signals like insulin alleviate an acute hemostatic energy deficit by modifying the homeostatic and frontal circuitry of the human brain.
Collapse
Affiliation(s)
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Alfred Mertins
- Institute for Signal Processing, University of Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | | | - Kamila Jauch-Chara
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Vainik U, García-García I, Dagher A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. Eur J Neurosci 2019; 50:2430-2445. [PMID: 30667547 DOI: 10.1111/ejn.14352] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Many eating-related psychological constructs have been proposed to explain obesity and overeating. However, these constructs, including food addiction, disinhibition, hedonic hunger, emotional eating, binge eating and the like all have similar definitions, emphasizing loss of control over intake. As questionnaires measuring the constructs correlate strongly (r > 0.5) with each other, we propose that these constructs should be reconsidered to be part of a single broad phenotype: uncontrolled eating. Such an approach enables reviewing and meta-analysing evidence obtained with each individual questionnaire. Here, we describe robust associations between uncontrolled eating, body mass index (BMI), food intake, personality traits and brain systems. Reviewing cross-sectional and longitudinal data, we show that uncontrolled eating is phenotypically and genetically intertwined with BMI and food intake. We also review evidence on how three psychological constructs are linked with uncontrolled eating: lower cognitive control, higher negative affect and a curvilinear association with reward sensitivity. Uncontrolled eating mediates all three constructs' associations with BMI and food intake. Finally, we review and meta-analyse brain systems possibly subserving uncontrolled eating: namely, (i) the dopamine mesolimbic circuit associated with reward sensitivity, (ii) frontal cognitive networks sustaining dietary self-control and (iii) the hypothalamus-pituitary-adrenal axis, amygdala and hippocampus supporting stress reactivity. While there are limits to the explanatory and predictive power of the uncontrolled eating phenotype, we conclude that treating different eating-related constructs as a single concept, uncontrolled eating, enables drawing robust conclusions on the relationship between food intake and BMI, psychological variables and brain structure and function.
Collapse
Affiliation(s)
- Uku Vainik
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Institute of Psychology, University of Tartu, Tartu, Estonia
| | | | - Alain Dagher
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Martín-Pérez C, Contreras-Rodríguez O, Vilar-López R, Verdejo-García A. Hypothalamic Networks in Adolescents With Excess Weight: Stress-Related Connectivity and Associations With Emotional Eating. J Am Acad Child Adolesc Psychiatry 2019; 58:211-220.e5. [PMID: 30738548 DOI: 10.1016/j.jaac.2018.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Adolescents with excess weight are particularly sensitive to stress, which may contribute to the presence of emotional eating behaviors. It is proposed that this may be due to alterations in the connectivity between hypothalamic networks and regions of the "emotional nervous system," involved in the regulation of energy balance and stress processing. However, this remains to be clarified in adolescents with excess weight. METHOD We investigated whole-brain differences in the functional connectivity of the medial and lateral hypothalamus (MH and LH) between adolescents with excess weight (EW, n = 53; mean age = 14.64 years, SD = 1.78) and normal weight (NW, n = 51; mean age = 15.29 years, SD = 1.75) using seed-based resting-state analyses. Then, in a subset of 22 adolescents with EW (mean age = 15.75 years, SD = 1.70) and 32 with NW (mean age = 15.27, SD = 2.03), we explored for group interactions between the MH/LH networks and stress response in the Trier Social Stress Task (TSST) and emotional eating, assessed with the Dutch Eating Behavior Questionnaire (DEB-Q). RESULTS Compared to NW, EW showed higher functional connectivity in the LH-orbitofrontal cortex, ventral striatum, anterior insula, and in the MH-middle temporal cortex networks. EW also showed lower connectivity in the LH-cerebellum, and in the MH-middle prefrontal, pre-, and postcentral gyri networks. In EW, higher connectivity of the LH-nucleus accumbens and LH-midbrain networks were associated with stress response. Higher connectivity in the LH-midbrain was also associated with a greater presence of emotional eating behaviors in EW. CONCLUSION Adolescents with EW showed functional connectivity alterations within both MH/LH networks. Alterations in the LH network were linked with higher levels of stress response and emotional-driven eating patterns.
Collapse
Affiliation(s)
| | - Oren Contreras-Rodríguez
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM-17), Barcelona, Spain.
| | | | - Antonio Verdejo-García
- School of Psychological Sciences, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Poulimeneas D, Yannakoulia M, Anastasiou CA, Scarmeas N. Weight Loss Maintenance: Have We Missed the Brain? Brain Sci 2018; 8:brainsci8090174. [PMID: 30208568 PMCID: PMC6162665 DOI: 10.3390/brainsci8090174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/29/2022] Open
Abstract
Even though obese individuals often succeed with weight loss, long-term weight loss maintenance remains elusive. Dietary, lifestyle and psychosocial correlates of weight loss maintenance have been researched, yet the nature of maintenance is still poorly understood. Studying the neural processing of weight loss maintainers may provide a much-needed insight towards sustained obesity management. In this narrative review, we evaluate and critically discuss available evidence regarding the food-related neural responses of weight loss maintainers, as opposed to those of obese or lean persons. While research is still ongoing, available data indicate that following weight loss, maintainers exhibit persistent reward related feeling over food, similar to that of obese persons. However, unlike in obese persons, in maintainers, reward-related brain activity appears to be counteracted by subsequently heightened inhibition. These findings suggest that post-dieting, maintainers acquire a certain level of cognitive control which possibly protects them from weight regaining. The prefrontal cortex, as well as the limbic system, encompass key regions of interest for weight loss maintenance, and their contributions to long term successful weight loss should be further explored. Future possibilities and supportive theories are discussed.
Collapse
Affiliation(s)
- Dimitrios Poulimeneas
- Department of Nutrition and Dietetics, Harokopio University, GR 17676 Athens, Greece.
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, GR 17676 Athens, Greece.
| | - Costas A Anastasiou
- Department of Nutrition and Dietetics, Harokopio University, GR 17676 Athens, Greece.
- Eginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, GR 15772 Athens, Greece.
| | - Nikolaos Scarmeas
- Eginition Hospital, 1st Neurology Clinic, Department of Social Medicine, Psychiatry and Neurology, National and Kapodistrian University of Athens, GR 15772 Athens, Greece.
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
17
|
Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab 2018; 28:33-44.e3. [PMID: 29909968 DOI: 10.1016/j.cmet.2018.05.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.
Collapse
|
18
|
Gupta A, Mayer EA, Labus JS, Bhatt RR, Ju T, Love A, Bal A, Tillisch K, Naliboff B, Sanmiguel CP, Kilpatrick LA. Sex Commonalities and Differences in Obesity-Related Alterations in Intrinsic Brain Activity and Connectivity. Obesity (Silver Spring) 2018; 26:340-350. [PMID: 29280306 PMCID: PMC5783781 DOI: 10.1002/oby.22060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study aimed to characterize obesity-related sex differences in the intrinsic activity and connectivity of the brain's reward networks. METHODS Eighty-six women (n = 43) and men (n = 43) completed a 10-minute resting functional magnetic resonance imaging scan. Sex differences and commonalities in BMI-related frequency power distribution and reward seed-based connectivity were investigated by using partial least squares analysis. RESULTS For whole-brain activity in both men and women, increased BMI was associated with increased slow-5 activity in the left globus pallidus (GP) and substantia nigra. In women only, increased BMI was associated with increased slow-4 activity in the right GP and bilateral putamen. For seed-based connectivity in women, increased BMI was associated with reduced slow-5 connectivity between the left GP and putamen and the emotion and cortical regulation regions, but in men, increased BMI was associated with increased connectivity with the medial frontal cortex. In both men and women, increased BMI was associated with increased slow-4 connectivity between the right GP and bilateral putamen and the emotion regulation and sensorimotor-related regions. CONCLUSIONS The stronger relationship between increased BMI and decreased connectivity of core reward network components with cortical and emotion regulation regions in women may be related to the greater prevalence of emotional eating. The present findings suggest the importance of personalized treatments for obesity that consider the sex of the affected individual.
Collapse
Affiliation(s)
- Arpana Gupta
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
| | - Emeran A. Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
- Ahmanson-Lovelace Brain Mapping Center at University of California Los Angeles (UCLA)
| | - Jennifer S. Labus
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
| | - Ravi R. Bhatt
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- Pediatric Pain and Palliative Care Program at UCLA
| | - Tiffany Ju
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
| | - Aubrey Love
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
| | - Amanat Bal
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
| | - Kirsten Tillisch
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
- Pediatric Pain and Palliative Care Program at UCLA
| | - Bruce Naliboff
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
| | - Claudia P. Sanmiguel
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
| | - Lisa A. Kilpatrick
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Ingestive Behavior and Obesity Program, University of California Los Angeles (UCLA)
- David Geffen School of Medicine, University of California Los Angeles (UCLA)
- Vatche and Tamar Manoukin Division of Digestive Diseases, University of California Los Angeles (UCLA)
| |
Collapse
|
19
|
Contreras-Rodríguez O, Vilar-López R, Andrews ZB, Navas JF, Soriano-Mas C, Verdejo-García A. Altered cross-talk between the hypothalamus and non-homeostatic regions linked to obesity and difficulty to lose weight. Sci Rep 2017; 7:9951. [PMID: 28855582 PMCID: PMC5577266 DOI: 10.1038/s41598-017-09874-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between the hypothalamus and non-homeostatic regions may contribute to explain the difficulty to lose weight in obesity, an assumption never tested in human longitudinal studies. We investigated whether the functional connectivity between the medial and lateral hypothalamus (MH and LH) and corticostriatal regions differs between individuals with excess weight (n = 42) and normal weight (n = 39) using a seed-based resting-state approach. In addition, we examined the longitudinal association between functional connectivity and weight loss in a 3-month follow-up diet. Results showed that participants with excess weight had increased connectivity between the MH and the striatum and subgenual anterior cingulate cortex, and decreased connectivity with the middle frontal gyrus, and the bed nucleus of the stria terminalis (BNST), as well as a decreased connectivity between the LH and the cerebellum. Decreased connectivity between the MH and the posterior part of the BNST, and between the LH and the cerebellar cortex, predicted a greater percentage of weight loss. Functional connectivity measures explained 36% of the 3-month weight change among individuals with excess weight. We conclude that altered functional connectivity between homeostatic-hypothalamic regions and non-homeostatic corticostriatal and cerebellar regions is linked to obesity and difficulty to lose weight.
Collapse
Affiliation(s)
- Oren Contreras-Rodríguez
- Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM-17), Barcelona, Spain
| | - Raquel Vilar-López
- Red de Trastornos Adictivos, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Center, Universidad de Granada, Granada, Spain
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Department of Physiology, Monash University, Melbourne, Australia
| | - Juan F Navas
- Mind, Brain and Behavior Research Center, Universidad de Granada, Granada, Spain
- Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Carles Soriano-Mas
- Psychiatry Department, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM-17), Barcelona, Spain.
- Department of Psychobiology and Methodology of Health Sciences, University Autònoma de Barcelona, Barcelona, Spain.
| | - Antonio Verdejo-García
- Red de Trastornos Adictivos, University of Granada, Granada, Spain
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Australia
| |
Collapse
|
20
|
Olivo G, Zhou W, Sundbom M, Zhukovsky C, Hogenkamp P, Nikontovic L, Stark J, Wiemerslage L, Larsson EM, Benedict C, Schiöth HB. Resting-state brain connectivity changes in obese women after Roux-en-Y gastric bypass surgery: A longitudinal study. Sci Rep 2017; 7:6616. [PMID: 28747648 PMCID: PMC5529553 DOI: 10.1038/s41598-017-06663-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022] Open
Abstract
Bariatric surgery is an effective method to rapidly induce weight loss in severely obese people, however its impact on brain functional connectivity after longer periods of follow-up is yet to be assessed. We investigated changes in connectivity in 16 severely obese women one month before, one month after and one year after Roux-en-Y gastric bypass surgery (RYGB). 12 lean controls were also enrolled. Resting-state fMRI was acquired for all participants following an overnight fast and after a 260 kcal load. Connectivity between regions involved in food-related saliency attribution and reward-driven eating behavior was stronger in presurgery patients compared to controls, but progressively weakened after follow-up. At one year, changes in networks related to cognitive control over eating and bodily perception also occurred. Connectivity between regions involved in emotional control and social cognition had a temporary reduction early after treatment but had increased again after one year of follow-up. Furthermore, we could predict the BMI loss by presurgery connectivity in areas linked to emotional control and social interaction. RYGBP seems to reshape brain functional connectivity, early affecting cognitive control over eating, and these changes could be an important part of the therapeutic effect of bariatric surgery.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | - Wei Zhou
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Upper Gastrointestinal Surgery, Uppsala University, Uppsala, Sweden
| | - Christina Zhukovsky
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Pleunie Hogenkamp
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Lamia Nikontovic
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Julia Stark
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Christian Benedict
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Sun X, Luquet S, Small DM. DRD2: Bridging the Genome and Ingestive Behavior. Trends Cogn Sci 2017; 21:372-384. [PMID: 28372879 DOI: 10.1016/j.tics.2017.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
Recent work highlights the importance of genetic variants that influence brain structure and function in conferring risk for polygenic obesity. The neurotransmitter dopamine (DA) has a pivotal role in energy balance by integrating metabolic signals with circuits supporting cognitive, perceptual, and appetitive functions that guide feeding. It has also been established that diet and obesity alter DA signaling, leading to compulsive-like feeding and neurocognitive impairments. This raises the possibility that genetic variants that influence DA signaling and adaptation confer risk for overeating and cognitive decline. Here, we consider the role of two common gene variants, FTO and TaqIA rs1800497 in driving gene × environment interactions promoting obesity, metabolic dysfunction, and cognitive change via their influence on DA receptor subtype 2 (DRD2) signaling.
Collapse
Affiliation(s)
- Xue Sun
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, BFA CNRS UMR 8251, Paris, France; Modern Diet and Physiology Research Center, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA; The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
22
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|