1
|
Wang X, Zhang Z, Deng L, Dong J. Co-Community Network Analysis Reveals Alterations in Brain Networks in Alzheimer's Disease. Brain Sci 2025; 15:517. [PMID: 40426688 PMCID: PMC12110574 DOI: 10.3390/brainsci15050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Alzheimer's disease (AD) is a common neurodegenerative disease. Functional magnetic resonance imaging (fMRI) can be used to measure the temporal correlation of blood-oxygen-level-dependent (BOLD) signals in the brain to assess the brain's intrinsic connectivity and capture dynamic changes in the brain. In this study, our research goal is to investigate how the brain network structure, as measured by resting-state fMRI, differs across distinct physiological states. Method: With the research goal of addressing the limitations of BOLD signal-based brain networks constructed using Pearson correlation coefficients, individual brain networks and community detection are used to study the brain networks based on co-community probability matrices (CCPMs). We used CCPMs and enrichment analysis to compare differences in brain network topological characteristics among three typical brain states. Result: The experimental results indicate that AD patients with increasing disease severity levels will experience the isolation of brain networks and alterations in the topological characteristics of brain networks, such as the Somatomotor Network (SMN), dorsal attention network (DAN), and Default Mode Network (DMN). Conclusion: This work suggests that using different data-driven methods based on CCPMs to study alterations in the topological characteristics of brain networks would provide better information complementarity, which can provide a novel analytical perspective for AD progression and a new direction for the extraction of neuro-biomarkers in the early diagnosis of AD.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Information Science & Technology, Xiamen University Tan Kah Kee College, Zhangzhou 363105, China;
| | - Zhaokai Zhang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361100, China;
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, Nanchang 330013, China;
| | - Jiyang Dong
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361100, China;
| |
Collapse
|
2
|
Guo M, Zhang H, Huang Y, Diao Y, Wang W, Li Z, Feng S, Zhou J, Ning Y, Wu F, Wu K. Transcriptional Patterns of Nodal Entropy Abnormalities in Major Depressive Disorder Patients with and without Suicidal Ideation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0659. [PMID: 40177647 PMCID: PMC11964328 DOI: 10.34133/research.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Previous studies have indicated that major depressive disorder (MDD) patients with suicidal ideation (SI) present abnormal functional connectivity (FC) and network organization in node-centric brain networks, ignoring the interactions among FCs. Whether the abnormalities of edge interactions affect the emergence of SI and are related to the gene expression remains largely unknown. In this study, resting-state functional magnetic resonance imaging (fMRI) data were collected from 90 first-episode, drug-naive MDD with suicidal ideation (MDDSI) patients, 60 first-episode, drug-naive MDD without suicidal ideation (MDDNSI) patients, and 98 healthy controls (HCs). We applied the methodology of edge-centric network analysis to construct the functional brain networks and calculate the nodal entropy. Furthermore, we examined the relationships between nodal entropy alterations and gene expression. The MDDSI group exhibited significantly lower subnetwork entropy in the dorsal attention network (DAN) and significantly greater subnetwork entropy in the default mode network than the MDDNSI group. The visual learning score of the measurement and treatment research to improve cognition in schizophrenia (MATRICS) consensus cognitive battery was negatively correlated with the subnetwork entropy of DAN in the MDDSI group. The support vector machine model based on nodal entropy achieved an accuracy of 81.87% when distinguishing the MDDNSI and MDDSI. Additionally, the changes in SI-related nodal entropy were associated with the expression of genes in cell signaling and interactions, as well as immune and inflammatory responses. These findings reveal the abnormalities in nodal entropy between the MDDSI and MDDNSI groups, demonstrated their association with molecular functions, and provided novel insights into the neurobiological underpinnings and potential markers for the prediction and prevention of suicide.
Collapse
Affiliation(s)
- Minxin Guo
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Heng Zhang
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry,
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yunheng Diao
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Wei Wang
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhaobo Li
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Shixuan Feng
- Department of Psychiatry,
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Zhou
- School of Material Science and Engineering,
South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction,
South China University of Technology, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry,
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry,
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China,
Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering,
South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction,
South China University of Technology, Guangzhou, China
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer,
Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Ruan Z, Zhou X, Rao B, Li Y, Sun W, Li T, Gao L, Xu H. Network dynamics in post-stroke cognitive impairment: insights from effective connectivity analysis. Brain Imaging Behav 2025; 19:346-356. [PMID: 39875625 DOI: 10.1007/s11682-025-00972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
This study investigates post-stroke cognitive impairment (PSCI) by utilizing spectral dynamic causal modeling (spDCM) to examine changes in effective connectivity (EC) within the default mode, executive control, dorsal attention, and salience networks. Forty-one PSCI patients and 41 demographically matched healthy controls underwent 3D-T1WI and resting-state functional magnetic resonance imaging on a 3.0T MRI. The study compared EC among eight representative regions of interest using spDCM and analyzed the correlation between altered EC and cognitive test scores. Subgroup analysis was conducted based on lesion location. The study found a significant increase in EC in the PSCI group, specifically from the posterior cingulate cortex (PCC) to the left and right dorsolateral prefrontal cortex (L_DLPFC and R_DLPFC, respectively), and from the right insula to R_DLPFC (p < 0.05). These changes were significantly negatively correlated with cognitive scores. Subgroup analysis showed increased executive control in PSCI patients with left anterior circulation lesions. Validation through low-order functional connectivity analysis indicated abnormalities dominated by large-scale intra- and inter-network functional connectivity increases in patients with PSCI. The study suggests an increase in effective connectivity between networks, particularly within the triple network model. The findings implicate the PCC and R_DLPFC in the pathophysiology of PSCI, shedding light on its cognitive implications. This study emphasizes the importance of understanding network changes in PSCI from various perspectives, enhancing our understanding of the neural mechanisms underlying PSCI, and establishing a foundation for future research.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Tianliang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei, 430071, China.
| |
Collapse
|
4
|
Watters H, Davis A, Fazili A, Daley L, LaGrow TJ, Schumacher EH, Keilholz S. Infraslow Dynamic Patterns in Human Cortical Networks Track a Spectrum of External to Internal Attention. Hum Brain Mapp 2025; 46:e70049. [PMID: 39980439 PMCID: PMC11843030 DOI: 10.1002/hbm.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 02/22/2025] Open
Abstract
Early efforts to understand the human cerebral cortex focused on localization of function, assigning functional roles to specific brain regions. More recent evidence depicts the cortex as a dynamic system, organized into flexible networks with patterns of spatiotemporal activity corresponding to attentional demands. In functional MRI (fMRI), dynamic analysis of such spatiotemporal patterns is highly promising for providing non-invasive biomarkers of neurodegenerative diseases and neural disorders. However, there is no established neurotypical spectrum to interpret the burgeoning literature of dynamic functional connectivity from fMRI across attentional states. In the present study, we apply dynamic analysis of network-scale spatiotemporal patterns in a range of fMRI datasets across numerous tasks including a left-right moving dot task, visual working memory tasks, congruence tasks, multiple resting state datasets, mindfulness meditators, and subjects watching TV. We find that cortical networks show shifts in dynamic functional connectivity across a spectrum that tracks the level of external to internal attention demanded by these tasks. Dynamics of networks often grouped into a single task positive network show divergent responses along this axis of attention, consistent with evidence that definitions of a single task positive network are misleading. Additionally, somatosensory and visual networks exhibit strong phase shifting along this spectrum of attention. Results were robust on a group and individual level, further establishing network dynamics as a potential individual biomarker. To our knowledge, this represents the first study of its kind to generate a spectrum of dynamic network relationships across such an axis of attention.
Collapse
Affiliation(s)
- Harrison Watters
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Aleah Davis
- Agnes Scott CollegeDecaturGeorgiaUSA
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Abia Fazili
- Emory Neuroscience Graduate ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Lauren Daley
- School of PsychologyGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - T. J. LaGrow
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | | | - Shella Keilholz
- Department of Biomedical EngineeringEmory University/Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Yang G, Fan C, Li H, Tong Y, Lin S, Feng Y, Liu F, Bao C, Xie H, Wu Y. Resting-State Brain Network Characteristics Related to Mild Cognitive Impairment: A Preliminary fNIRS Proof-of-Concept Study. J Integr Neurosci 2025; 24:26406. [PMID: 40018781 DOI: 10.31083/jin26406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND This study investigates the reliability of functional near-infrared spectroscopy (fNIRS) in detecting resting-state brain network characteristics in patients with mild cognitive impairment (MCI), focusing on static resting-state functional connectivity (sRSFC) and dynamic resting-state functional connectivity (dRSFC) patterns in MCI patients and healthy controls (HCs) without cognitive impairment. METHODS A total of 89 MCI patients and 83 HCs were characterized using neuropsychological scales. Subject sRSFC strength and dRSFC variability coefficients were evaluated via fNIRS. The study evaluated the feasibility of using fNIRS to measure these connectivity metrics and compared resting-state brain network characteristics between the two groups. Correlations with Montreal Cognitive Assessment (MoCA) scores were also explored. RESULTS sRSFC strength in homologous brain networks was significantly lower than in heterologous networks (p < 0.05). A significant negative correlation was also observed between sRSFC strength and dRSFC variability at both the group and individual levels (p < 0.001). While sRSFC strength did not differentiate between MCI patients and HCs, the dRSFC variability between the dorsal attention network (DAN) and default mode network (DMN), and between the ventral attention network (VAN) and visual network (VIS), emerged as sensitive biomarkers after false discovery rate correction (p < 0.05). No significant correlation was found between MoCA scores and connectivity measures. CONCLUSIONS fNIRS can be used to study resting-state brain networks, with dRSFC variability being more sensitive than sRSFC strength for discriminating between MCI patients and HCs. The DAN-DMN and VAN-VIS regions were found to be particularly useful for the identification of dRSFC differences between the two groups. CLINICAL TRIAL REGISTRATION ChiCTR2200057281, registered on 6 March, 2022; https://www.chictr.org.cn/showproj.html?proj=133808.
Collapse
Affiliation(s)
- Guohui Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chenyu Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haozheng Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yu Tong
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Shuang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yashuo Feng
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Fengzhi Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chunrong Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030 Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, 200040 Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040 Shanghai, China
| |
Collapse
|
6
|
Zhuravlev M, Kiselev A, Orlova A, Egorov E, Drapkina O, Simonyan M, Drozhdeva E, Penzel T, Runnova A. Changes in the Spatial Structure of Synchronization Connections in EEG During Nocturnal Sleep Apnea. Clocks Sleep 2024; 7:1. [PMID: 39846529 PMCID: PMC11755653 DOI: 10.3390/clockssleep7010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels. Based on wavelet bicoherence (WB), the magnitude of connectivity between all pairs of EEG channels in six bands was estimated: Df1 0.25;1, Df2 1;4, Df3 4;8, Df4 8;12, Df5 12;20, Df6 20;30 Hz. In all six bands considered, we noted a significant decrease in symmetrical interhemispheric connections in OSA patients. Also, in the main group for slow oscillatory activity Df1 and Df2, we observe a decrease in connection values in the EEG channels associated with the central interhemispheric sulcus. In addition, patients with AHI>15 show an increase in intrahemispheric connectivity, in particular, forming a left hemisphere high-degree synchronization node (connections PzT3, PzF3, PzFp1) in the Df2 band. When considering high-frequency EEG oscillations, connectivity in OSA patients again shows a significant increase within the cerebral hemispheres. The revealed differences in functional connectivity in patients with different levels of AHI are quite stable, remaining when averaging the full nocturnal EEG recording, including both the entire sleep duration and night awakenings. The increase in the number of hypoxia episodes correlates with the violation of the symmetry of interhemispheric functional connections. Maximum absolute values of correlation between the apnea-hypopnea index, AHI, and the WB synchronization strength are observed for the Df2 band in symmetrical EEG channels C3C4 (-0.81) and P3P4 (-0.77). The conducted studies demonstrate the possibility of developing diagnostic systems for obstructive sleep apnea syndrome without using signals from the cardiovascular system and respiratory activity.
Collapse
Affiliation(s)
- Maxim Zhuravlev
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Anton Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Anna Orlova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Evgeniy Egorov
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Oxana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
| | - Margarita Simonyan
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Evgenia Drozhdeva
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| | - Thomas Penzel
- Interdisciplinary Sleep Medicine Center, Charite-Universitatsmedizin Berlin, 0117 Berlin, Germany;
| | - Anastasiya Runnova
- Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia; (M.Z.); (E.E.); (M.S.); (E.D.)
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky per., 10, Moscow 101000, Russia; (A.K.); (A.O.); (O.D.)
- Laboratory of Open Biosystems and Artificial Intelligence, Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov 410012, Russia
| |
Collapse
|
7
|
Zhou XC, Wu S, Wang KZ, Chen LH, Hong SW, Tian Y, Hu HJ, Lin J, Wei ZC, Xie YX, Yin ZH, Lv ZZ, Lv LJ. Default mode network and dorsal attentional network connectivity changes as neural markers of spinal manipulative therapy in lumbar disc herniation. Sci Rep 2024; 14:29541. [PMID: 39604454 PMCID: PMC11603340 DOI: 10.1038/s41598-024-81126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Spinal manipulative therapy (SMT) has been shown to significantly alleviate pain in patients with lumbar disc herniation (LDH), with its effects closely associated with brain function modulation. This study investigates the neural biomarkers linked to pain relief efficacy following a complete SMT treatment cycle in LDH patients. A total of 59 LDH patients were randomized into two groups: SMT treatment (Group 1, n = 28) and sham treatment (ST) (Group 2, n = 31). A matched healthy control group (Group 3, n = 28) was also included. Functional magnetic resonance imaging (fMRI) was performed on LDH patients at two time points (TPs)-before (TP1) and after (TP2) treatment-while healthy controls were scanned once. Clinical assessments were conducted using the Visual Analogue Scale (VAS) and the Japanese Orthopaedic Association (JOA) scale. Post-treatment results indicated significant improvements in both VAS and JOA scores for Group 1, while the improvement was limited to VAS scores for Group 2. Graph properties analysis revealed notable differences in brain network connectivity between LDH patients and healthy controls, particularly between the left precentral gyrus (left PreCG) and left inferior frontal gyrus, opercular part (left IFGoperc). Enhanced functional connectivity (FC) was observed in Group 1, notably between the right angular gyrus (right ANG) and the left middle orbital gyrus (left ORBmid), with right ANG showing a significant positive correlation with clinical scores. This study identifies the sensorimotor network-salience network are significantly activated in chronic pain among LDH patients. The default mode network-dorsal attention network may serve as key neural biomarkers for the efficacy of SMT treatment in alleviating pain in LDH.
Collapse
Affiliation(s)
- Xing-Chen Zhou
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kai-Zheng Wang
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Long-Hao Chen
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuang-Wei Hong
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hui-Jie Hu
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jia Lin
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Research Institute of Tuina (Spinal Disease), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zi-Cheng Wei
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yun-Xing Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zi-Hui Yin
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Zhen Lv
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Li-Jiang Lv
- The Third Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Pozeg P, Jöhr J, Prior JO, Diserens K, Dunet V. Explaining recovery from coma with multimodal neuroimaging. J Neurol 2024; 271:6274-6288. [PMID: 39090230 PMCID: PMC11377522 DOI: 10.1007/s00415-024-12591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The aim of this prospective, observational cohort study was to investigate and assess diverse neuroimaging biomarkers to predict patients' neurological recovery after coma. 32 patients (18-76 years, M = 44.8, SD = 17.7) with disorders of consciousness participated in the study. Multimodal neuroimaging data acquired during the patient's hospitalization were used to derive cortical glucose metabolism (18F-fluorodeoxyglucose positron emission tomography/computed tomography), and structural (diffusion-weighted imaging) and functional connectivity (resting-state functional MRI) indices. The recovery outcome was defined as a continuous composite score constructed from a multivariate neurobehavioral recovery assessment administered upon the discharge from the hospital. Fractional anisotropy-based white matter integrity in the anterior forebrain mesocircuit (r = 0.72, p < .001, 95% CI: 0.87, 0.45), and the functional connectivity between the antagonistic default mode and dorsal attention resting-state networks (r = - 0.74, p < 0.001, 95% CI: - 0.46, - 0.88) strongly correlated with the recovery outcome. The association between the posterior glucose metabolism and the recovery outcome was moderate (r = 0.38, p = 0.040, 95% CI: 0.66, 0.02). Structural (adjusted R2 = 0.84, p = 0.003) or functional connectivity biomarker (adjusted R2 = 0.85, p = 0.001), but not their combination, significantly improved the model fit to predict the recovery compared solely to bedside neurobehavioral evaluation (adjusted R2 = 0.75). The present study elucidates an important role of specific MRI-derived structural and functional connectivity biomarkers in diagnosis and prognosis of recovery after coma and has implications for clinical care of patients with severe brain injury.
Collapse
Affiliation(s)
- Polona Pozeg
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Karin Diserens
- Acute Neurorehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Vincent Dunet
- Departement of Medical Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Zhou Y, Long Y. Sex differences in human brain networks in normal and psychiatric populations from the perspective of small-world properties. Front Psychiatry 2024; 15:1456714. [PMID: 39238939 PMCID: PMC11376280 DOI: 10.3389/fpsyt.2024.1456714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Females and males are known to be different in the prevalences of multiple psychiatric disorders, while the underlying neural mechanisms are unclear. Based on non-invasive neuroimaging techniques and graph theory, many researchers have tried to use a small-world network model to elucidate sex differences in the brain. This manuscript aims to compile the related research findings from the past few years and summarize the sex differences in human brain networks in both normal and psychiatric populations from the perspective of small-world properties. We reviewed published reports examining altered small-world properties in both the functional and structural brain networks between males and females. Based on four patterns of altered small-world properties proposed: randomization, regularization, stronger small-worldization, and weaker small-worldization, we found that current results point to a significant trend toward more regularization in normal females and more randomization in normal males in functional brain networks. On the other hand, there seems to be no consensus to date on the sex differences in small-world properties of the structural brain networks in normal populations. Nevertheless, we noticed that the sample sizes in many published studies are small, and future studies with larger samples are warranted to obtain more reliable results. Moreover, the number of related studies conducted in psychiatric populations is still limited and more investigations might be needed. We anticipate that these conclusions will contribute to a deeper understanding of the sex differences in the brain, which may be also valuable for developing new methods in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Yingying Zhou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Zaky MH, Shoorangiz R, Poudel GR, Yang L, Innes CRH, Jones RD. Conscious but not thinking-Mind-blanks during visuomotor tracking: An fMRI study of endogenous attention lapses. Hum Brain Mapp 2024; 45:e26781. [PMID: 39023172 PMCID: PMC11256154 DOI: 10.1002/hbm.26781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Attention lapses (ALs) are complete lapses of responsiveness in which performance is briefly but completely disrupted and during which, as opposed to microsleeps, the eyes remain open. Although the phenomenon of ALs has been investigated by behavioural and physiological means, the underlying cause of an AL has largely remained elusive. This study aimed to investigate the underlying physiological substrates of behaviourally identified endogenous ALs during a continuous visuomotor task, primarily to answer the question: Were the ALs during this task due to extreme mind-wandering or mind-blanks? The data from two studies were combined, resulting in data from 40 healthy non-sleep-deprived subjects (20M/20F; mean age 27.1 years, 20-45). Only 17 of the 40 subjects were used in the analysis due to a need for a minimum of two ALs per subject. Subjects performed a random 2-D continuous visuomotor tracking task for 50 and 20 min in Studies 1 and 2, respectively. Tracking performance, eye-video, and functional magnetic resonance imaging (fMRI) were recorded simultaneously. A human expert visually inspected the tracking performance and eye-video recordings to identify and categorise lapses of responsiveness as microsleeps or ALs. Changes in neural activity during 85 ALs (17 subjects) relative to responsive tracking were estimated by whole-brain voxel-wise fMRI and by haemodynamic response (HR) analysis in regions of interest (ROIs) from seven key networks to reveal the neural signature of ALs. Changes in functional connectivity (FC) within and between the key ROIs were also estimated. Networks explored were the default mode network, dorsal attention network, frontoparietal network, sensorimotor network, salience network, visual network, and working memory network. Voxel-wise analysis revealed a significant increase in blood-oxygen-level-dependent activity in the overlapping dorsal anterior cingulate cortex and supplementary motor area region but no significant decreases in activity; the increased activity is considered to represent a recovery-of-responsiveness process following an AL. This increased activity was also seen in the HR of the corresponding ROI. Importantly, HR analysis revealed no trend of increased activity in the posterior cingulate of the default mode network, which has been repeatedly demonstrated to be a strong biomarker of mind-wandering. FC analysis showed decoupling of external attention, which supports the involuntary nature of ALs, in addition to the neural recovery processes. Other findings were a decrease in HR in the frontoparietal network before the onset of ALs, and a decrease in FC between default mode network and working memory network. These findings converge to our conclusion that the ALs observed during our task were involuntary mind-blanks. This is further supported behaviourally by the short duration of the ALs (mean 1.7 s), which is considered too brief to be instances of extreme mind-wandering. This is the first study to demonstrate that at least the majority of complete losses of responsiveness on a continuous visuomotor task are, if not due to microsleeps, due to involuntary mind-blanks.
Collapse
Affiliation(s)
- Mohamed H. Zaky
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of Electronics and Communications EngineeringArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
- Wearables, Biosensing, and Biosignal Processing LaboratoryArab Academy for Science, Technology and Maritime TransportAlexandriaEgypt
| | - Reza Shoorangiz
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Govinda R. Poudel
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Mary Mackillop Institute for Health ResearchAustralian Catholic UniversityMelbourneAustralia
| | - Le Yang
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
| | - Carrie R. H. Innes
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
| | - Richard D. Jones
- Christchurch Neurotechnology Research ProgrammeNew Zealand Brain Research InstituteChristchurchNew Zealand
- Department of Electrical and Computer EngineeringUniversity of CanterburyChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and HearingUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
11
|
Pinto J, Comprido C, Moreira V, Maccarone MT, Cogoni C, Faustino R, Pignatelli D, Cera N. The Complex Role Played by the Default Mode Network during Sexual Stimulation: A Cluster-Based fMRI Meta-Analysis. Behav Sci (Basel) 2024; 14:570. [PMID: 39062393 PMCID: PMC11273531 DOI: 10.3390/bs14070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The default mode network (DMN) is a complex network that plays a significant and active role during naturalistic stimulation. Previous studies that have used naturalistic stimuli, such as real-life stories or silent or sonorous films, have found that the information processing involved a complex hierarchical set of brain regions, including the DMN nodes. The DMN is not involved in low-level features and is only associated with high-level content-related incoming information. The human sexual experience involves a complex set of processes related to both external context and inner processes. Since the DMN plays an active role in the integration of naturalistic stimuli and aesthetic perception with beliefs, thoughts, and episodic autobiographical memories, we aimed at quantifying the involvement of the nodes of the DMN during visual sexual stimulation. After a systematic search in the principal electronic databases, we selected 83 fMRI studies, and an ALE meta-analysis was calculated. We performed conjunction analyses to assess differences in the DMN related to stimulus modalities, sex differences, and sexual orientation. The results show that sexual stimulation alters the topography of the DMN and highlights the DMN's active role in the integration of sexual stimuli with sexual schemas and beliefs.
Collapse
Affiliation(s)
- Joana Pinto
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Camila Comprido
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
| | - Vanessa Moreira
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
| | | | - Carlotta Cogoni
- Instituto de Biofísica e Engenharia Biomédica, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Ricardo Faustino
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, 1300-125 Lisbon, Portugal;
| | - Duarte Pignatelli
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Endocrinology, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Nicoletta Cera
- Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal (C.C.)
- Research Unit in Medical Imaging and Radiotherapy, Cross I&D Lisbon Research Center, Escola Superior de Saúde da Cruz Vermelha Portuguesa, 1300-125 Lisbon, Portugal;
| |
Collapse
|
12
|
Beckmann FE, Gruber H, Seidenbecher S, Schirmer ST, Metzger CD, Tozzi L, Frodl T. Specific alterations of resting-state functional connectivity in the triple network related to comorbid anxiety in major depressive disorder. Eur J Neurosci 2024; 59:1819-1832. [PMID: 38217400 DOI: 10.1111/ejn.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
The brain's default mode network (DMN) and the executive control network (ECN) switch engagement are influenced by the ventral attention network (VAN). Alterations in resting-state functional connectivity (RSFC) within this so-called triple network have been demonstrated in patients with major depressive disorder (MDD) or anxiety disorders (ADs). This study investigated alterations in the RSFC in patients with comorbid MDD and ADs to better understand the pathophysiology of this prevalent group of patients. Sixty-eight participants (52.9% male, mean age 35.3 years), consisting of 25 patients with comorbid MDD and ADs (MDD + AD), 20 patients with MDD only (MDD) and 23 healthy controls (HCs) were investigated clinically and with 3T resting-state fMRI. RSFC utilizing a seed-based approach within the three networks belonging to the triple network was compared between the groups. Compared with HC, MDD + AD showed significantly reduced RSFC between the ECN and the VAN, the DMN and the VAN and within the ECN. No differences could be found for the MDD group compared with both other groups. Furthermore, symptom severity and medication status did not affect RSFC values. The results of this study show a distinct set of alterations of RSFC for patients with comorbid MDD and AD compared with HCs. This set of dysfunctions might be related to less adequate switching between the DMN and the ECN as well as poorer functioning of the ECN. This might contribute to additional difficulties in engaging and utilizing consciously controlled emotional regulation strategies.
Collapse
Affiliation(s)
- Fienne-Elisa Beckmann
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hanna Gruber
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Saskia Thérèse Schirmer
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
13
|
Drenth N, van Dijk SE, Foster-Dingley JC, Bertens AS, Rius Ottenheim N, van der Mast RC, Rombouts SARB, van Rooden S, van der Grond J. Distinct functional subnetworks of cognitive domains in older adults with minor cognitive deficits. Brain Commun 2024; 6:fcae048. [PMID: 38419735 PMCID: PMC10901264 DOI: 10.1093/braincomms/fcae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Although past research has established a relationship between functional connectivity and cognitive function, less is known about which cognitive domains are associated with which specific functional networks. This study investigated associations between functional connectivity and global cognitive function and performance in the domains of memory, executive function and psychomotor speed in 166 older adults aged 75-91 years (mean = 80.3 ± 3.8) with minor cognitive deficits (Mini-Mental State Examination scores between 21 and 27). Functional connectivity was assessed within 10 standard large-scale resting-state networks and on a finer spatial resolution between 300 nodes in a functional connectivity matrix. No domain-specific associations with mean functional connectivity within large-scale resting-state networks were found. Node-level analysis revealed that associations between functional connectivity and cognitive performance differed across cognitive functions in strength, location and direction. Specific subnetworks of functional connections were found for each cognitive domain in which higher connectivity between some nodes but lower connectivity between other nodes were related to better cognitive performance. Our findings add to a growing body of literature showing differential sensitivity of functional connections to specific cognitive functions and may be a valuable resource for hypothesis generation of future studies aiming to investigate specific cognitive dysfunction with resting-state functional connectivity in people with beginning cognitive deficits.
Collapse
Affiliation(s)
- Nadieh Drenth
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Suzanne E van Dijk
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jessica C Foster-Dingley
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Anne Suzanne Bertens
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Nathaly Rius Ottenheim
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Roos C van der Mast
- Department of Psychiatry, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI)-University of Antwerp, Antwerp, Belgium
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
- Institute of Psychology, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
14
|
Delli Pizzi S, Gambi F, Di Pietro M, Caulo M, Sensi SL, Ferretti A. BOLD cardiorespiratory pulsatility in the brain: from noise to signal of interest. Front Hum Neurosci 2024; 17:1327276. [PMID: 38259340 PMCID: PMC10800549 DOI: 10.3389/fnhum.2023.1327276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) based on the Blood Oxygen Level Dependent (BOLD) contrast has been extensively used to map brain activity and connectivity in health and disease. Standard fMRI preprocessing includes different steps to remove confounds unrelated to neuronal activity. First, this narrative review explores how signal fluctuations due to cardiac and respiratory activity, usually considered as "physiological noise" and regressed out from fMRI time series. However, these signal components bear useful information about some mechanisms of brain functioning (e.g., glymphatic clearance) or cerebrovascular compliance in response to arterial pressure waves. Aging and chronic diseases can cause stiffening of the aorta and other main arteries, with a reduced dampening effect resulting in greater transmission of pressure impulses to the brain. Importantly, the continuous hammering of cardiac pulsations can produce local alterations of the mechanical properties of the small cerebral vessels, with a progressive deterioration that ultimately affects neuronal functionality. Second, the review emphasizes how fMRI can study the brain patterns most affected by cardiac pulsations in health and disease with high spatiotemporal resolution, offering the opportunity to identify much more specific risk markers than systemic factors based on measurements of the vascular compliance of large arteries or other global risk factors. In this regard, modern fast fMRI acquisition techniques allow a better characterization of these pulsatile signal components due to reduced aliasing effects, turning what has been traditionally considered as noise in a signal of interest that can be used to develop novel non-invasive biomarkers in different clinical contexts.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesco Gambi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | | | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti, Italy
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University, Chieti, Italy
- UdA-TechLab, Research Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
15
|
Caballero HS, McFall GP, Gee M, MacDonald S, Phillips NA, Fogarty J, Montero-Odasso M, Camicioli R, Dixon RA. Cognitive Speed in Neurodegenerative Disease: Comparing Mean Rate and Inconsistency Within and Across the Alzheimer's and Lewy Body Spectra in the COMPASS-ND Study. J Alzheimers Dis 2024; 100:579-601. [PMID: 38875040 DOI: 10.3233/jad-240210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Background Alzheimer's disease (AD) and Lewy body disease (LBD) are characterized by early and gradual worsening perturbations in speeded cognitive responses. Objective Using simple and choice reaction time tasks, we compared two indicators of cognitive speed within and across the AD and LBD spectra: mean rate (average reaction time across trials) and inconsistency (within person variability). Methods The AD spectrum cohorts included subjective cognitive impairment (SCI, n = 28), mild cognitive impairment (MCI, n = 121), and AD (n = 45) participants. The LBD spectrum included Parkinson's disease (PD, n = 32), mild cognitive impairment in PD (PD-MCI, n = 21), and LBD (n = 18) participants. A cognitively unimpaired (CU, n = 39) cohort served as common benchmark. We conducted multivariate analyses of variance and discrimination analyses. Results Within the AD spectrum, the AD cohort was slower and more inconsistent than the CU, SCI, and MCI cohorts. The MCI cohort was slower than the CU cohort. Within the LBD spectrum, the LBD cohort was slower and more inconsistent than the CU, PD, and PD-MCI cohorts. The PD-MCI cohort was slower than the CU and PD cohorts. In cross-spectra (corresponding cohort) comparisons, the LBD cohort was slower and more inconsistent than the AD cohort. The PD-MCI cohort was slower than the MCI cohort. Discrimination analyses clarified the group difference patterns. Conclusions For both speed tasks, mean rate and inconsistency demonstrated similar sensitivity to spectra-related comparisons. Both dementia cohorts were slower and more inconsistent than each of their respective non-dementia cohorts.
Collapse
Affiliation(s)
- H Sebastian Caballero
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - G Peggy McFall
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Stuart MacDonald
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | | | | | | | - Richard Camicioli
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Roger A Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Bolla G, Berente DB, Andrássy A, Zsuffa JA, Hidasi Z, Csibri E, Csukly G, Kamondi A, Kiss M, Horvath AA. Comparison of the diagnostic accuracy of resting-state fMRI driven machine learning algorithms in the detection of mild cognitive impairment. Sci Rep 2023; 13:22285. [PMID: 38097674 PMCID: PMC10721802 DOI: 10.1038/s41598-023-49461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Mild cognitive impairment (MCI) is a potential therapeutic window in the prevention of dementia; however, automated detection of early cognitive deterioration is an unresolved issue. The aim of our study was to compare various classification approaches to differentiate MCI patients from healthy controls, based on rs-fMRI data, using machine learning (ML) algorithms. Own dataset (from two centers) and ADNI database were used during the analysis. Three fMRI parameters were applied in five feature selection algorithms: local correlation, intrinsic connectivity, and fractional amplitude of low frequency fluctuations. Support vector machine (SVM) and random forest (RF) methods were applied for classification. We achieved a relatively wide range of 78-87% accuracy for the various feature selection methods with SVM combining the three rs-fMRI parameters. In the ADNI datasets case we can also see even 90% accuracy scores. RF provided a more harmonized result among the feature selection algorithms in both datasets with 80-84% accuracy for our local and 74-82% for the ADNI database. Despite some lower performance metrics of some algorithms, most of the results were positive and could be seen in two unrelated datasets which increase the validity of our methods. Our results highlight the potential of ML-based fMRI applications for automated diagnostic techniques to recognize MCI patients.
Collapse
Affiliation(s)
- Gergo Bolla
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Anita Andrássy
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Janos Andras Zsuffa
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Family Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Eva Csibri
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gabor Csukly
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Mate Kiss
- Siemens Healthcare, Budapest, Hungary
| | - Andras Attila Horvath
- Department of Anatomy Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Chang YC, Chen CM, Lay IS, Lee YC, Tu CH. The effects of laser acupuncture dosage at PC6 (Neiguan) on brain reactivity: a pilot resting-state fMRI study. Front Neurosci 2023; 17:1264217. [PMID: 37901421 PMCID: PMC10600496 DOI: 10.3389/fnins.2023.1264217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Previous studies indicated that laser acupuncture (LA) may effectively treat various medical conditions. However, brain responses associated with LA intervention have not been fully investigated. This study is focused on the effect of LA with different energy density (ED) in brain using resting-state functional magnetic resonance imaging (fMRI). We hypothesized that different ED would elicit various brain responses. We enrolled healthy adults participants and selected bilateral PC6 (Neiguan) as the intervention points. LA was applied, respectively, with ED of 0, 7.96, or 23.87 J/cm2. Two 500-s resting-state fMRI scans were acquired before and after intervention, respectively. The functional connectivity (FC) was calculated between autonomic nerve system-regulation associated brainstem structures and other brain regions. Compared to other dosages, the FC between rostral ventrolateral medulla and orbitofrontal cortex has more enhanced; the FC between caudal ventrolateral medulla, nucleus of the solitary tract/nucleus ambiguus, and dorsal motor nucleus of the vagus and somatosensory area has more weakened when ED was 23.87 J/cm2. Different dosages of LA have demonstrated varied regions of FC changes between regions of interest and other brain areas, which indicated that variations in EDs might influence the clinical efficacy and subsequent impacts through distinct neural pathways within the brain.
Collapse
Affiliation(s)
- Yi-Chuan Chang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Ming Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Ing-Shiow Lay
- Department of Chinese Medicine, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chen Lee
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Hao Tu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Chang SE, Lenartowicz A, Hellemann GS, Uddin LQ, Bearden CE. Variability in Cognitive Task Performance in Early Adolescence Is Associated With Stronger Between-Network Anticorrelation and Future Attention Problems. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:948-957. [PMID: 37881561 PMCID: PMC10593900 DOI: 10.1016/j.bpsgos.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Background Intraindividual variability (IIV) during cognitive task performance is a key behavioral index of attention and a consistent marker of attention-deficit/hyperactivity disorder. In adults, lower IIV has been associated with anticorrelation between the default mode network (DMN) and dorsal attention network (DAN)-thought to underlie effective allocation of attention. However, whether these behavioral and neural markers of attention are 1) associated with each other and 2) can predict future attention-related deficits has not been examined in a developmental, population-based cohort. Methods We examined relationships at the baseline visit between IIV on 3 cognitive tasks, DMN-DAN anticorrelation, and parent-reported attention problems using data from the Adolescent Brain Cognitive Development (ABCD) Study (N = 11,878 participants, ages 9 to 10 years, female = 47.8%). We also investigated whether behavioral and neural markers of attention at baseline predicted attention problems 1, 2, and 3 years later. Results At baseline, greater DMN-DAN anticorrelation was associated with lower IIV across all 3 cognitive tasks (B = 0.22 to 0.25). Older age at baseline was associated with stronger DMN-DAN anticorrelation and lower IIV (B = -0.005 to -0.0004). Weaker DMN-DAN anticorrelation and IIV were cross-sectionally associated with attention problems (B = 1.41 to 7.63). Longitudinally, lower IIV at baseline was associated with less severe attention problems 1 to 3 years later, after accounting for baseline attention problems (B = 0.288 to 0.77). Conclusions The results suggest that IIV in early adolescence is associated with worsening attention problems in a representative cohort of U.S. youth. Attention deficits in early adolescence may be important for understanding and predicting future cognitive and clinical outcomes.
Collapse
Affiliation(s)
- Sarah E. Chang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Agatha Lenartowicz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Gerhard S. Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Kim TH, Oh J, Lee H, Kim MS, Sim SA, Min S, Song SW, Kim JJ. The impact of circulatory arrest with selective antegrade cerebral perfusion on brain functional connectivity and postoperative cognitive function. Sci Rep 2023; 13:13803. [PMID: 37612347 PMCID: PMC10447502 DOI: 10.1038/s41598-023-40726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Aortic surgery is one of the most challenging types of surgeries, which is possibly related to cognitive sequelae. We aimed to investigate the changes in resting-state functional connectivity (rsFC) associated with intraoperative circulatory arrest (CA) in aortic surgery, exploring the relationship between the altered connectivity and postoperative cognitive functions. Thirty-eight patients participated in this study (14 with CA, 24 without). Functional magnetic resonance imaging was scanned on the fifth day after surgery or after the resolution of delirium if it was developed. We assessed the differences in the development of postoperative cognitive changes and rsFC between patients with and without CA. The occurrence of postoperative delirium and postoperative cognitive dysfunction was not significantly different between the patients with and without the application of CA. However, patients with CA showed increased in posterior cingulate cortex-based connectivity with the right superior temporal gyrus, right precuneus, and right hippocampus, and medial prefrontal cortex-based connectivity with the dorsolateral prefrontal cortex. The application of moderate hypothermic CA with unilateral antegrade cerebral perfusion is unlikely to affect aspects of postoperative cognitive changes, whereas it may lead to increased rsFC of the default mode network at a subclinical level following acute brain insults.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Lee
- Department of Cardiovascular Surgery, Ewha Womans University Aorta and Vascular Hospital, Seoul, Republic of Korea
| | - Myeong Su Kim
- Department of Cardiovascular Surgery, Ewha Womans University Aorta and Vascular Hospital, Seoul, Republic of Korea
| | - Seo-A Sim
- Department of Cardiovascular Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sarang Min
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk-Won Song
- Department of Cardiovascular Surgery, Ewha Womans University Aorta and Vascular Hospital, Seoul, Republic of Korea.
| | - Jae-Jin Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Kizilirmak JM, Soch J, Schütze H, Düzel E, Feldhoff H, Fischer L, Knopf L, Maass A, Raschick M, Schult A, Yakupov R, Richter A, Schott BH. The relationship between resting-state amplitude fluctuations and memory-related deactivations of the default mode network in young and older adults. Hum Brain Mapp 2023; 44:3586-3609. [PMID: 37051727 PMCID: PMC10203811 DOI: 10.1002/hbm.26299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The default mode network (DMN) typically exhibits deactivations during demanding tasks compared to periods of relative rest. In functional magnetic resonance imaging (fMRI) studies of episodic memory encoding, increased activity in DMN regions even predicts later forgetting in young healthy adults. This association is attenuated in older adults and, in some instances, increased DMN activity even predicts remembering rather than forgetting. It is yet unclear whether this phenomenon is due to a compensatory mechanism, such as self-referential or schema-dependent encoding, or whether it reflects overall reduced DMN activity modulation in older age. We approached this question by systematically comparing DMN activity during successful encoding and tonic, task-independent, DMN activity at rest in a sample of 106 young (18-35 years) and 111 older (60-80 years) healthy participants. Using voxel-wise multimodal analyses, we assessed the age-dependent relationship between DMN resting-state amplitude (mean percent amplitude of fluctuation, mPerAF) and DMN fMRI signals related to successful memory encoding, as well as their modulation by age-related hippocampal volume loss, while controlling for regional grey matter volume. Older adults showed lower resting-state DMN amplitudes and lower task-related deactivations. However, a negative relationship between resting-state mPerAF and subsequent memory effect within the precuneus was observed only in young, but not older adults. Hippocampal volumes showed no relationship with the DMN subsequent memory effect or mPerAF. Lastly, older adults with higher mPerAF in the DMN at rest tend to show higher memory performance, pointing towards the importance of a maintained ability to modulate DMN activity in old age.
Collapse
Affiliation(s)
- Jasmin M. Kizilirmak
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Neurodidactics and NeuroLabInstitute for Psychology, University of HildesheimHildesheimGermany
- German Centre for Higher Education Research and Science StudiesHannoverGermany
| | - Joram Soch
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Bernstein Center for Computational NeuroscienceBerlinGermany
| | - Hartmut Schütze
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - Emrah Düzel
- Medical Faculty, Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke‐UniversityMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Lea Knopf
- Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Anne Maass
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | | | | | - Renat Yakupov
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Anni Richter
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Jena‐Magdeburg‐HalleGermany
| | - Björn H. Schott
- Cognitive Geriatric PsychiatryGerman Center for Neurodegenerative DiseasesGöttingenGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- Leibniz Institute for NeurobiologyMagdeburgGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
21
|
Yang C, Gao X, Liu N, Sun H, Gong Q, Yao L, Lui S. Convergent and distinct neural structural and functional patterns of mild cognitive impairment: a multimodal meta-analysis. Cereb Cortex 2023:7169132. [PMID: 37197764 DOI: 10.1093/cercor/bhad167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease. Numerous voxel-based morphometry (VBM) and resting-state fMRI (rs-fMRI) studies have provided strong evidence of abnormalities in the structure and intrinsic function of brain regions in MCI. Studies have recently begun to explore their association but have not employed systematic information in this pursuit. Herein, a multimodal meta-analysis was performed, which included 43 VBM datasets (1,247 patients and 1,352 controls) of gray matter volume (GMV) and 42 rs-fMRI datasets (1,468 patients and 1,605 controls) that combined 3 metrics: amplitude of low-frequency fluctuation, the fractional amplitude of low-frequency fluctuation, and regional homogeneity. Compared to controls, patients with MCI displayed convergent reduced regional GMV and altered intrinsic activity, mainly in the default mode network and salience network. Decreased GMV alone in ventral medial prefrontal cortex and altered intrinsic function alone in bilateral dorsal anterior cingulate/paracingulate gyri, right lingual gyrus, and cerebellum were identified, respectively. This meta-analysis investigated complex patterns of convergent and distinct brain alterations impacting different neural networks in MCI patients, which contributes to a further understanding of the pathophysiology of MCI.
Collapse
Affiliation(s)
- Chengmin Yang
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Xin Gao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Naici Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Hui Sun
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Li Yao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu 610041, China
| |
Collapse
|
22
|
Ai M, Morris TP, Zhang J, de la Colina AN, Tremblay-Mercier J, Villeneuve S, Whitfield-Gabrieli S, Kramer AF, Geddes MR. Resting-state MRI functional connectivity as a neural correlate of multidomain lifestyle adherence in older adults at risk for Alzheimer's disease. Sci Rep 2023; 13:7487. [PMID: 37160915 PMCID: PMC10170147 DOI: 10.1038/s41598-023-32714-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
Prior research has demonstrated the importance of a healthy lifestyle to protect brain health and diminish dementia risk in later life. While a multidomain lifestyle provides an ecological perspective to voluntary engagement, its association with brain health is still under-investigated. Therefore, understanding the neural mechanisms underlying multidomain lifestyle engagement, particularly in older adults at risk for Alzheimer's disease (AD), gives valuable insights into providing lifestyle advice and intervention for those in need. The current study included 139 healthy older adults with familial risk for AD from the Prevent-AD longitudinal aging cohort. Self-reported exercise engagement, cognitive activity engagement, healthy diet adherence, and social activity engagement were included to examine potential phenotypes of an individual's lifestyle adherence. Two adherence profiles were discovered using data-driven clustering methodology [i.e., Adherence to healthy lifestyle (AL) group and Non-adherence to healthy lifestyle group]. Resting-state functional connectivity matrices and grey matter brain features obtained from magnetic resonance imaging were used to classify the two groups using a support vector machine (SVM). The SVM classifier was 75% accurate in separating groups. The features that show consistently high importance to the classification model were functional connectivity mainly between nodes located in different prior-defined functional networks. Most nodes were located in the default mode network, dorsal attention network, and visual network. Our results provide preliminary evidence of neurobiological characteristics underlying multidomain healthy lifestyle choices.
Collapse
Affiliation(s)
- Meishan Ai
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Timothy P Morris
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Jennifer Tremblay-Mercier
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Douglas Mental Health University Institute Research Centre, Affiliated with, McGill University, Montreal, QC, Canada
| | - Sylvia Villeneuve
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Douglas Mental Health University Institute Research Centre, Affiliated with, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana-Champaign, IL, USA
| | - Maiya R Geddes
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- STOP-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
23
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in resting state functional connectivity across the first two years of life. Dev Cogn Neurosci 2023; 60:101235. [PMID: 36966646 PMCID: PMC10066534 DOI: 10.1016/j.dcn.2023.101235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Sex differences in behavior have been reported from infancy through adulthood, but little is known about sex effects on functional circuitry in early infancy. Moreover, the relationship between early sex effects on the functional architecture of the brain and later behavioral performance remains to be elucidated. In this study, we used resting-state fMRI and a novel heatmap analysis to examine sex differences in functional connectivity with cross-sectional and longitudinal mixed models in a large cohort of infants (n = 319 neonates, 1-, and 2-year-olds). An adult dataset (n = 92) was also included for comparison. We investigated the relationship between sex differences in functional circuitry and later measures of language (collected in 1- and 2-year-olds) as well as indices of anxiety, executive function, and intelligence (collected in 4-year-olds). Brain areas showing the most significant sex differences were age-specific across infancy, with two temporal regions demonstrating consistent differences. Measures of functional connectivity showing sex differences in infancy were significantly associated with subsequent behavioral scores of language, executive function, and intelligence. Our findings provide insights into the effects of sex on dynamic neurodevelopmental trajectories during infancy and lay an important foundation for understanding the mechanisms underlying sex differences in health and disease.
Collapse
|
24
|
Fekson VK, Michaeli T, Rosch KS, Schlaggar BL, Horowitz-Kraus T. Characterizing different cognitive and neurobiological profiles in a community sample of children using a non-parametric approach: An fMRI study. Dev Cogn Neurosci 2023; 60:101198. [PMID: 36652896 PMCID: PMC9853310 DOI: 10.1016/j.dcn.2023.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Executive Functions (EF) is an umbrella term for a set of mental processes geared towards goal-directed behavior supporting academic skills such as reading abilities. One of the brain's functional networks implicated in EF is the Default Mode Network (DMN). The current study uses measures of inhibitory control, a main sub-function of EF, to create cognitive and neurobiological "inhibitory control profiles" and relate them to reading abilities in a large sample (N = 5055) of adolescents aged 9-10 from the Adolescent Brain Cognitive Development (ABCD) study. Using a Latent Profile Analysis (LPA) approach, data related to inhibitory control was divided into four inhibition classes. For each class, functional connectivity within the DMN was calculated from resting-state data, using a non-parametric algorithm for detecting group similarities. These inhibitory control profiles were then related to reading abilities. The four inhibitory control groups showed significantly different reading abilities, with neurobiologically different DMN segregation profiles for each class versus controls. The current study demonstrates that a community sample of children is not entirely homogeneous and is composed of different subgroups that can be differentiated both behaviorally/cognitively and neurobiologically, by focusing on inhibitory control and the DMN. Educational implications relating these results to reading abilities are noted.
Collapse
Affiliation(s)
- Victoria Khalfin Fekson
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Israel
| | - Tomer Michaeli
- Faculty of Electrical and Computer Engineering, Technion, Israel
| | - Keri S Rosch
- Kennedy Krieger Institute, Baltimore, MD, USA; Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD, USA; Departments of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tzipi Horowitz-Kraus
- Educational Neuroimaging Group, Faculty of Education in Science and Technology, Technion, Israel; Kennedy Krieger Institute, Baltimore, MD, USA; Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Faculty of Biomedical Engineering, Technion, Israel.
| |
Collapse
|
25
|
Wu H, Song Y, Yang X, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease. CNS Neurosci Ther 2023; 29:1512-1524. [PMID: 36942514 PMCID: PMC10173716 DOI: 10.1111/cns.14092] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are known as the preclinical and early stage of Alzheimer's disease (AD). The dorsal attention network (DAN) is mainly responsible for the "top-down" attention process. However, previous studies mainly focused on single functional modality and limited structure. This study aimed to investigate the multimodal alterations of DAN in SCD and aMCI to assess their diagnostic value in preclinical and early-stage AD. METHODS Resting-state functional magnetic resonance imaging (MRI) was carried out to measure the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC). Structural MRI was used to calculate the gray matter volume (GMV) and cortical thickness. Moreover, receiver-operating characteristic (ROC) analysis was used to distinguish these alterations in SCD and aMCI. RESULTS The SCD and aMCI groups showed both decreased ReHo in the right middle temporal gyrus (MTG) and decreased GMV compared to healthy controls (HCs). Especially in the SCD group, there were increased fALFF and increased ReHo in the left inferior occipital gyrus (IOG), decreased fALFF and increased FC in the left inferior parietal lobule (IPL), and reduced cortical thickness in the right inferior temporal gyrus (ITG). Furthermore, functional and structural alterations in the SCD and aMCI groups were closely related to episodic memory (EM), executive function (EF), and information processing speed (IPS). The combination of multiple indicators of DAN had a high accuracy in differentiating clinical stages. CONCLUSIONS Our current study demonstrated functional and structural alterations of DAN in SCD and aMCI, especially in the MTG, IPL, and SPL. Furthermore, cognitive performance was closely related to these significant alterations. Our study further suggested that the combined multiple indicators of DAN could be acted as the latent neuroimaging markers of preclinical and early-stage AD for their high diagnostic value.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Yang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Medina Carrion JP, Stanziano M, D'Incerti L, Sattin D, Palermo S, Ferraro S, Sebastiano DR, Leonardi M, Bruzzone MG, Rosazza C, Nigri A. Disorder of consciousness: Structural integrity of brain networks for the clinical assessment. Ann Clin Transl Neurol 2023; 10:384-396. [PMID: 36638220 PMCID: PMC10014003 DOI: 10.1002/acn3.51729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
AIM When studying brain networks in patients with Disorders of Consciousness (DoC), it is important to evaluate the structural integrity of networks in addition to their functional activity. Here, we investigated whether structural MRI, together with clinical variables, can be useful for diagnostic purposes and whether a quantitative analysis is feasible in a group of chronic DoC patients. METHODS We studied 109 chronic patients with DoC and emerged from DoC with structural MRI: 65 in vegetative state/unresponsive wakefulness state (VS/UWS), 34 in minimally conscious state (MCS), and 10 with severe disability. MRI data were analyzed through qualitative and quantitative approaches. RESULTS The qualitative MRI analysis outperformed the quantitative one, which resulted to be hardly feasible in chronic DoC patients. The results of the qualitative approach showed that the structural integrity of HighOrder networks, altogether, had better diagnostic accuracy than LowOrder networks, particularly when the model included clinical variables (AUC = 0.83). Diagnostic differences between VS/UWS and MCS were stronger in anoxic etiology than vascular and traumatic etiology. MRI data of all LowOrder and HighOrder networks correlated with the clinical score. The integrity of the left hemisphere was associated with a better clinical status. CONCLUSIONS Structural integrity of brain networks is sensitive to clinical severity. When patients are chronic, the qualitative analysis of MRI data is indicated.
Collapse
Affiliation(s)
- Jean Paul Medina Carrion
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Stanziano
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Neurosciences Department "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Ludovico D'Incerti
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Radiology Unit, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Davide Sattin
- IRCCS Istituti Clinici Scientifici Maugeri di Milano, Milan, Italy
| | - Sara Palermo
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Psychology, University of Turin, Turin, Italy
| | - Stefania Ferraro
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Davide Rossi Sebastiano
- Department of Neurophysiology and Diagnostic, Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Matilde Leonardi
- Neurology, Public Health, Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta
| | - Maria Grazia Bruzzone
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Rosazza
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Humanistic Studies, University of Urbino Carlo Bo, Urbino, Italy
| | - Anna Nigri
- Diagnostic and Technology Department, Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
27
|
Schirmer ST, Beckmann FE, Gruber H, Schlaaff K, Scheermann D, Seidenbecher S, Metzger CD, Tempelmann C, Frodl T. Decreased functional connectivity in patients with major depressive disorder and a history of childhood traumatization through experiences of abuse. Behav Brain Res 2023; 437:114098. [PMID: 36067949 DOI: 10.1016/j.bbr.2022.114098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Childhood trauma (CT) increases vulnerability for the development of major depressive disorder (MDD). Alterations in resting-state functional connectivity (RSFC) have frequently been reported for MDD. These alterations may be much more prominent in depressive patients with a history of CT. The present study aims to compare RSFC in different brain networks of patients with MDD and CT (MDD+CT) vs. MDD and no CT compared to healthy controls. METHODS 45 patients (22 with CT) were compared to 23 age-and-gender-matched healthy control subjects. Demographic parameters, severity of MDD, severity of CT and comorbid anxiety disorders were assessed. For assessment of RSFC alterations, a seed-based approach within five well-established RSFC networks was used. RESULTS CT in MDD patients predicts severity of comorbid anxiety. A significant decrease in in-between network RSFC-values of MDD patients compared to controls was found in the network pairs of default mode network (DMN) - dorsal attention network (DAN), ventral attention network (VAN) - DMN and DAN - affective network (AN). MDD+CT patients presented more aberrant RSFC than MDD-CT patients. MDD scores predicted the decrease in RSFC for MDD patients. Higher Childhood Trauma Questionnaire (CTQ) scores are linked to reduced functional connectivity (FC) between DMN - DAN. CONCLUSIONS Our study shows reduced RSFC in MDD patients for DMN - DAN, VAN - DMN, DAN - AN and MDD+CT patients presented more aberrant RSFC so that we suspect CT to be a considerable factor in the etiology of MDD. Through dysregulated neural circuits, CT is likely to contribute to a distinct MDD pathophysiology.
Collapse
Affiliation(s)
- Saskia Thérèse Schirmer
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Fienne-Elisa Beckmann
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hanna Gruber
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Denise Scheermann
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Coraline Danielle Metzger
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, RWTH University of Aachen, Aachen, Germany.
| |
Collapse
|
28
|
Hong J, Hwang J, Lee JH. General psychopathology factor (p-factor) prediction using resting-state functional connectivity and a scanner-generalization neural network. J Psychiatr Res 2023; 158:114-125. [PMID: 36580867 DOI: 10.1016/j.jpsychires.2022.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The general psychopathology factor (p-factor) represents shared variance across mental disorders based on psychopathologic symptoms. The Adolescent Brain Cognitive Development (ABCD) Study offers an unprecedented opportunity to investigate functional networks (FNs) from functional magnetic resonance imaging (fMRI) associated with the psychopathology of an adolescent cohort (n > 10,000). However, the heterogeneities associated with the use of multiple sites and multiple scanners in the ABCD Study need to be overcome to improve the prediction of the p-factor using fMRI. We proposed a scanner-generalization neural network (SGNN) to predict the individual p-factor by systematically reducing the scanner effect for resting-state functional connectivity (RSFC). We included 6905 adolescents from 18 sites whose fMRI data were collected using either Siemens or GE scanners. The p-factor was estimated based on the Child Behavior Checklist (CBCL) scores available in the ABCD study using exploratory factor analysis. We evaluated the Pearson's correlation coefficients (CCs) for p-factor prediction via leave-one/two-site-out cross-validation (LOSOCV/LTSOCV) and identified important FNs from the weight features (WFs) of the SGNN. The CCs were higher for the SGNN than for alternative models when using both LOSOCV (0.1631 ± 0.0673 for the SGNN vs. 0.1497 ± 0.0710 for kernel ridge regression [KRR]; p < 0.05 from a two-tailed paired t-test) and LTSOCV (0.1469 ± 0.0381 for the SGNN vs. 0.1394 ± 0.0359 for KRR; p = 0.01). It was found that (a) the default-mode and dorsal attention FNs were important for p-factor prediction, and (b) the intra-visual FN was important for scanner generalization. We demonstrated the efficacy of our novel SGNN model for p-factor prediction while simultaneously eliminating scanner-related confounding effects for RSFC.
Collapse
Affiliation(s)
- Jinwoo Hong
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Jundong Hwang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Peralta-Malváez L, Turnbull A, Anthony M, Adeli E, Lin FV. CCA identifies a neurophysiological marker of adaptation capacity that is reliably linked to internal locus of control of cognition in amnestic MCI. GeroScience 2023:10.1007/s11357-023-00730-8. [PMID: 36697886 PMCID: PMC10400522 DOI: 10.1007/s11357-023-00730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Locus of control (LOC) describes whether an individual thinks that they themselves (internal LOC) or external factors (external LOC) have more influence on their lives. LOC varies by domain, and a person's LOC for their intellectual capacities (LOC-Cognition) may be a marker of resilience in older adults at risk for dementia, with internal LOC-Cognition relating to better outcomes and improved treatment adherence. Vagal control, a key component of parasympathetic autonomic nervous system (ANS) regulation, may reflect a neurophysiological biomarker of internal LOC-Cognition. We used canonical correlation analysis (CCA) to identify a shared neurophysiological marker of ANS regulation from electrocardiogram (during auditory working memory) and functional connectivity (FC) data. A canonical variable from root mean square of successive differences (RMSSD) time series and between-network FC was significantly related to internal LOC-Cognition (β = 0.266, SE = 0.971, CI = [0.190, 4.073], p = 0.031) in 65 participants (mean age = 74.7, 32 female) with amnestic mild cognitive impairment (aMCI). Follow-up data from 55 of these individuals (mean age = 73.6, 22 females) was used to show reliability of this relationship (β = 0.271, SE = 0.971, CI = [0.033, 2.630], p = 0.047), and a second sample (40 participants with aMCI/healthy cognition, mean age = 72.7, 24 females) showed that the canonical vector biomarker generalized to visual working memory (β = 0.36, SE = 0.136, CI = [0.023, 0.574], p = 0.037), but not inhibition task RMSSD data (β = 0.08, SE = 1.486, CI = [- 0.354, 0.657], p = 0.685). This canonical vector may represent a biomarker of autonomic regulation that explains how some older adults maintain internal LOC-Cognition as dementia progresses. Future work should further test the causality of this relationship and the modifiability of this biomarker.
Collapse
Affiliation(s)
- Lizbeth Peralta-Malváez
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Adam Turnbull
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA. .,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA.
| | - Mia Anthony
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
| | - Ehsan Adeli
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - F Vankee Lin
- CogT Lab, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
30
|
Esposito R, Cera N, Barbosa F, Cieri F. Editorial: Dynamic functioning of resting state networks in physiological and pathological conditions, volume II. Front Neurosci 2023; 16:1134113. [PMID: 36741051 PMCID: PMC9891724 DOI: 10.3389/fnins.2022.1134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Affiliation(s)
- Roberto Esposito
- Titano Diagnostic Clinic, Falciano, San Marino,Azienda Sanitaria Territoriale (AST), Pesaro-Urbino (PU), Marche, Italy,*Correspondence: Roberto Esposito ✉
| | - Nicoletta Cera
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Fernando Barbosa
- Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| |
Collapse
|
31
|
Tran The J, Ansermet JP, Magistretti PJ, Ansermet F. Hyperactivity of the default mode network in schizophrenia and free energy: A dialogue between Freudian theory of psychosis and neuroscience. Front Hum Neurosci 2022; 16:956831. [PMID: 36590059 PMCID: PMC9795812 DOI: 10.3389/fnhum.2022.956831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The economic conceptualization of Freudian metapsychology, based on an energetics model of the psyche's workings, offers remarkable commonalities with some recent discoveries in neuroscience, notably in the field of neuroenergetics. The pattern of cerebral activity at resting state and the identification of a default mode network (DMN), a network of areas whose activity is detectable at baseline conditions by neuroimaging techniques, offers a promising field of research in the dialogue between psychoanalysis and neuroscience. In this article we study one significant clinical application of this interdisciplinary dialogue by looking at the role of the DMN in the psychopathology of schizophrenia. Anomalies in the functioning of the DMN have been observed in schizophrenia. Studies have evidenced the existence of hyperactivity in this network in schizophrenia patients, particularly among those for whom a positive symptomatology is dominant. These data are particularly interesting when considered from the perspective of the psychoanalytic understanding of the positive symptoms of psychosis, most notably the Freudian hypothesis of delusions as an "attempt at recovery." Combining the data from research in neuroimaging of schizophrenia patients with the Freudian hypothesis, we propose considering the hyperactivity of the DMN as a consequence of a process of massive reassociation of traces occurring in schizophrenia. This is a process that may constitute an attempt at minimizing the excess of free energy present in psychosis. Modern models of active inference and the free energy principle (FEP) may shed some light on these processes.
Collapse
Affiliation(s)
- Jessica Tran The
- INSERM U1077 Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France,Centre Hospitalier Universitaire de Caen, Caen, France,Université de Caen Normandie, Caen, France,Ecole Pratique des Hautes Etudes, Université Paris Sciences et Lettres, Paris, France,Agalma Foundation Geneva, Geneva, Switzerland,Cyceron, Caen, France,*Correspondence: Jessica Tran The
| | | | - Pierre J. Magistretti
- Agalma Foundation Geneva, Geneva, Switzerland,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia,Brain Mind Institute, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Francois Ansermet
- Agalma Foundation Geneva, Geneva, Switzerland,Département de Psychiatrie, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
32
|
Guo Y, Liu S, Yan F, Yin N, Ni J, Li C, Pan X, Ma R, Wu J, Li S, Li X. Associations between disrupted functional brain network topology and cognitive impairment in patients with rectal cancer during chemotherapy. Front Oncol 2022; 12:927771. [PMID: 36505777 PMCID: PMC9731768 DOI: 10.3389/fonc.2022.927771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Cognitive impairment has been identified in patients with non-central nervous system cancer received chemotherapy. Chemotherapy-induced changes in the brain are considered as the possible causes of the cognitive deficits of patients. This study aimed to explore chemotherapy-related functional brain changes and cognitive impairment in rectal cancer (RC) patients who had just finished chemotherapy treatment. Methods In this study, RC patients after chemotherapy (on the day patients received the last dose of chemotherapy) (n=30) and matched healthy controls (HCs) (n=30) underwent cognitive assessments, structural magnetic resonance imaging (MRI) and resting-state functional MRI. The functional brain networks were constructed by thresholding the partial correlation matrices of 90 brain regions in the Anatomical Automatic Labeling template and the topologic properties were evaluated by graph theory analysis. Moreover, correlations between altered topological measures and scores of cognitive scales were explored in the patient group. Results Compared with HCs, RC patients had lower scores of cognitive scales. The functional brain network had preserved small-world topological features but with a tendency towards higher path length in the whole network. In addition, patients had decreased nodal global efficiency (Eglo(i)) in the left superior frontal gyrus (dorsolateral), superior frontal gyrus (orbital part), inferior frontal gyrus (opercular part), inferior frontal gyrus (triangular part) and right inferior frontal gyrus (triangular part). Moreover, values of Eglo(i) in the superior and inferior frontal gyrus were positively associated with cognitive function in the patient group. Conclusion These results suggested that cognitive impairment was associated with disruptions of the topological organization in functional brain networks of RC patients who had just finished chemotherapy, which provided new insights into the pathophysiology underlying acute effects of chemotherapy on cognitive function.
Collapse
Affiliation(s)
- Yesong Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Yan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Na Yin
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ni
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Pan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shengwei Li
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China,*Correspondence: Xiaoyou Li, ; Shengwei Li,
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Xiaoyou Li, ; Shengwei Li,
| |
Collapse
|
33
|
Palmer WC, Park SM, Levendovszky SR. Brain state transition analysis using ultra-fast fMRI differentiates MCI from cognitively normal controls. Front Neurosci 2022; 16:975305. [PMID: 36248645 PMCID: PMC9555083 DOI: 10.3389/fnins.2022.975305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Conventional resting-state fMRI studies indicate that many cortical and subcortical regions have altered function in Alzheimer's disease (AD) but the nature of this alteration has remained unclear. Ultrafast fMRIs with sub-second acquisition times have the potential to improve signal contrast and enable advanced analyses to understand temporal interactions between brain regions as opposed to spatial interactions. In this work, we leverage such fast fMRI acquisitions from Alzheimer's disease Neuroimaging Initiative to understand temporal differences in the interactions between resting-state networks in 55 older adults with mild cognitive impairment (MCI) and 50 cognitively normal healthy controls. Methods We used a sliding window approach followed by k-means clustering. At each window, we computed connectivity i.e., correlations within and across the regions of the default mode, salience, dorsal attention, and frontoparietal network. Visual and somatosensory networks were excluded due to their lack of association with AD. Using the Davies-Bouldin index, we identified clusters of windows with distinct connectivity patterns, also referred to as brain states. The fMRI time courses were converted into time courses depicting brain state transition. From these state time course, we calculated the dwell time for each state i.e., how long a participant spent in each state. We determined how likely a participant transitioned between brain states. Both metrics were compared between MCI participants and controls using a false discovery rate correction of multiple comparisons at a threshold of. 0.05. Results We identified 8 distinct brain states representing connectivity within and between the resting state networks. We identified three transitions that were different between controls and MCI, all involving transitions in connectivity between frontoparietal, dorsal attention, and default mode networks (p<0.04). Conclusion We show that ultra-fast fMRI paired with dynamic functional connectivity analysis allows us to capture temporal transitions between brain states. Most changes were associated with transitions between the frontoparietal and dorsal attention networks connectivity and their interaction with the default mode network. Although future work needs to validate these findings, the brain networks identified in our work are known to interact with each other and play an important role in cognitive function and memory impairment in AD.
Collapse
|
34
|
Effects of aging on functional connectivity in a neurodegenerative risk cohort: resting state versus task measurement using near-infrared spectroscopy. Sci Rep 2022; 12:11262. [PMID: 35788629 PMCID: PMC9253312 DOI: 10.1038/s41598-022-13326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Changes in functional brain organization are considered to be particularly sensitive to age-related effects and may precede structural cognitive decline. Recent research focuses on aging processes determined by resting state (RS) functional connectivity (FC), but little is known about differences in FC during RS and cognitive task conditions in elderly participants. The purpose of this study is to compare FC within and between the cognitive control (CCN) and dorsal attention network (DAN) at RS and during a cognitive task using functional near-infrared spectroscopy (fNIRS). In a matched, neurodegenerative high-risk cohort comprising early (n = 98; 50–65 y) and late (n = 98; 65–85 y) elder subjects, FC was measured at RS and during performance of the Trail Making Test (TMT) via fNIRS. Both, under RS and task conditions our results revealed a main effect for age, characterized by reduced FC for late elder subjects within the left inferior frontal gyrus. During performance of the TMT, negative correlations of age and FC were confirmed in various regions of the CCN and DAN. For the whole sample, FC of within-region connections was elevated, while FC between regions was decreased at RS. The results confirm a reorganization of functional brain connectivity with increasing age and cognitive demands.
Collapse
|
35
|
Yang Z, Cieri F, Kinney JW, Cummings JL, Cordes D, Caldwell JZK, for the Alzheimer’s Disease Neuroimaging Initiative. Brain functional topology differs by sex in cognitively normal older adults. Cereb Cortex Commun 2022; 3:tgac023. [PMID: 35795479 PMCID: PMC9252274 DOI: 10.1093/texcom/tgac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Late onset Alzheimer's disease (AD) is the most common form of dementia, in which almost 70% of patients are women. Hypothesis We hypothesized that women show worse global FC metrics compared to men, and further hypothesized a sex-specific positive correlation between FC metrics and cognitive scores in women. Methods We studied cognitively healthy individuals from the Alzheimer's Disease Neuroimaging Initiative cohort, with resting-state functional Magnetic Resonance Imaging. Metrics derived from graph theoretical analysis and functional connectomics were used to assess the global/regional sex differences in terms of functional integration and segregation, considering the amyloid status and the contributions of APOE E4. Linear mixed effect models with covariates (education, handedness, presence of apolipoprotein [APOE] E4 and intra-subject effect) were utilized to evaluate sex differences. The associations of verbal learning and memory abilities with topological network properties were assessed. Result Women had a significantly lower magnitude of the global and regional functional network metrics compared to men. Exploratory association analysis showed that higher global clustering coefficient was associated with lower percent forgetting in women and worse cognitive scores in men. Conclusion Women overall show lower magnitude on measures of resting state functional network topology and connectivity. This factor can play a role in their different vulnerability to AD. Significance statement Two thirds of AD patients are women but the reasons for these sex difference are not well understood. When this late onset form dementia arises is too late to understand the potential causes of this sex disparities. Studies on cognitively healthy elderly population are a fundamental approach to explore in depth this different vulnerability to the most common form of dementia, currently affecting 6.2 million Americans aged 65 and older are, which means that >1 in 9 people (11.3%) 65 and older are affected by AD. Approaches such as resting-state functional network topology and connectivity may play a key role in understanding and elucidate sex-dependent differences relevant to late-onset dementia syndromes.
Collapse
Affiliation(s)
- Zhengshi Yang
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106, United States
- Department of Brain Health, University of Nevada, Mail Stop: 4022; 4505 S. Maryland Pkwy. Room 1172, Las Vegas, NV 89154, United States
| | - Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106, United States
| | - Jefferson W Kinney
- Department of Brain Health, University of Nevada, Mail Stop: 4022; 4505 S. Maryland Pkwy. Room 1172, Las Vegas, NV 89154, United States
- Chambers-Grundy Center for Transformative Neuroscience, University of Nevada, Box 454022, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4022, United States
| | - Jeffrey L Cummings
- Department of Brain Health, University of Nevada, Mail Stop: 4022; 4505 S. Maryland Pkwy. Room 1172, Las Vegas, NV 89154, United States
- Chambers-Grundy Center for Transformative Neuroscience, University of Nevada, Box 454022, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4022, United States
| | - Dietmar Cordes
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106, United States
- Department of Brain Health, University of Nevada, Mail Stop: 4022; 4505 S. Maryland Pkwy. Room 1172, Las Vegas, NV 89154, United States
- Department of Psychology and Neuroscience, University of Colorado, 3100 Marine St., Boulder, CO 80309, United States
| | - Jessica Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV 89106, United States
| | | |
Collapse
|
36
|
Cieri F. Memory for the Future: Psychodynamic Approach to Time and Self Through the Default Network. Front Hum Neurosci 2022; 16:885315. [PMID: 35782047 PMCID: PMC9245038 DOI: 10.3389/fnhum.2022.885315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Time exists in us, and our self exists in time. Our self is affected and shaped by time to the point that a better understanding of the former can aid the understanding of the latter. Psychoanalysis works through self and time, where the self is composed of the biopsychosocial history (the past) of the individual and able to map a trajectory for the future. The psychoanalytic relationship starts from a "measurement": an active process able to alter the system being measured-the self-continuously built over time. This manuscript, starts from the philosophical and scientific tradition of a proximity between time and self, suggesting a neural overlapping at the Default Network. A historical and scientific background will be introduced, proposing a multidisciplinary dimension that has characterized the birth of psychoanalysis (its past), influencing its present and future in the dialogue with physics and neuroscience. After a historical scientific introduction, a neural entanglement between past and future at the Default Network level will be proposed, tracing a link with the self at the level of this network. This hypothesis will be supported by studies in cognitive neurosciences and functional neuroimaging which have used the resting state functional Magnetic Resonance Imaging. The ontogenetic development of time perception will be discussed, consistent with self-development and the Default Network's function. The most common form of dementia, the Alzheimer's Disease, in which the perception of time is brutally impaired together with a loss of the self's functions will be proposed to support this idea. Finally, the potential theoretical and clinical significance for psychoanalysis and psychodynamic neurosciences, will be discussed.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| |
Collapse
|
37
|
Wu H, Song Y, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. An Activation Likelihood Estimation Meta-Analysis of Specific Functional Alterations in Dorsal Attention Network in Mild Cognitive Impairment. Front Neurosci 2022; 16:876568. [PMID: 35557608 PMCID: PMC9086967 DOI: 10.3389/fnins.2022.876568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is known as the prodromal stage of the Alzheimer’s disease (AD) spectrum. The recent studies have advised that functional alterations in the dorsal attention network (DAN) could be used as a sensitive marker to forecast the progression from MCI to AD. Therefore, our aim was to investigate specific functional alterations in the DAN in MCI. Methods We systematically searched PubMed, EMBASE, and Web of Science and chose relevant articles based on the three functional indicators, the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) in the DAN in MCI. Based on the activation likelihood estimation, we accomplished the aggregation of specific coordinates and the analysis of functional alterations. Results A total of 38 studies were involved in our meta-analysis. By summing up included articles, we acquired specific brain region alterations in the DAN mainly in the superior temporal gyrus (STG), middle temporal gyrus (MTG), superior frontal gyrus (SFG), middle frontal gyrus (MFG), inferior frontal gyrus (IFG), precentral gyrus (preCG), inferior parietal lobule (IPL), superior parietal lobule (SPL). At the same time, the key area that shows anti-interaction with default mode network included the IPL in the DAN. The one showing interactions with executive control network was mainly in the MFG. Finally, the frontoparietal network showed a close connection with DAN especially in the IPL and IFG. Conclusion This study demonstrated abnormal functional markers in the DAN and its interactions with other networks in MCI group, respectively. It provided the foundation for future targeted interventions in preventing the progression of AD. Systematic Review Registration [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021287958].
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
38
|
Subramaniapillai S, Rajagopal S, Ankudowich E, Pasvanis S, Misic B, Rajah MN. Age- and Episodic Memory-related Differences in Task-based Functional Connectivity in Women and Men. J Cogn Neurosci 2022; 34:1500-1520. [PMID: 35579987 DOI: 10.1162/jocn_a_01868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aging is associated with episodic memory decline and changes in functional brain connectivity. Understanding whether and how biological sex influences age- and memory performance-related functional connectivity has important theoretical implications for the cognitive neuroscience of memory and aging. Here, we scanned 161 healthy adults between 19 and 76 years of age in an event-related fMRI study of face-location spatial context memory. Adults were scanned while performing easy and difficult versions of the task at both encoding and retrieval. We used multivariate whole-brain partial least squares connectivity to test the hypothesis that there are sex differences in age- and episodic memory performance-related functional connectivity. We examined how individual differences in age and retrieval accuracy correlated with task-related connectivity. We then repeated this analysis after disaggregating the data by self-reported sex. We found that increased encoding and retrieval-related connectivity within the dorsal attention network (DAN), and between DAN and frontoparietal network and visual networks, were positively correlated to retrieval accuracy and negatively correlated with age in both sexes. We also observed sex differences in age- and performance-related functional connectivity: (a) Greater between-networks integration was apparent at both levels of task difficulty in women only, and (b) increased DAN-default mode network connectivity with age was observed in men and was correlated with poorer memory performance. Therefore, the neural correlates of age-related episodic memory decline differ in women and men and have important theoretical and clinical implications for the cognitive neuroscience of memory, aging, and dementia prevention.
Collapse
Affiliation(s)
- Sivaniya Subramaniapillai
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Elizabeth Ankudowich
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | | | - Bratislav Misic
- Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| | - M Natasha Rajah
- McGill University, Montréal, Quebéc, Canada.,Douglas Mental Health University Institute, Montréal, Quebéc, Canada
| |
Collapse
|
39
|
Beckmann FE, Seidenbecher S, Metzger CD, Gescher DM, Carballedo A, Tozzi L, O'Keane V, Frodl T. C-reactive protein is related to a distinct set of alterations in resting-state functional connectivity contributing to a differential pathophysiology of major depressive disorder. Psychiatry Res Neuroimaging 2022; 321:111440. [PMID: 35131572 DOI: 10.1016/j.pscychresns.2022.111440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Several studies in major depressive disorder (MDD) have found inflammation, especially C-reactive protein (CRP), to be consistently associated with MDD and network dysfunction. The aim was to investigate whether CRP is linked to a distinct set of resting-state functional connectivity (RSFC) alterations. METHODS For this reason, we investigated the effects of diagnosis and elevated blood plasma CRP levels on the RSFC in 63 participants (40 females, mean age 31.4 years) of which were 27 patients with a primary diagnosis of MDD and 36 healthy control-subjects (HC), utilizing a seed-based approach within five well-established RSFC networks obtained using fMRI. RESULTS Of the ten network pairs examined, five showed increased between-network RSFC-values unambiguously connected either to a diagnosis of MDD or elevated CRP levels. For elevated CRP levels, increased RSFC between DMN and AN was found. Patients showed increased RSFC within DMN areas and between the DMN and ECN and VAN, ECN and AN and AN and DAN. CONCLUSIONS The results of this study show dysregulated neural circuits specifically connected to elevated plasma CRP levels and independent of other alterations of RSFC in MDD. This dysfunction in neural circuits might in turn result in a certain immune-inflammatory subtype of MDD.
Collapse
Affiliation(s)
- Fienne-Elisa Beckmann
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany
| | - Stephanie Seidenbecher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany
| | - Coraline D Metzger
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany
| | - Dorothee M Gescher
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH Aachen, Germany
| | - Angela Carballedo
- Department of Psychiatry and Trinity Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany; Department of Psychiatry and Trinity Institute of Neuroscience, Trinity College Dublin, Ireland; Department of Psychiatry, University of Stanford, USA
| | - Veronica O'Keane
- Department of Psychiatry and Trinity Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany; Department of Psychiatry and Trinity Institute of Neuroscience, Trinity College Dublin, Ireland; Department of Psychiatry, University of Stanford, USA; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Aachen, RWTH Aachen, Germany.
| |
Collapse
|
40
|
Onofrj V, Chiarelli AM, Wise R, Colosimo C, Caulo M. Interaction of the salience network, ventral attention network, dorsal attention network and default mode network in neonates and early development of the bottom-up attention system. Brain Struct Funct 2022; 227:1843-1856. [DOI: 10.1007/s00429-022-02477-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
|
41
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
42
|
Aging and goal-directed cognition: Cognitive control, inhibition, and motivated cognition. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Sampedro F, Aracil-Bolaños I, Carmona I Farrés C, Soler J, Schmidt C, Elices M, Pomarol-Clotet E, Salvador R, Vega D, Pascual JC. A Functional Connectivity Study to Investigate the Role of the Right Anterior Insula in Modulating Emotional Dysfunction in Borderline Personality Disorder. Psychosom Med 2022; 84:64-73. [PMID: 34611112 DOI: 10.1097/psy.0000000000001019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous imaging studies in patients with borderline personality disorder (BPD) have detected functional brain dysfunctions. Mindfulness training may improve the symptoms of BPD, although the neural mechanisms involved remain poorly understood. This study had several key aims: a) to investigate the role of right anterior insula (rAI) functional connectivity in modulating baseline emotional status in BPD, b) to compare differences in connectivity changes after mindfulness training versus interpersonal effectiveness intervention, and c) to explore the correlation between longitudinal changes in imaging data and clinical indicators. METHODS Thirty-eight patients with BPD underwent resting-state functional magnetic resonance imaging. Participants completed self-report clinical scales and participated in a dialectical-behavioral therapy (mindfulness versus interpersonal effectiveness modules). Changes in clinical and imaging variables were evaluated longitudinally after completion of the first 10-week sessions of psychotherapeutic intervention. RESULTS At baseline, the rAI was strongly connected with the other salience network nodes and anticorrelated with most core nodes of the default mode network (p < .05, corrected). The functional connectivity of the rAI correlated with emotional dysregulation and deficits in mindfulness capacities (p < .05, corrected). After completion of psychotherapeutic intervention, both groups (mindfulness and interpersonal effectiveness) showed divergent posttherapy functional connectivity changes, which were in turn associated with the clinical response. CONCLUSIONS The functional connectivity of the rAI seems to play an important role in emotion dysregulation and deficits in mindfulness capacities in individuals with BPD. Psychotherapy seems to modulate this functional connectivity, leading to beneficial changes in clinical variables.
Collapse
Affiliation(s)
- Frederic Sampedro
- From the Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED) (Sampedro, Aracil-Bolaños); Movement Disorders Unit, Neurology Department (Aracil-Bolaños), Hospital de la Santa Creu I Sant Pau, IIB-Sant Pau, and Department of Psychiatry (Carmona i Farrés, Soler, Schmidt, Elices, Pascual), Hospital de la Santa Creu I Sant Pau, IIB-Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Carmona i Farrés, Soler, Elices, Pomarol-Clotet, Salvador, Pascual), Madrid; Institute Mar of Medical Research (IMIM) (Elices); Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, UAB (Soler, Vega, Pascual); FIDMAG Germanes Hospitalàries Research Foundation (Pomarol-Clotet, Salvador); and Servicio de Salud Mental, Hospital de Igualada (Vega), Consorci Sanitari de l'Anoia, Igualada, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Capacity differences in working memory based on resting state brain networks. Sci Rep 2021; 11:19502. [PMID: 34593909 PMCID: PMC8484281 DOI: 10.1038/s41598-021-98848-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Herein, we compared the connectivity of resting-state networks between participants with high and low working memory capacity groups. Brain network connectivity was assessed under both resting and working memory task conditions. Task scans comprised dual-task (reading sentences while memorizing target words) and single-task (reading sentences) conditions. The low capacity group showed relatively stronger connectivity during resting-state in most brain regions, and the high capacity group showed a stronger connectivity between the medial prefrontal and posterior parietal cortices. During task performance, the dorsal attention and salience networks were relatively strongly connected in the high capacity group. In the comparison between dual- and single-task conditions, increased coupling between the anterior cingulate cortex and other attentional control-related areas were noted in the high capacity group. These findings suggest that working memory differences are related with network connectivity variations in attentional control-associated regions during both resting and task performance conditions.
Collapse
|
45
|
Random walks on B distributed resting-state functional connectivity to identify Alzheimer's disease and Mild Cognitive Impairment. Clin Neurophysiol 2021; 132:2540-2550. [PMID: 34455312 DOI: 10.1016/j.clinph.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Resting-state functional connectivity reveals a promising way for the early detection of dementia. This study proposes a novel method to accurately classify Healthy Controls, Early Mild Cognitive Impairment, Late Mild Cognitive Impairment, and Alzheimer's Disease individuals. METHODS A novel mapping function based on the B distribution has been developed to map correlation matrices to robust functional connectivity. The node2vec algorithm is applied to the functional connectivity to produce node embeddings. The concatenation of these embedding has been used to derive the patients' feature vectors for further feeding into the Support Vector Machine and Logistic Regression classifiers. RESULTS The experimental results indicate promising results in the complex four-class classification problem with an accuracy rate of 97.73% and a quadratic kappa score of 96.86% for the Support Vector Machine. These values are 97.32% and 96.74% for Logistic Regression. CONCLUSION This study presents an accurate automated method for dementia classification. Default Mode Network and Dorsal Attention Network have been found to demonstrate a significant role in the classification method. SIGNIFICANCE A new mapping function is proposed in this study, the mapping function improves accuracy by 10-11% in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
Collapse
|
46
|
Song Y, Xu W, Chen S, Hu G, Ge H, Xue C, Qi W, Lin X, Chen J. Functional MRI-Specific Alterations in Salience Network in Mild Cognitive Impairment: An ALE Meta-Analysis. Front Aging Neurosci 2021; 13:695210. [PMID: 34381352 PMCID: PMC8350339 DOI: 10.3389/fnagi.2021.695210] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia. Amnestic MCI (aMCI) and non-amnestic MCI are the two subtypes of MCI with the former having a higher risk for progressing to Alzheimer's disease (AD). Compared with healthy elderly adults, individuals with MCI have specific functional alterations in the salience network (SN). However, no consistent results are documenting these changes. This meta-analysis aimed to investigate the specific functional alterations in the SN in MCI and aMCI. Methods: We systematically searched PubMed, Embase, and Web of Science for scientific neuroimaging literature based on three research methods, namely, functional connectivity (FC), regional homogeneity (ReHo), and the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF). Then, we conducted the coordinate-based meta-analysis by using the activation likelihood estimation algorithm. Results: In total, 30 functional neuroimaging studies were included. After extracting the data and analyzing it, we obtained specific changes in some brain regions in the SN including decreased ALFF/fALFF in the left superior temporal gyrus, the insula, the precentral gyrus, and the precuneus in MCI and aMCI; increased FC in the thalamus, the caudate, the superior temporal gyrus, the insula, and the cingulate gyrus in MCI; and decreased ReHo in the anterior cingulate gyrus in aMCI. In addition, as to FC, interactions of the SN with other networks including the default mode network and the executive control network were also observed mainly in the middle frontal gyrus and superior frontal gyrus in MCI and inferior frontal gyrus in aMCI. Conclusions: Specific functional alternations in the SN and interactions of the SN with other networks in MCI could be useful as potential imaging biomarkers for MCI or aMCI. Meanwhile, it provided a new insight in predicting the progression of health to MCI or aMCI and novel targets for proper intervention to delay the progression. Systematic Review Registration: [PROSPERO], identifier [No. CRD42020216259].
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Chen K, Li C, Sun W, Tao Y, Wang R, Hou W, Liu DQ. Hidden Markov Modeling Reveals Prolonged "Baseline" State and Shortened Antagonistic State across the Adult Lifespan. Cereb Cortex 2021; 32:439-453. [PMID: 34255827 DOI: 10.1093/cercor/bhab220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
The brain networks undergo functional reorganization across the whole lifespan, but the dynamic patterns behind the reorganization remain largely unclear. This study models the dynamics of spontaneous activity of large-scale networks using hidden Markov model (HMM), and investigates how it changes with age on two adult lifespan datasets of 176/157 subjects (aged 20-80 years). Results for both datasets showed that 1) older adults tended to spend less time on a state where default mode network (DMN) and attentional networks show antagonistic activity, 2) older adults spent more time on a "baseline" state with moderate-level activation of all networks, accompanied with lower transition probabilities from this state to the others and higher transition probabilities from the others to this state, and 3) HMM exhibited higher sensitivity in uncovering the age effects compared with temporal clustering method. Our results suggest that the aging brain is characterized by the shortening of the antagonistic instances between DMN and attention systems, as well as the prolongation of the inactive period of all networks, which might reflect the shift of the dynamical working point near criticality in older adults.
Collapse
Affiliation(s)
- Keyu Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Chaofan Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Wei Sun
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Yunyun Tao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Ruidi Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| | - Wen Hou
- School of Mathematics, Liaoning Normal University, Dalian 116029, China
| | - Dong-Qiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China.,Key Laboratory of Brain and Cognitive Neuroscience, Dalian 116029, Liaoning Province, China
| |
Collapse
|
48
|
Disrupted Resting-State Functional Connectivity between the Dorsal Attention, Default Mode, and Frontoparietal Networks in Nonorganic Gastrointestinal Disorder Patients with Spleen Deficiency Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6681903. [PMID: 34055021 PMCID: PMC8123991 DOI: 10.1155/2021/6681903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/08/2022]
Abstract
Introduction Spleen deficiency syndrome (SDS), a common clinical syndrome of traditional Chinese medicine, is manifested with digestive symptoms and cognitive impairments. However, the cognitive neural mechanism in brain networks of SDS still remained unclear. Our aim was to investigate the changes between the default mode, dorsal attention, and frontoparietal networks in SDS. Methods Twenty nonorganic gastrointestinal disorder (NOGD) patients with SDS and eighteen healthy controls were enrolled to attend functional magnetic resonance imaging scan and participated a continuous performance test (CPT) before scanning. Results Compared with healthy controls, NOGD patients with SDS showed the significantly increased functional connectivity (FC) between dorsal attention network (DAN) and left frontal-parietal control network (LFPN) and significantly decreased FC between LFPN and default mode network (DMN). The functional network connectivity analysis showed positive correlation coefficients between the DAN and LFPN and DAN and DMN as well as negative correlation between LFPN and DMN in NOGD patients with SDS compared with healthy controls. Correlation analysis revealed that the increased FC between LFPN and DAN was positively correlated with 4-digitnumber reaction time mean (RTM) and 3-digitnumber RTM. Conclusion Our study may provide novel insights into the relationship among the DMN, DAN, and FPN in NOGD patients with SDS to deepen our understanding of the neuropsychological mechanisms of SDS.
Collapse
|
49
|
Devaney KJ, Levin EJ, Tripathi V, Higgins JP, Lazar SW, Somers DC. Attention and Default Mode Network Assessments of Meditation Experience during Active Cognition and Rest. Brain Sci 2021; 11:566. [PMID: 33946661 PMCID: PMC8144977 DOI: 10.3390/brainsci11050566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
Meditation experience has previously been shown to improve performance on behavioral assessments of attention, but the neural bases of this improvement are unknown. Two prominent, strongly competing networks exist in the human cortex: a dorsal attention network, that is activated during focused attention, and a default mode network, that is suppressed during attentionally demanding tasks. Prior studies suggest that strong anti-correlations between these networks indicate good brain health. In addition, a third network, a ventral attention network, serves as a "circuit-breaker" that transiently disrupts and redirects focused attention to permit salient stimuli to capture attention. Here, we used functional magnetic resonance imaging to contrast cortical network activation between experienced focused attention Vipassana meditators and matched controls. Participants performed two attention tasks during scanning: a sustained attention task and an attention-capture task. Meditators demonstrated increased magnitude of differential activation in the dorsal attention vs. default mode network in a sustained attention task, relative to controls. In contrast, there were no evident attention network differences between meditators and controls in an attentional reorienting paradigm. A resting state functional connectivity analysis revealed a greater magnitude of anticorrelation between dorsal attention and default mode networks in the meditators as compared to both our local control group and a n = 168 Human Connectome Project dataset. These results demonstrate, with both task- and rest-based fMRI data, increased stability in sustained attention processes without an associated attentional capture cost in meditators. Task and resting-state results, which revealed stronger anticorrelations between dorsal attention and default mode networks in experienced mediators than in controls, are consistent with a brain health benefit of long-term meditation practice.
Collapse
Affiliation(s)
- Kathryn J. Devaney
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02115, USA; (E.J.L.); (V.T.); (J.P.H.)
| | - Emily J. Levin
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02115, USA; (E.J.L.); (V.T.); (J.P.H.)
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02903, USA
| | - Vaibhav Tripathi
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02115, USA; (E.J.L.); (V.T.); (J.P.H.)
| | - James P. Higgins
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02115, USA; (E.J.L.); (V.T.); (J.P.H.)
- Department of Radiology, Northwestern University, Chicago, IL 60208, USA
| | - Sara W. Lazar
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | - David C. Somers
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02115, USA; (E.J.L.); (V.T.); (J.P.H.)
| |
Collapse
|
50
|
Cieri F, Zhuang X, Caldwell JZK, Cordes D. Brain Entropy During Aging Through a Free Energy Principle Approach. Front Hum Neurosci 2021; 15:647513. [PMID: 33828471 PMCID: PMC8019811 DOI: 10.3389/fnhum.2021.647513] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Neural complexity and brain entropy (BEN) have gained greater interest in recent years. The dynamics of neural signals and their relations with information processing continue to be investigated through different measures in a variety of noteworthy studies. The BEN of spontaneous neural activity decreases during states of reduced consciousness. This evidence has been showed in primary consciousness states, such as psychedelic states, under the name of "the entropic brain hypothesis." In this manuscript we propose an extension of this hypothesis to physiological and pathological aging. We review this particular facet of the complexity of the brain, mentioning studies that have investigated BEN in primary consciousness states, and extending this view to the field of neuroaging with a focus on resting-state functional Magnetic Resonance Imaging. We first introduce historic and conceptual ideas about entropy and neural complexity, treating the mindbrain as a complex nonlinear dynamic adaptive system, in light of the free energy principle. Then, we review the studies in this field, analyzing the idea that the aim of the neurocognitive system is to maintain a dynamic state of balance between order and chaos, both in terms of dynamics of neural signals and functional connectivity. In our exploration we will review studies both on acute psychedelic states and more chronic psychotic states and traits, such as those in schizophrenia, in order to show the increase of entropy in those states. Then we extend our exploration to physiological and pathological aging, where BEN is reduced. Finally, we propose an interpretation of these results, defining a general trend of BEN in primary states and cognitive aging.
Collapse
Affiliation(s)
- Filippo Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
| | | | | | | |
Collapse
|