1
|
Ma J, Wang Y, Zhang Z, Cai X, Xiang X, Chen Y, Sun F, Dong J. Peripheral Blood T-Cell Receptor Repertoire Diversity as a Potential Biomarker in the Diagnosis and Treatment Evaluation of Colorectal and Lung Cancers: A Prospective Observational Study. Cancer Med 2025; 14:e70937. [PMID: 40387418 PMCID: PMC12086972 DOI: 10.1002/cam4.70937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND T-cell receptor (TCR) diversity 50 (D50) values could assess peripheral blood (PB) TCR diversity and immunity. This study aimed to evaluate the potential D50 value in the diagnosis and treatment evaluation of colorectal cancer (CRC) and nonsmall-cell lung cancer (NSCLC). METHODS This prospective observational study enrolled patients with CRC, benign colorectal disease (BCD), NSCLC, or benign nodule controls (BNC) and healthy donors (HD) at Yunnan Cancer Hospital between January 2021 and June 2022. PB specimens were used for TCRβ sequencing, and D50 was calculated and compared within different groups. The area under the curve (AUC) was used to evaluate the diagnostic performance of D50 in CRC and NSCLC. RESULTS A total of 114 HD and 115 CRC, 31 BCD, 67 NSCLC, and 25 BNC patients were enrolled. Both CRC and NSCLC patients exhibited significantly lower D50 compared with HDs (p < 0.001), whereas BCD and BNC patients showed a modest decrease in TCR diversity (p < 0.05). NSCLC patients with lymph node metastases had markedly lower D50 than those without lymph node metastasis (0.05 vs. 0.11, p < 0.01). Higher D50 was found in CRC and NSCLC patients with normal carcinoembryonic antigen (CEA) levels (p < 0.05). The potential of D50 value for early detection of CRC and NSCLC was demonstrated, with an area under the receiver operating characteristic curve (AUC) of 0.736 for CRC (sensitivity: 71.30%, specificity: 68.42%) and 0.768 for NSCLC (sensitivity: 83.58%, specificity: 60.53%). Significant differences in D50 values were observed between patients with tumor regression grade (TRG) 0-1 and those with TRG 2-3 (p = 0.027), with an AUC of 0.731 (sensitivity: 68.75%, specificity: 76.92%). CONCLUSION These findings suggest that the PB TCR D50 values may have significant clinical value in cancer diagnosis and in evaluating the efficacy of neoadjuvant therapies.
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Lung Neoplasms/diagnosis
- Lung Neoplasms/blood
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Prospective Studies
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/blood
- Colorectal Neoplasms/therapy
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/genetics
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/blood
- Adult
Collapse
Affiliation(s)
- Jilong Ma
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Yuanbiao Wang
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Zhixin Zhang
- Department of TechnologyChengdu ExAb Biotechnology, LTDChengduSichuanChina
| | - Xinyi Cai
- Department of Colorectal SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Xudong Xiang
- Department of Thoracic Surgery IIThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Yan Chen
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Fengqiong Sun
- Department of Colorectal SurgeryThe Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| | - Jian Dong
- Key Laboratory of Cell Therapy Technology Transformation Medicine of Yunnan Province, the Han Weidong Expert Workstation of Yunnan Province, Yunnan Provincial Engineering Research Centre of Cell Therapy and Quality Control System, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer HospitalKunmingYunnanChina
| |
Collapse
|
2
|
Wang H, Ma J, Lu J, Wang Y, Zhang B, Zhang H, Peng H. TMB is associated with the prognosis of egfr-mutated non-small cell lung cancer in Xuanwei, China. Biomark Med 2024; 18:1123-1133. [PMID: 39633593 DOI: 10.1080/17520363.2024.2432306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Study on the prognostic characteristics and biomarkers of lung cancer in Xuanwei Patients. MATERIALS AND METHODS A retrospective analysis was conducted on the genetic data of 261 NSCLC patients, as well as the prognostic data of 133 patients. The relationship between prognosis and EGFR mutations in the Xuanwei and non Xuanwei cohorts was compared and analyzed. RESULTS The superior progression-free survival (PFS) in Xuanwei patients was primarily observed in those with EGFR-mutated tumors (p < 0.05). Further analysis of accompanying mutations and TMB levels revealed an association between high TMB and a favorable prognosis in EGFR-mutated Xuanwei NSCLC. CONCLUSION Xuanwei lung cancer differs from non Xuanwei patients in terms of prognosis and tumor mutation burden, and further research should be conducted.
Collapse
Affiliation(s)
- Han Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Junrui Ma
- School of Nursing, Yunnan University of Traditional Chinese Medicines, Kunming City, Yunnan Province, P.R. China
| | - Jiagui Lu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Yang Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Binli Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| | - Hushan Zhang
- Key Laboratory of Northeastern Yunnan Natural Medicine, Zhaotong Healthy Vocational College, Zhaotong City, Yunnan Province, China
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, P.R. China
- The Medical Department, 3D Medicines Inc, Shanghai, P.R. China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, P.R. China
| |
Collapse
|
3
|
Han X, Li D, Du W, Shi J, Li S, Xie Y, Deng S, Wang Z, Tian S, Ning P. Particulate polycyclic aromatic hydrocarbons in rural households burning solid fuels in Xuanwei County, Southwest China: occurrence, size distribution, and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15398-15411. [PMID: 38294651 DOI: 10.1007/s11356-024-32077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The study is about the size distribution and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor environment of Xuanwei, Southwest China particle samples were collected by Anderson 8-stage impactor which was used to gather particle samples to nine size ranges. Size-segregated samples were collected in indoor from a rural village in Xuanwei during the non-heating and heating seasons. The results showed that the total concentrations of the indoor particulate matter (PM) were 757 ± 60 and 990 ± 78 μg/m3 in non-heating and heating seasons, respectively. The total concentration of indoor PAHs reached to 8.42 ± 0.53 μg/m3 in the heating season, which was considerably greater than the concentration in the non-heating season (2.85 ± 1.72 μg/m3). The size distribution of PAHs showed that PAHs were mainly enriched in PMs with the diameter <1.1 μm. The diagnostic ratios (DR) and principal component analysis (PCA) showed that coal and wood for residential heating and cooking were the main sources of indoor PAHs. The results of the health risk showed that the total deposition concentration (DC) in the alveolar region (AR) was 0.25 and 0.68 μg/m3 in the non-heating and heating seasons respectively. Throughout the entire sampling periods, the lifetime cancer risk (R) based on DC of children and adults varied between 3.53 ×10-5 to 1.79 ×10-4. During the heating season, the potential cancer risk of PAHs in adults was significant, exceeding 10-4, with a rate of 96%.
Collapse
Affiliation(s)
- Xinyu Han
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Dingshuang Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Du
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianwu Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Shuai Li
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuqi Xie
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shihan Deng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhihao Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
4
|
Chen Z, Cheng X, Wang X, Ni S, Yu Q, Hu J. Identification of core carcinogenic elements based on the age-standardized mortality rate of lung cancer in Xuanwei Formation coal in China. Sci Rep 2024; 14:232. [PMID: 38167547 PMCID: PMC10761687 DOI: 10.1038/s41598-023-49975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, the core carcinogenic elements in Xuanwei Formation coal were identified. Thirty-one samples were collected based on the age-standardized mortality rate (ASMR) of lung cancer; Si, V, Cr, Co, Ni, As, Mo, Cd, Sb, Pb, and rare earth elements and yttrium (REYs) were analyzed and compared; multivariate statistical analyses (CA, PCA, and FDA) were performed; and comprehensive identification was carried out by combining multivariate statistical analyses with toxicology and mineralogy. The final results indicated that (1) the high-concentration Si, Ni, V, Cr, Co, and Cd in coal may have some potential carcinogenic risk. (2) The concentrations of Cr, Ni, As, Mo, Cd, and Pb meet the zoning characteristics of the ASMR, while the Si concentration is not completely consistent. (3) The REY distribution pattern in Longtan Formation coal is lower than that in Xuanwei Formation coal, indicating that the materials of these elements in coal are different. (5) The heatmap divides the sampling sites into two clusters and subtypes in accordance with carcinogenic zoning based on the ASMR. (6) PC1, PC2, and PC3 explain 62.629% of the total variance, identifying Co, Ni, As, Cd, Mo, Cr, and V. (7) Fisher discriminant analysis identifies Ni, Si, Cd, As, and Co based on the discriminant function. (8) Comprehensive identification reveals that Ni is the primary carcinogenic element, followed by Co, Cd, and Si in combination with toxicology. (9) The paragenesis of Si (nanoquartz), Ni, Co, and Cd is an interesting finding. In other words, carcinogenic elements Ni, Co, Cd, and Si and their paragenetic properties should receive more attention.
Collapse
Affiliation(s)
- Zailin Chen
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China.
- Yunnan Land and Resources Vocational College, Kunming, 652501, China.
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China.
| | - Xianfeng Cheng
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
| | - Xingyu Wang
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Shijun Ni
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Qiulian Yu
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
| | - Junchun Hu
- Coal Geology Prospecting Institute of Yunnan Province, Kunming, 650218, China
| |
Collapse
|
5
|
Xiao K, Wang Q, Lu S, Lin Y, Enyoh CE, Chowdhury T, Rabin MH, Islam MR, Guo Y, Wang W. Pollution levels and health risk assessment of potentially toxic metals of size-segregated particulate matter in rural residential areas of high lung cancer incidence in Fuyuan, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2869-2889. [PMID: 36088450 DOI: 10.1007/s10653-022-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
The highest incidence and mortality rate of lung cancer in rural area of Fuyuan has been a research hotspot, and the pathogenesis is still unclear. Therefore, atmospheric particulate matters (APMs) samples were collected between 18 February and 01 March 2017, exploring water-soluble potentially toxic metals (WSPTMs) and water-soluble inorganic ionic species (WSIIs) levels, size distribution, sources, acidity and alkalinity, and potential carcinogenic and non-carcinogenic risks, hoping to provide scientific basic data to solve this problem. In our study, the average ratio of nitrate ion (NO3-)/sulfate ion (SO42-) within PM1.1, PM1.1-2.0, PM2.0-3.3, PM3.3-7.0, and PM>7.0 were 0.22, 0.18, 0.15, 0.34 and 0.36, respectively, that revealed that combustion sources contributed to PM were more significant. The anions in equilibrium (ANE) / cations in equilibrium (CAE) < 1 for all samples within PM1.1, PM2.0-3.3, PM3.3-7.0 indicate that the APMs were alkaline, but PM1.1-2.0 particulate matter shows weak acidity. SO42- prefers to combine with NH4+ to form (NH4)2SO4, which hinders the formation of NH4NO3, the remaining SO42- and NO3- to neutralize the K+, KNO3 was formed at all particulate, however, K2SO4 can only be formed in PM<3.3. Arsenic (As) and Selenium (Se) were identified as the most enriched WSPTMs in all PM sizes, predominantly from anthropogenic emissions, were suggested that coal combustion is a significant source of PM-bound WSPTMs. Total WSPTMs exhibited high total carcinogenic risks (TCR) values (9.98 × 10-6, 1.06 × 10-5, and 1.19 × 10-5 for girls, boys and adults, respectively) in the smaller particles (< 1.1 μm). Se was considered as the major contributor (63.60%) to carcinogenic risk (CR) in PM2.0 and had an inverse relationship with PM size that should be of prime concern.
Collapse
Affiliation(s)
- Kai Xiao
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Senlin Lu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangdalu, Baoshan district, Shanghai city, 200-444, China
| | - Yichun Lin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Tanzin Chowdhury
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Mominul Haque Rabin
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Md Rezwanul Islam
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yue Guo
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| |
Collapse
|
6
|
Ma Y, Shi H, Zhao G, Liu X, Cai J, Li G, Chen W, Lei Y, Ye L, Fu C, Zhao L, Zhou Y, Huang Y. Unique profile on the progress free survival and overall survival in patients with advanced non-small cell lung cancer in the Qujing area, Southwest China. Front Immunol 2023; 14:1012166. [PMID: 36926333 PMCID: PMC10011462 DOI: 10.3389/fimmu.2023.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Background China's southwestern region, Qujing, harbors a high incidence of non-small cell lung cancer (NSCLC) and related mortality. This study was designed to reveal the impact of an immune-related prognostic signature (IRPS) on advanced NSCLC in the Qujing. Methods Tissue specimens from an independent cohort of 37 patients with advanced NSCLC were retrospectively evaluated to determine the relationship between the IRPS estimated by next-generation sequencing (NGS) and clinical outcome. To compare the IRPS in tissue and the clinical outcomes between Qujing and non-Qujing populations, we analyzed datasets of 23 patients with advanced NSCLC from The Cancer Genome Atlas (TCGA) database. In addition, an independent cohort (n=111) of blood specimens was retrospectively analyzed to determine the relationship between the IRPS and clinical outcome. Finally, we evaluated the utility of the blood IRPS in classifying 24 patients with advanced NSCLC who might benefit from immunotherapy. Results In cohort 1, the Qujing population with tTMB-H (≥ 10 mutations/Mb) or KRAS mutations had shorter progression-free survival (PFS) (hazard ratio [HR] 0.37, 0.14 to 0.97, P = 0.04; HR 0.23, 0.08 to 0.66, P < 0.01) and overall survival (OS) (HR 0.05, 0.01 to 0.35, P < 0.01; HR 0.22, 0.07 to 0.66, P < 0.01). In cohort 2 of the Qujing population, bTMB-H (≥ 6 mutations per Mb) and KRAS mutations were related to PFS (HR 0.59, 0.36 to 0.99, P = 0.04; HR 0.50, 0.26 to 0.98, P = 0.04) and OS (HR 0.58, 0.35 to 0.96, P = 0.03; HR 0.48, 0.25 to 0.93, P = 0.03). Notably, the Qujing population with bTMB-H had superior PFS (HR 0.32, 0.09 to 1.09, P = 0.01), OS (HR 0.33, 0.10 to 1.13, P < 0.01) and objective response rates (ORRs) (83.3% vs. 14.3% vs. 20.0%, P <0.01) to immunotherapy than other populations. Conclusions These findings show that tTMB, bTMB and KRAS mutations appear to be independent validated IRPSs that predict the clinical outcomes of Qujing populations with advanced NSCLC and that bTMB may be used as a reliable IRPS to predict the clinical benefit from anti-PD-1 therapies among populations from Qujing with advanced NSCLC.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Hutao Shi
- Department of Imaging at Kunming Tongren Hospital, Kunming, China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Xin Liu
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Jingjing Cai
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Wanlin Chen
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Lianhua Ye
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China
| | - Chaojiang Fu
- Emergency Department (Outpatient Chemotherapy Center) at Yunnan Cancer Hospital, Kunming, China
| | - Li Zhao
- Department of Anesthesiology at Yunnan Cancer Hospital, Kunming, China
| | - Yongchun Zhou
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Yunnan Cancer Hospital, Kunming, China.,Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
7
|
Zhao H, Wu S, Luo Z, Liu H, Sun J, Jin X. The association between circulating docosahexaenoic acid and lung cancer: A Mendelian randomization study. Clin Nutr 2022; 41:2529-2536. [PMID: 36223714 DOI: 10.1016/j.clnu.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Lung cancer is a malignant tumor with a high incidence, it is vital to identify modifiable and avoidable risk factors for primary prevention, which can significantly lower the risk of cancer by preventing exposure to hazards and altering risky behavior. Some observational studies suggest that an increase in docosahexaenoic acid (DHA) consumption can reduce lung cancer risk. However, interpretation of these observational findings is difficult due to residual confounding or reverse causality. To evaluate the link between DHA and lung cancer, we have undertaken this analysis to examine the causal association between DHA and the risk of lung cancer using a two-sample Mendelian randomization (MR) framework. METHODS We performed a two-sample MR analysis to evaluate the causal effect of plasma DHA levels on lung cancer risk. For the exposure data, we extracted genetic variants as instrumental variables (IVs) that are strongly associated with DHA from a large-scale genome-wide association study (GWAS). We obtained the corresponding effect estimates for IVs on the risk of lung cancer with 11,348 cases and 15,861 controls. Finally, we applied Mendelian randomization analysis to obtain preliminary MR results and performed sensitivity analyses to verify the robustness of our results. RESULTS According to the primary MR estimates and further sensitivity analyses, a higher serum DHA level was associated with a higher risk of lung cancer [OR = 1.159, 95% CI (1.04-1.30), P = 0.01]. For lung adenocarcinoma, the results also showed a close correlation between the DHA level and lung adenocarcinoma [OR = 1.277, 95% CI (1.09-1.50), P = 0.003], but it was not statistically significant for squamous cell carcinoma [OR = 1.071, 95% CI (0.89-1.29), P = 0.467]. CONCLUSIONS Our study revealed that plasma DHA is positively associated with the risk of lung cancer overall, especially for lung adenocarcinoma. This study provides new information to develop dietary guidelines for primary lung cancer prevention.
Collapse
Affiliation(s)
- Hang Zhao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; China-Japan Friendship Hospital, Yinghuadong Road, Beijing 100029, Chaoyang District, China
| | - Shengnan Wu
- The First Affiliated Hospital of China Medical University, Shengyang, China
| | - Zhenkai Luo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Junwei Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaolin Jin
- The First Affiliated Hospital of China Medical University, Shengyang, China; Department of International Physical Examination Center, The First Affiliated Hospital of China Medical University, Shengyang, China.
| |
Collapse
|
8
|
Wang JL, Fu YD, Gao YH, Li XP, Xiong Q, Li R, Hou B, Huang RS, Wang JF, Zhang JK, Lv JL, Zhang C, Li HW. Unique characteristics of G719X and S768I compound double mutations of epidermal growth factor receptor (EGFR) gene in lung cancer of coal-producing areas of East Yunnan in Southwestern China. Genes Environ 2022; 44:17. [PMID: 35606799 PMCID: PMC9125819 DOI: 10.1186/s41021-022-00248-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background The principal objective of this project was to investigate the Epidermal Growth Factor Receptor (EGFR) gene mutation characteristics of lung cancer patients, which can provide a molecular basis for explaining the clinicopathological features, epidemiology and use of targeted therapy in lung cancer patients in the coal-producing areas of East Yunnan. Methodology We collected 864 pathologically confirmed lung cancer patients’ specimens in First People’s Hospital of Qujing City of Yunnan Province from September 2016 to September 2021. We thereafter employed Next Generation Sequencing (NGS) technology to detect all exons present in the EGFR gene. Results The overall mutation frequency of the EGFR gene was 47.22%. The frequency of EGFR gene mutations in the tissue, plasma, and cytology samples were found to be 53.40%, 23.33%, and 62.50%, respectively. Univariate analysis indicated that the coal-producing areas and Fuyuan county origin were significantly associated with relatively low EGFR gene mutation frequency. Female, non-smoking history, adenocarcinoma, non-brain metastasis, and tissue specimens were found to be related to high EGFR gene mutation frequency. Multivariate logistic regression analysis suggested the lung cancer patients in the central area of Qujing City, stage Ia, non-coal-producing areas, non-Fuyuan origin, and non-Xuanwei origin were more likely to develop EGFR gene mutations. The most common mutations were L858R point mutation (33.09%) and exon 19 deletion (19-del) (21.32%). Interestingly, the mutation frequency of G719X (p = 0.001) and G719X + S768I (p = 0.000) in the coal-producing areas were noted to be more significant than those in non-coal-producing regions. Conclusion This findings of this study might be important in establishing the correlation between routine using NGS for EGFR gene mutation diagnosis and clinical practice in the lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00248-z.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Yu-Dong Fu
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Yan-Hong Gao
- Department of Traditional Chinese Medicine, First People's Hospital of Qujing, Qujing, 655000, China
| | - Xiu-Ping Li
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Qian Xiong
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China
| | - Rui Li
- Department of Medical Administration, First People's Hospital of Qujing, Qujing, 655000, China
| | - Bo Hou
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Ruo-Shan Huang
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jun-Feng Wang
- Department of Thoracic Surgery, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jian-Kun Zhang
- Department of Pathology, First People's Hospital of Qujing, Qujing, 655000, China
| | - Jia-Ling Lv
- Department of Oncology, First People's Hospital of Qujing, Qujing, 655000, China
| | - Chao Zhang
- Department of Oncology, First People's Hospital of Qujing, Qujing, 655000, China.
| | - Hong-Wei Li
- Biological Laboratory, First People's Hospital of Qujing, Qujing, 655000, China.
| |
Collapse
|
9
|
Gao SH, Wang GZ, Wang LP, Feng L, Zhou YC, Yu XJ, Liang F, Yang FY, Wang Z, Sun BB, Wang D, Liang LJ, Xie DW, Zhao S, Feng HP, Li X, Li KK, Tang TS, Huang YC, Wang SQ, Zhou GB. Mutations and clinical significance of calcium voltage-gated channel subunit alpha 1E (CACNA1E) in non-small cell lung cancer. Cell Calcium 2022; 102:102527. [PMID: 35026540 DOI: 10.1016/j.ceca.2022.102527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
CACNA1E is a gene encoding the ion-conducting α1 subunit of R-type voltage-dependent calcium channels, whose roles in tumorigenesis remain to be determined. We previously showed that CACNA1E was significantly mutated in patients with non-small cell lung cancer (NSCLC) who were long-term exposed to household air pollution, with a mutation rate of 19% (15 of 79 cases). Here we showed that CACNA1E was also mutated in 207 (12.8%) of the 1616 patients with NSCLC in The Cancer Genome Atlas (TCGA) datasets. At mRNA and protein levels, CACNA1E was elevated in tumor tissues compared to counterpart non-tumoral lung tissues in NSCLCs of the public datasets and our settings, and its expression level was inversely associated with clinical outcome of the patients. Overexpression of wild type (WT) or A275S or R249G mutant CACNA1E transcripts promoted NSCLC cell proliferation with activation of epidermal growth factor receptor (EGFR) signaling pathway, whereas knockdown of this gene exerted inhibitory effects on NSCLC cells in vitro and in vivo. CACNA1E increased current density and Ca2+ entrance, whereas calcium channel blockers inhibited NSCLC cell proliferation. These data indicate that CACNA1E is required for NSCLC cell proliferation, and blockade of this oncoprotein may have therapeutic potentials for this deadly disease.
Collapse
Affiliation(s)
- San-Hui Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100091, China
| | - Lin Feng
- Department of Pathology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, 650106, China
| | - Xian-Jun Yu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Jun Liang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Da-Wei Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Ping Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqing Li
- Computer Science Department, University of North Georgia, Dahlonega, GA, 30597, United States
| | - Keqin Kathy Li
- Computer Science Department, University of North Georgia, Dahlonega, GA, 30597, United States
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, 650106, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100091, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Approval Research for Carcinogen Humic-Like Substances (HULIS) Emitted from Residential Coal Combustion in High Lung Cancer Incidence Areas of China. Processes (Basel) 2021. [DOI: 10.3390/pr9071254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The incidence and mortality rate of lung cancer is the highest in Xuanwei County, Yunnan Province, China. The mechanisms of the high lung incidence remain unclear, necessitating further study. However, the particle size distribution characteristics of HULIS emitted from residential coal combustion (RCC) have not been studied in Xuanwei. In this study, six kinds of residential coal were collected. Size-resolved particles emitted from the coal were sampled by using a burning system, which was simulated according to RCC made in our laboratory. Organic carbon (OC), elemental carbon (EC), water-soluble inorganic ion, water-soluble potentially toxic metals (WSPTMs), water-soluble organic carbon (WSOC), and HULIS-C (referred to as HULIS containing carbon contents) in the different size-segregated particulate matter (PM) samples were determined for health risk assessments by inhalation of PM. In our study, the ratio of HULIS-Cx to WSOCx values in RCC particles were 32.73–63.76% (average 53.85 ± 12.12%) for PM2.0 and 33.91–82.67% (average 57.06 ± 17.32%) for PM2.0~7.0, respectively. The carcinogenic risks of WSPTMs for both children and adults exceeded the acceptable level (1 × 10−6, indicating that we should pay more attention to these WSPTMs). Exploring the HULIS content and particle size distribution of the particulate matter produced by household coal combustion provides a new perspective and evidence for revealing the high incidence of lung cancer in Xuanwei, China.
Collapse
|
11
|
Real ÁD, Santurtún A, Teresa Zarrabeitia M. Epigenetic related changes on air quality. ENVIRONMENTAL RESEARCH 2021; 197:111155. [PMID: 33891958 DOI: 10.1016/j.envres.2021.111155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The exposure to airborne particulate matter (PM) increases the risk of developing human diseases. Epigenetic mechanisms have been related to environmental exposures and human diseases. The present review is focused on current available studies, which show the relationship between epigenetic marks, exposure to air pollution and human's health. Air contaminants involved in epigenetic changes have been related to different specific mechanisms (DNA methylation, post-translational histone modifications and non-coding RNA transcripts), which are described in separate sections. Several studies describe how these epigenetic mechanisms are influenced by environmental factors including air pollution. This interaction between PM and epigenetic factors results in an altered profile of these marks, in both, globally and locus specific. Following this connection, specific epigenetic marks can be used as biomarkers, as well as, to find new therapeutic targets. For this purpose, some significant characteristics have been highlighted, such as, the spatiotemporal specificity of these marks, the relevance of the collected tissue and the specific changes stability. Air pollution has been related to a higher mortality rate due to non-accidental deaths. This exposure to particulate matter induces changes to the epigenome, which are increasing the susceptibility of human diseases. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PM exposure must be performed to find new targets and disease biomarkers.
Collapse
Affiliation(s)
- Álvaro Del Real
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain.
| | - Ana Santurtún
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - M Teresa Zarrabeitia
- Unit of Legal Medicine, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
12
|
Zhou Y, Ge F, Du Y, Li Q, Cai J, Liu X, Guo Y, Shen Z, Duan L, Huang Z, Yao F, Zhu C, Shi H, Huang Y. Unique Profile of Driver Gene Mutations in Patients With Non-Small-Cell Lung Cancer in Qujing City, Yunnan Province, Southwest China. Front Oncol 2021; 11:644895. [PMID: 33928034 PMCID: PMC8076749 DOI: 10.3389/fonc.2021.644895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Qujing City, Yunnan Province, China, has a high incidence of lung cancer and related mortality. The etiology of NSCLC in Qujing area and distribution of associated molecular aberrations has not been fully elucidated. This study aimed to reveal the profile of driver gene mutations in patients with non-small-cell lung cancer (NSCLC) in Qujing and explore their relationships with clinicopathological characteristics. Methods In this study, the mutation profiles of NSCLC driver genes, including EGFR, ALK, ROS1, KRAS, BRAF, RET, MET, HER2, NRAS, and PIK3CA, were investigated in patients with NSCLC from Qujing and compared with those from other regions in Yunnan Province. The associations between molecular mutations and clinicopathological characteristics were further analyzed. Results A distinct profile of driver gene mutations was discovered in patients with NSCLC from Qujing. Interestingly, a higher proportion of EGFR compound mutations, including G719X + S768I (19.65% vs 3.38%, P < 0.0001) and G719X + L861Q (21.10% vs 2.82%, P < 0.0001), was observed in patients with NSCLC in Qujing compared with patients in non-Qujing area, besides significantly different distributions of EGFR (46.01% vs. 51.07%, P = 0.0125), ALK (3.17% vs. 6.97%, P = 0.0012), ROS1 (0.5% vs. 2.02%, P = 0.0113), and KRAS (23.02% vs. 7.85%, P < 0.0001). Further, EGFR compound mutations were more likely associated with the occupation of patients (living/working in rural areas, e.g., farmers). Moreover, KRAS G12C was the dominant subtype (51.11% vs 25.00%, P = 0.0275) among patients with NSCLC having KRAS mutations in Qujing. Conclusions Patients with NSCLC in Qujing displayed a unique profile of driver gene mutations, especially a higher prevalence of EGFR compound mutations and dominant KRAS G12C subtype, in this study, indicating a peculiar etiology of NSCLC in Qujing. Therefore, a different paradigm of therapeutic strategy might need to be considered for patients with NSCLC in Qujing.
Collapse
Affiliation(s)
- Yongchun Zhou
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Feng Ge
- Yunnan Provincial Key Laboratory of Panax notoginseng, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yaxi Du
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Quan Li
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Jingjing Cai
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Xin Liu
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Yinjin Guo
- Molecular Diagnosis Sub Center of Yunnan Cancer Center, Yunnan Cancer Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Zhenghai Shen
- Cancer Center Office, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Zhan Huang
- Department of Medical Affairs, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Fei Yao
- Department of Medical Affairs, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Changbin Zhu
- Department of Medical Affairs, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Hutao Shi
- Imaging Department, Kunming Tongren Hospital, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| |
Collapse
|
13
|
Guo G, Li G, Liu Y, Li H, Guo Q, Liu J, Yang X, Shou T, Shi Y. Next-Generation Sequencing Reveals High Uncommon EGFR Mutations and Tumour Mutation Burden in a Subgroup of Lung Cancer Patients. Front Oncol 2021; 11:621422. [PMID: 33889543 PMCID: PMC8056083 DOI: 10.3389/fonc.2021.621422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Xuanwei County in Southwest China shows the highest incidence and mortality rate of lung cancer in China. Although studies have reported distinct clinical characteristics of patients from Xuanwei, the molecular features of these patients with non-small cell lung cancer (NSCLC) remain unclear. Here, we comprehensively characterised such cases using next-generation sequencing (NGS). Formalin-fixed, paraffin-embedded tumour samples from 146 patients from Xuanwei with NSCLC were collected for an NGS-based target panel assay; their features were compared with those of reference Chinese and The Cancer Genome Atlas (TCGA) cohorts. Uncommon EGFR mutations, defined as mutations other than L858R, exon 19del, exon 20ins, and T790M, were the predominant type of EGFR mutations in the Xuanwei cohort. Patients harbouring uncommon EGFR mutations were more likely to have a family history of cancer (p = 0.048). A higher frequency of KRAS mutations and lower frequency of rearrangement alterations were observed in the Xuanwei cohort (p < 0.001). Patients from Xuanwei showed a significantly higher tumour mutation burden than the reference Chinese and TCGA cohorts (p < 0.001). Our data indicates that patients from Xuanwei with NSCLC harbouring G719X/S768I co-mutations may benefit from treatment with EGFR-tyrosine kinase inhibitors. Our comprehensive molecular profiling revealed unique genomic features of patients from Xuanwei with NSCLC, highlighting the potential for improvement in targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Gang Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Gaofeng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Yinqiang Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Qi Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Jun Liu
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Xiumei Yang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming, China
| | - Tao Shou
- Department of Medical Oncology, First People's Hospital of Yunnan Province, Kunming, China
| | - Yunfei Shi
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Chen Y, Hou C, Zhao LX, Cai QC, Zhang Y, Li DL, Tang Y, Liu HY, Liu YY, Zhang YY, Yang YK, Gao CW, Yao Q, Zhu QS, Cao CH. The Association of microRNA-34a With High Incidence and Metastasis of Lung Cancer in Gejiu and Xuanwei Yunnan. Front Oncol 2021; 11:619346. [PMID: 33796457 PMCID: PMC8008071 DOI: 10.3389/fonc.2021.619346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
The incidence and associated mortality of lung cancer in tin miners in Gejiu County and farmers in Xuanwei Country, Yunnan Province have been very high in the world. Current published literatures on the molecular mechanisms of lung cancer initiation and progression in Gejiu and Xuanwei County are still controversial. Studies confirmed that microRNA-34a (miR-34a) functioned as a vital tumor suppressor in tumorigenesis and progression. However, the role and precise mechanisms of miR-34a and its regulatory gene network in initiation and progression of lung cancer in Gejiu and Xuanwei County, Yunnan Province, have not been elucidated. In the current study, we first found that miR-34a was downregulated in Gejiu lung squamous carcinoma YTMLC-90, Xuanwei lung adenocarcinoma XWLC-05, and other non-small cell lung carcinoma (NSCLC) cell lines, and miR-34a overexpression inhibited cell proliferation, migration and invasion, as well as induced cell apoptosis in YTMLC-90 and XWLC-05 cells. Our findings revealed that miR-34a is critical and cannot be considered as the area-specific non-coding RNA in initiation and progression of lung cancer in Gejiu and Xuanwei County. Next we revealed that miR-34a overexpression suppressed lung cancer growth and metastasis partially via increasing PTEN but reducing CDK6 expression that might lead to subsequent inactivation of PI3K/AKT pathway. Furthermore, our findings demonstrated that YY1 functioned as a tumor suppressor gene in initiation and progression of lung cancer in Gejiu and Xuanwei County. In conclusion, our findings in the study confirmed that miR-34a overexpression could simultaneously suppress tumor growth and metastasis and play a vital role in tumorigenesis and progression of NSCLC via increasing PTEN and YY1 expression, but decreasing CDK6. Most interestingly, our findings also raised doubts about the current ideas about these area-specific diseases.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, China.,Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Ying Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Da-Lun Li
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yao Tang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yun-Yi Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yue-Yan Zhang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ya-Kun Yang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Qian Yao
- Yunnan Cancer Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chuan-Hai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Fu F, Zhou Y, Zhang Y, Chen H. Lung cancer screening strategy for non-high-risk individuals: a narrative review. Transl Lung Cancer Res 2021; 10:452-461. [PMID: 33569326 PMCID: PMC7867778 DOI: 10.21037/tlcr-20-943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide, accounting for almost 20% of all cancer deaths. Clinical trials, such as NLST and NELSON, have proved the survival benefit of lung cancer screening using low-dose computed tomography (LDCT), and most of the lung cancer screening guidelines recommended annual lung cancer screening by LDCT for high-risk individuals. However, a relatively high proportion of lung cancer patients do not have risk factors, and it is questionable whether non-high-risk individuals should receive LDCT screening. In this review, we reviewed risk factors of lung cancer and summarized the benefits and potential harms of LDCT screening. After clarifying the differences between China and western countries in lung cancer screening, we recommended that non-high-risk individuals should receive LDCT screening with an interval of five to ten years. To better balance benefits and harms from LDCT screening, we also proposed a flexible screening strategy using LDCT based on lung cancer risk. Hopefully, it may help reduce unnecessary radiation exposure from CT scans while decreasing mortality of lung cancer.
Collapse
Affiliation(s)
- Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaodong Zhou
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Chen Z, Huang Y, Cheng X, Ni S, Wang J, Ren B, Yu Q. Assessment of toxic elements in road dust from Hutou Village, China: implications for the highest incidence of lung cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1850-1865. [PMID: 32856247 DOI: 10.1007/s11356-020-10154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We attempt to understand the pollution characteristics and carcinogenic risk of toxic elements around Hutou Village, Xuanwei City, Yunnan Province, China. For this propose, 48 road dust samples were collected systematically, and the concentrations of Cr, Ni, Cu, Zn, As, Cd, Pb, Co, and Cr(IV) were analyzed and compared; the spatial distribution was obtained. The Igeo and EF indices and multivariate statistical analysis (CA, PCA, HACA) were carried out for source investigation, and human health risk assessment was also adopted to evaluate local non-carcinogenic and carcinogenic risks. The result showed that Cr, Ni, Cu, Cd and Co contaminations were quite serious; Zn, As, Cd, and Pb had similar distribution pattern, and Cr and Ni also shared similar distribution characteristics; Cd, Pb, Zn, and As ascribed to anthropogenic sources, while Cr and Ni originated from either anthropogenic activity or natural sources; Co and Cu originated from natural sources; the non-carcinogenic risk of Co cannot be ignored. The carcinogenic risk of Ni was considered unacceptable. Finally, an indoor coal-burning pattern was established that the high Cd and Ni inhalation and ingestion model was associated with lung cancer.
Collapse
Affiliation(s)
- Zailin Chen
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Xin Cheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Shijun Ni
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Jinjin Wang
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Bangzheng Ren
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qiulian Yu
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
| |
Collapse
|
17
|
Chen Y, Yang JL, Xue ZZ, Cai QC, Hou C, Li HJ, Zhao LX, Zhang Y, Gao CW, Cong L, Wang TZ, Chen DM, Li GS, Luo SQ, Yao Q, Yang CJ, Zhu QS, Cao CH. Effects and mechanism of microRNA‑218 against lung cancer. Mol Med Rep 2020; 23:28. [PMID: 33179084 PMCID: PMC7673340 DOI: 10.3892/mmr.2020.11666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most prevalent and observed type of cancer in Xuanwei County, Yunnan, South China. Lung cancer in this area is called Xuanwei lung cancer. However, its pathogenesis remains largely unknown. To date, a number of studies have shown that microRNA (miR)‑218 functions as a tumor suppressor in multiple types of cancer. However, the role of miR‑218 and its regulatory gene network in Xuanwei lung cancer have yet to be investigated. The current study identified that the expression levels of miR‑218 in XWLC‑05 cells were markedly lower compared with those in immortalized lung epithelial BEAS‑2B cells. The present study also demonstrated that overexpression of miR‑218 could decrease cell proliferation, invasion, viability and migration in Xuanwei lung cancer cell line XWLC‑05 and NSCLC cell line NCI‑H157. Additionally, the results revealed that overexpression of miR‑218 could induce XWLC‑05 and NCI‑H157 cell apoptosis by arresting the cell cycle at G2/M phase. Finally, the present study demonstrated that overexpression of miR‑218 could lead to a significant increase in phosphatase and tensin homolog (<em>PTEN</em>) and YY1 transcription factor (<em>YY1</em>), and a decrease in B‑cell lymphoma 2 (<em>BCL‑2</em>) and BMI1 proto‑oncogene, polycomb ring finger (<em>BMI‑1</em>) at the mRNA and protein level in XWLC‑05 and NCI‑H157 cell lines. However, we did not observe any remarkable difference in the roles of miR‑218 and miR‑218‑mediated regulation of <em>BCL‑2</em>, <em>BMI‑1</em>, <em>PTEN</em> and <em>YY1</em> expression in the progression of Xuanwei lung cancer. In conclusion, miR‑218 could simultaneously suppress cell proliferation and tumor invasiveness and induce cell apoptosis by increasing <em>PTEN</em> and <em>YY1</em> expression, while decreasing <em>BCL‑2</em> and <em>BMI‑1</em> in Xuanwei lung cancer. The results demonstrated that miR‑218 might serve a vital role in tumorigenesis and progression of Xuanwei lung cancer and overexpression of miR‑218 may be a novel approach for the treatment of Xuanwei lung cancer.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Ji-Lin Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Zhen-Zhen Xue
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Hong-Juan Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Yin Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Li Cong
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Tian-Zuo Wang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Dong-Mei Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Guo-Sheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Shi-Qing Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qian Yao
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, Yunnan 650118, P.R. China
| | - Chan-Juan Yang
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chuan-Hai Cao
- Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
18
|
Ma Y, Li Q, Du Y, Chen W, Zhao G, Liu X, Li H, Liu J, Shen Z, Ma L, Zhou Y. Oncogenic Genetic Alterations in Non-Small-Cell Lung Cancer (NSCLC) in Southwestern China. Cancer Manag Res 2020; 12:10861-10874. [PMID: 33149691 PMCID: PMC7605593 DOI: 10.2147/cmar.s266069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To investigate the impact of oncogenic genetic alterations (GAs) on non-small-cell lung cancer (NSCLC) in southwestern China. PATIENTS AND METHODS We first collected 579 pathologically confirmed NSCLC specimens and then used next-generation sequencing (NGS) to evaluate the DNA samples for GAs. Both the tissue and plasma samples were provided by 28 patients. Furthermore, subgroup analyses based on sample type, concordance, and GA type were carried out. RESULTS GAs were detected by NGS in 61.8% (358/579) of patients. Two hundred and twenty-nine patients (39.6%) harbored EGFR mutations, 63 (10.9%) harbored KRAS mutations, 13 (2.2%) harbored BRAF mutations, 30 (5.18%) harbored ALK fusions, and 13 (2.2%) had ROS1 fusions. We found that females (p < 0.01), nonsmokers (p < 0.001), adenocarcinoma (p < 0.001), and tissue (p = 0.03) had a relatively high EGFR mutation rate. Notably, NSCLC patients from Xuanwei had a significantly different mutational pattern for EGFR in comparison with that of non-Xuanwei patients (higher G719X + S768I mutations and multiple gene alterations, but fewer exon 19 deletion mutations and single gene alterations). We found that adenocarcinoma (p = 0.02), family history of malignancy (p = 0.03), Xuanwei origin (p < 0.001), and tissue (p = 0.04) were associated with a higher number of KRAS mutations. Subgroup analysis showed that ALK (p < 0.001) and ROS1 (p < 0.05) fusions and rare EGFR mutations (p < 0.001) were associated with non-Han ethnic patients. CONCLUSION Yunnan NSCLC patients from Xuanwei and non-Han ethnic patients had an obviously unique prevalence of GAs.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming650118, People’s Republic of China
| | - Quan Li
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Yaxi Du
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Wanlin Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming650118, People’s Republic of China
| | - Guanqiang Zhao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming650118, People’s Republic of China
| | - Xing Liu
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Hongsheng Li
- International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Junxi Liu
- International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Zhenghai Shen
- Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Luyao Ma
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| | - Yongchun Zhou
- Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming650118, People’s Republic of China
| |
Collapse
|
19
|
Liu L, Liu X, Ma X, Ning B, Wan X. Analysis of the associations of indoor air pollution and tobacco use with morbidity of lung cancer in Xuanwei, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:135232. [PMID: 31839320 DOI: 10.1016/j.scitotenv.2019.135232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Indoor air pollution emitted by smoky coal combustion in unventilated fire pits used to cause high lung cancer mortality in Xuanwei. Stove improvements were implemented from the 1970s to the 1980s. However, the present lung cancer mortality rate in Xuanwei shows almost no significant declining trend. Tobacco use is another established risk factor for lung cancer. Smoking prevalence and secondhand smoke (SHS) exposure rate are both high in Xuanwei. Therefore, in this study we evaluated the relationship among indoor air pollution over 30 years ago, tobacco use, and lung cancer risk, to further explore the competitive effects of these two risk factors. METHODS A case-control study design was used. We constructed an unconditional logistic regression model to evaluate the relationship among indoor air pollution, tobacco use, and lung cancer risk, adjusting the covariates and with an interactive term between the two key variables. We further quantitatively assessed the maximum decrease in the indoor air pollution effect when facing competition from tobacco use via a sensitivity analysis. First, the effect of indoor air pollution on lung cancer without considering tobacco use was estimated. Then, we calculated a "bias factor" and divided the effect estimation by this factor. RESULTS We found a strong delayed effect of indoor air pollution over 30 years ago in each subgroup with different tobacco use history. The effects of tobacco use were relatively small, but in areas without smoky coal combustion and indoor air pollution over 30 years prior, the lung cancer risk caused by tobacco use became much stronger and statistically significant. Moreover, we assessed that the effects of tobacco use on lung cancer could reduce a maximum of 18%-30% of the effects of indoor air pollution, but did not influence their statistical significance; the competitive effect from ever smoking was stronger than that from SHS exposure. CONCLUSIONS At present in Xuanwei, delayed effect of the indoor air pollution over 30 years ago remains the major risk factor for lung cancer. Concomitantly, the adverse effect of tobacco use on lung cancer is becoming more apparent; local governments should start considering public health activities for smoking cessation promotion and SHS exposure prevention.
Collapse
Affiliation(s)
- Liqun Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China
| | - Xiangyun Ma
- Xuanwei Center for Disease Control and Prevention, Xuanwei 655400, Yunnan, China
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei 655400, Yunnan, China
| | - Xia Wan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, China.
| |
Collapse
|
20
|
Luo P, Qiao F, Dou PH, Li SM, Zhang TL, Xing YT, Zhou G, Xu SK, Sun JB. Association between microRNA 25 expression in serum and lung cancer: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e20263. [PMID: 32443368 PMCID: PMC7254826 DOI: 10.1097/md.0000000000020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND This study aims to identify the association between microRNA 25 (mRNA 25) expression in serum and lung cancer (LC). METHODS This planned study will cover all eligible case-controlled studies that report association between mRNA 25 expression in serum and LC. It will include published studies from inception to the present in Cochrane Library, PUBMED, EMBASE, Web of Science, Allied and Complementary Medicine Database, VIP database, and China National Knowledge Infrastructure regardless language and geographical location. We will also search other sources, such as conference abstracts and reference lists of related known studies and experts in the domain consulted to avoid missing potential studies. Two contributors will independently examine and select studies, collect all necessary data, and judge study quality for all included studies. We will perform statistical analysis using RevMan V.5.3 software and Stata V.12.0 software. RESULTS This study will summarize current evidence to present first systematic review of research on the association between mRNA 25 expression in serum and LC. CONCLUSION This study will present comprehensive evidence to determine whether mRNA 25 expression in serum is associated with LC, and will provide helpful evidence for the future studies. SYSTEMATIC REVIEW REGISTRATION INPLASY202040056.
Collapse
Affiliation(s)
- Peng Luo
- Department of Cardiothoracic Surgery
| | - Feng Qiao
- Department of Cardiothoracic Surgery
| | - Peng-Hui Dou
- Department of Chemotherapy and Radiotherapy Department
| | - Shu-Min Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi
| | | | - Yu-Tong Xing
- Department of Cardiothoracic Surgery, Xiamen Fifth Hospital, Xiamen
| | - Gang Zhou
- Department of Cardiothoracic Surgery, Jiamusi Hongda Hospital
| | - Su-Kun Xu
- Department of Chest Surgery, Jiamusi Tumor Hospital
| | - Jia-Bin Sun
- Department of Critical Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
21
|
Wu J, Xiao X, Li Y, Yang F, Yang S, Sun L, Ma R, Wang MC. Personal exposure to fine particulate matter (PM 2.5) of pregnant women during three trimesters in rural Yunnan of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113055. [PMID: 31744686 DOI: 10.1016/j.envpol.2019.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 05/03/2023]
Abstract
Little is known about fine particulate matter (PM2.5) exposure among pregnant women in rural China. This study aims to characterize exposure to PM2.5 among pregnant women in rural China, and investigate potential risk factors of personal exposure to PM2.5. The data were obtained from a birth cohort study that enrolled 606 pregnant women in Xuanwei, a county known for its high rates of lung cancer. The personal exposure to PM2.5 was measured using small portable particulate monitors during each trimester of pregnancy. Participants were interviewed using structured questionnaires that sought information on risk factors of PM2.5 exposure. The daily exposure to PM2.5 among the pregnant women ranged from 19.68 to 97.08 μg/m3 (median = 26.08). Exposure to PM2.5 was higher in winter and autumn than other seasons (p < 0.05); higher during the day than during the night (p < 0.001); and greater during cooking hours than during the rest of the day (p < 0.001). Using a mixed effects model, domestic solid fuel for cooking (β = 1.75, p < 0.001), winter and autumn (β = 2.96, p < 0.001), cooking ≥ once per day (β = 1.58, p < 0.05), heating with coal (β = 1.69, p < 0.001), secondhand smoke exposure (β = 1.59, p < 0.001) and township 1(β = 2.39, p < 0.001) were identified as risk factors for personal exposure to PM2.5 of pregnant women throughout pregnancy. Indirect effects of season and township factors on personal PM2.5 exposure were mediated by heating, cooking and domestic fuel using. In conclusion, PM2.5 levels in Xuanwei exceeded WHO guidelines. Seasonal and township factors and individual behaviors like domestic solid fuel using for cooking, heating with coal and secondhand smoke exposure are associated with higher personal PM2.5 exposure among pregnant women in rural China.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pediatrics, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province, China
| | - Xia Xiao
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - Yan Li
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China.
| | - Fan Yang
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Siwei Yang
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - Lin Sun
- Qujing City Hospital of Traditional Chinese Medicine, Qujing, Yunnan province, China
| | - Rui Ma
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - May C Wang
- Department of Community Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, United States
| |
Collapse
|
22
|
Zhou G. Tobacco, air pollution, environmental carcinogenesis, and thoughts on conquering strategies of lung cancer. Cancer Biol Med 2019; 16:700-713. [PMID: 31908889 PMCID: PMC6936241 DOI: 10.20892/j.issn.2095-3941.2019.0180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Each year there will be an estimated 2.1 million new lung cancer cases and 1.8 million lung cancer deaths worldwide. Tobacco smoke is the No.1 risk factors of lung cancer, accounting for > 85% lung cancer deaths. Air pollution, or haze, comprises ambient air pollution and household air pollution, which are reported to cause 252,000 and 304,000 lung cancer deaths each year, respectively. Tobacco smoke and haze (hereafter, smohaze) contain fine particles originated from insufficient combustion of biomass or coal, have quite similar carcinogens, and cause similar diseases. Smohaze exert hazardous effects on exposed populations, including induction of a large amount of mutations in the genome, alternative splicing of mRNAs, abnormalities in epigenomics, initiation of tumor-promoting chronic inflammation, and facilitating immune escape of transformed cells. Tackling smohaze and development of multi-targets-based preventive and therapeutic approaches targeting smohaze-induced carcinogenesis are the key to conquer lung cancer in the future.
Collapse
Affiliation(s)
- Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
23
|
Zhu Y, Duan X, Qin N, Li J, Tian J, Zhong Y, Chen L, Fan R, Yu Y, Wu G, Wei F. Internal biomarkers and external estimation of exposure to polycyclic aromatic hydrocarbons and their relationships with cancer mortality in a high cancer incidence area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:742-750. [PMID: 31255812 DOI: 10.1016/j.scitotenv.2019.06.259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/16/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to evaluate internal biomarkers and external estimation of exposure to polycyclic aromatic hydrocarbons (PAH) in a high cancer mortality area in southeast China and identify which of these showed a stronger association of PAH with cancer mortality. A retrospective death survey was conducted to determine the mortality rate of cancer. Cumulative and aggregate external exposures to PAHs of local residents were estimated by field sampling. Three regions in southwest China with gradient PAH exposure levels from high to low (H, M, and L) were selected in this study. Research participants were selected from these three regions using a statistical sampling method. To determine the internal exposure, urinary OH-PAHs were measured using the first morning urine samples. From the retrospective death survey, the highest age-standardized lung cancer mortality rate occurred in Region H (78 per 100,000 person-years), followed by that in Regions M (33 per 100,000 person-years) and L (15 per 100,000 person-years), and the rate was nearly four times China's national mortality rate (20 per 100,000 person-years). Residents estimated daily aggregate exposure doses per unit body weight to carcinogenic benzo(a)pyrene equivalent concentration were 159 ± 14 ng-kg-1-day-1, 7.41 ± 2.76 ng-kg-1-day-1, and 6.13 ± 2.89 ng-kg-1-day-1 in Region H, M, and L, respectively. The participants in Region M had the greatest urinary OH-PAH concentration (9.10 ± 4.92 μg-g-1 crt), followed by Region H (8.01 ± 4.22 μg-g-1 crt) and L (7.12 ± 3.10 μg-g-1 crt). The spatial difference in the total OH-PAHs was not statistically significant. Aggregate and cumulative exposure to 16 PAHs from external routes were found, and external exposure had a stringer relationship with lung cancer mortality than internal exposure.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; China National Environmental Monitoring Center, Beijing 100012, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jihua Li
- Qujing Center for Disease Control and Prevention, Qujing 655011, China
| | - Jing Tian
- Anshan Environmental Monitoring Center, Anshan 114000, China
| | - Yan Zhong
- Anshan Environmental Monitoring Center, Anshan 114000, China
| | - Laiguo Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yang Yu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Fusheng Wei
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; China National Environmental Monitoring Center, Beijing 100012, China
| |
Collapse
|
24
|
Hosgood HD, Klugman M, Matsuo K, White AJ, Sadakane A, Shu XO, Lopez-Ridaura R, Shin A, Tsuji I, Malekzadeh R, Noisel N, Bhatti P, Yang G, Saito E, Rahman S, Hu W, Bassig B, Downward G, Vermeulen R, Xue X, Rohan T, Abe SK, Broët P, Grant EJ, Dummer TJB, Rothman N, Inoue M, Lajous M, Yoo KY, Ito H, Sandler DP, Ashan H, Zheng W, Boffetta P, Lan Q. The establishment of the Household Air Pollution Consortium (HAPCO). ATMOSPHERE 2019; 10:10.3390/atmos10070422. [PMID: 32064123 PMCID: PMC7021252 DOI: 10.3390/atmos10070422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Household air pollution (HAP) is of public health concern with ~3 billion people worldwide (including >15 million in the US) exposed. HAP from coal use is a human lung carcinogen, yet the epidemiological evidence on carcinogenicity of HAP from biomass use, primarily wood, is not conclusive. To robustly assess biomass's carcinogenic potential, prospective studies of individuals experiencing a variety of HAP exposures are needed. We have built a global consortium of 13 prospective cohorts (HAPCO: Household Air Pollution Consortium) that have site- and disease-specific mortality and solid fuel use data, for a combined sample size of 587,257 participants and 57,483 deaths. HAPCO provides a novel opportunity to assess the association of HAP with lung cancer death while controlling for important confounders such as tobacco and outdoor air pollution exposures. HAPCO is also uniquely positioned to determine the risks associated with cancers other than lung as well as non-malignant respiratory and cardiometabolic outcomes, for which prospective epidemiologic research is limited. HAPCO will facilitate research to address public health concerns associated with HAP-attributed exposures by enabling investigators to evaluate sex-specific and smoking status-specific effects under various exposure scenarios.
Collapse
Affiliation(s)
- H. Dean Hosgood
- Department of Epidemiology and Population Health, Albert
Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Madelyn Klugman
- Department of Epidemiology and Population Health, Albert
Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer
Center Research Institute; Nagoya, 464-8681, Japan
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental
Health Science, Research Triangle Park, NC 27709, United States
| | - Atsuko Sadakane
- Department of Epidemiology, Radiation Effects Research
Foundation, Hiroshima 732-0815, Japan
| | - Xiao-Ou Shu
- Vanderbilt Institute for Global Health, Vanderbilt
University School of Medicine, Nashville, TN 37203-1738, United States
| | - Ruy Lopez-Ridaura
- National Institute of Public Health, Cuernavaca, Morelos,
62100, Mexico
| | - Aesun Shin
- Department of Preventative Medicine, Seoul National
University College of Medicine, Seoul 03080, Korea
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Health Informatics
and Public Health, Tohoku University Graduate School of Medicine, Miyagi 980-8575,
Japan
| | - Reza Malekzadeh
- Digestive Diseases Research Institute, Tehran University of
Medical Sciences, Tehran, 14117, Iran
| | - Nolwenn Noisel
- CARTaGENE, Centre de Recherche du CHU Sainte-Justine,
Montreal, Quebec, H3T 1C5, Canada
| | | | - Gong Yang
- Center for Health Services, Vanderbilt University School
of Medicine, Nashville, TN, 37203-1738, United States
| | - Eiko Saito
- Division of Cancer Statistics and Integration, Center for
Cancer Control and Information Services, National Cancer Center, Tokyo, 104-0045,
Japan
| | - Shafiur Rahman
- Department of Global Health Policy, Graduate School of
Medicine, University of Tokyo, Tokyo, 113-8654, Japan
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda MD
20892-7240
| | - Bryan Bassig
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda MD
20892-7240
| | - George Downward
- Institute for Risk Assessment Services, Utrecht
University, Utrecht, 3508, The Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Services, Utrecht
University, Utrecht, 3508, The Netherlands
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert
Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert
Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Sarah K Abe
- Epidemiology and Prevention Group, Center for Public
Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Philippe Broët
- CARTaGENE, Centre de Recherche du CHU Sainte-Justine,
Montreal, Quebec, H3T 1C5, Canada
| | - Eric J. Grant
- Department of Epidemiology, Radiation Effects Research
Foundation, Hiroshima 732-0815, Japan
| | - Trevor J. B. Dummer
- School of Population and Public Health, University of
British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Nat Rothman
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda MD
20892-7240
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public
Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Martin Lajous
- National Institute of Public Health, Cuernavaca, Morelos,
62100, Mexico
- Department of Global Health and Population, Harvard T.H.
Chan School of Public Health, Boston, MA
| | - Keun-Young Yoo
- Department of Preventative Medicine, Seoul National
University College of Medicine, Seoul 03080, Korea
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer
Center Research Institute; Nagoya, 464-8681, Japan
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental
Health Science, Research Triangle Park, NC 27709, United States
| | - Habib Ashan
- Department of Health Sciences, The University of Chicago,
Chicago, IL, 60637, United States
| | - Wei Zheng
- Center for Health Services, Vanderbilt University School
of Medicine, Nashville, TN, 37203-1738, United States
| | - Paolo Boffetta
- The Tisch Cancer Institute, Mount Sinai School of
Medicine, New York, NY 10029-6574, United States
- Department of Medical and Surgical Sciences, University
of Bologna, Bologna, 40126, Italy
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda MD
20892-7240
| |
Collapse
|
25
|
Hu Z, Wang X, Yang Y, Zhao Y, Shen Z, Huang Y. MicroRNA expression profiling of lung adenocarcinoma in Xuanwei, China: A preliminary study. Medicine (Baltimore) 2019; 98:e15717. [PMID: 31124951 PMCID: PMC6571392 DOI: 10.1097/md.0000000000015717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been proved to be related to the development and progression of lung cancer. However, the expression signatures of miRNAs in lung adenocarcinoma in Xuanwei are not yet clear. The current study aimed to identify the potential miRNA profiles in lung adenocarcinoma in Xuanwei by microarray.The miRNA profiles in 24 lung adenocarcinoma and paired non-tumor tissues in Xuanwei were ascertained by using the Exiqon miRCURY LNA microRNA Array (v.18.0). The results of the microarrays were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) detection. Bioinformatics analysis was used to carry out the functional annotations of differentially expressed miRNAs.One hundred fifty five differentially expressed (≥2-fold change) miRNAs were identified (65 upregulated and 90 downregulated). QRT-PCR was used to validate the top 4 most upregulated and downregulated miRNAs, and the results were generally consisted with microarray. Furthermore, the differentially expressed miRNAs were significantly enriched in numerous common pathways that were bound up with cancer. The pathways included focal adhesion and signaling pathways, such as cyclic guanosine monophosphate -protein kinase G (cGMP-PKG) signaling pathways, mitogen-activated protein kinase (MAPK) signaling pathway, and Hippo signaling pathway, etc.Our study identified the potential miRNA profiles in lung adenocarcinoma in Xuanwei by microarray. These miRNAs might be used as biomarkers for diagnosis and/or prognosis for lung cancer in Xuanwei and therefore warrant further investigation. Further study is needed to reveal the potential role of these miRNAs in the carcinogenesis of XuanWei Lung Cancer (XWLC).
Collapse
Affiliation(s)
- Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center)
| | - Xiaoxiong Wang
- Cancer Research Institute of Yunnan Province
- Key Laboratory of Lung Cancer Research of Yunnan Province
- International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province
| | - Yanlong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University
| | - Yonghe Zhao
- Department of Pathology, The Forensic School of Kunming Medical University
| | - Zhenghai Shen
- Cancer Research Institute of Yunnan Province
- Key Laboratory of Lung Cancer Research of Yunnan Province
- International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province
| | - Yunchao Huang
- Cancer Research Institute of Yunnan Province
- Key Laboratory of Lung Cancer Research of Yunnan Province
- International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, People's Republic of China
| |
Collapse
|
26
|
Blockage of TGF- α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8231267. [PMID: 30906781 PMCID: PMC6398060 DOI: 10.1155/2019/8231267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Background. Xuanwei City in Yunnan province has been one of the towns with highest lung cancer mortality in China. The high content of amorphous silica in the bituminous coal from Xuanwei of Yunnan is mainly present as irregular and spherical silica nanoparticles (SiNPs). It has been reported that silica nanoparticles in bituminous coal correlated with the high incidence of lung cancer in Xuanwei. To explore the role and mechanism of SiNPs in the tumorigenesis of lung cancer in Xuanwei, human mononuclear cells (THP-1) and human bronchial epithelial cells (BEAS-2B) were cocultured in a transwell chamber. Combined with Benzo[a]pyrene-7, 8-dihydrodiol-9, and 10-epoxide (BPDE), SiNPs could significantly promote the proliferation and Epithelial-Mesenchymal Transition (EMT) and inhibit apoptosis of BEAS-2B cells and induce the release of TGF-α from THP-1 cells. After neutralizing TGF-α with antibody, the proliferation and EMT were decreased and enhanced apoptosis of BEAS-2B cells. Furthermore, the results showed that TGF-α in the sera of patients with lung adenocarcinoma in Xuanwei were significantly higher than in patients with benign pulmonary lesions in Xuanwei and those with lung adenocarcinoma in outside of Xuanwei of Yunnan. Taken together, our study found that SiNPs promoted the proliferation and EMT of BEAS-2B cells by inducing the release of TGF-α from THP-1 cells.
Collapse
|
27
|
Guo C, You DY, Li H, Tuo XY, Liu ZJ. Spherical silica nanoparticles promote malignant transformation of BEAS-2B cells by stromal cell-derived factor-1α (SDF-1α). J Int Med Res 2019; 47:1264-1278. [PMID: 30727793 PMCID: PMC6421376 DOI: 10.1177/0300060518814333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to examine the role of spherical silica nanoparticles
(SiNPs) on human bronchial epithelial (BEAS-2B) cells through
inflammation. Methods Human mononuclear (THP-1) cells and BEAS-2B cells were co-cultured in
transwell chambers and treated with 800 mmol/L
benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide (BPDE) and
12.5 µg/mL SiNPs for 24 hours. For controls, cells were treated with BPDE
alone. Subcutaneous tumorigenicity and epithelial-mesenchymal transition
(EMT) of BEAS-2B cells were measured. The cells were blocked with a stromal
cell-derived factor-1α (SDF-1α)-specific antibody. EMT was analyzed in cells
treated with 800 mmol/L BPDE and 12.5 µg/mL SiNPs relative to matched
control cells and xenografts in vivo. Serum SDF-1α levels
were measured in 23 patients with lung adenocarcinoma in Xuanwei, in 25 with
lung adenocarcinoma outside Xuanwei, and in 22 with benign pulmonary lesions
in Xuanwei. Results SiNPs significantly promoted tumorigenesis and EMT, induced the release of
SDF-1α, and activated AKT (ser473) in BEAS-2B cells. EMT and phosphorylated
AKT (ser473) and glycogen synthase kinase-3β levels were decreased when
blocked by SDF-1α antibody in BEAS-2B cells. SDF-1α was mainly secreted by
THP-1 cells. Conclusion SiNPs combined with BPDE promote EMT of BEAS-2B cells via the AKT pathway by
inducing release of SDF-1α from THP-1 cells.
Collapse
Affiliation(s)
- Chong Guo
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Ding-Yun You
- 3 School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Huan Li
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Yu Tuo
- 2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| | - Zi-Jie Liu
- 1 Department of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,2 Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan, China
| |
Collapse
|
28
|
Zhou Y, Ma Y, Shi H, Du Y, Huang Y. Epidermal growth factor receptor T790M mutations in non-small cell lung cancer (NSCLC) of Yunnan in southwestern China. Sci Rep 2018; 8:15426. [PMID: 30337598 PMCID: PMC6194063 DOI: 10.1038/s41598-018-33816-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
To explore the effect of epidermal growth factor receptor (EGFR) T790M mutation status on non-small cell lung cancer (NSCLC) in Yunnan province of southwestern China. First, this study used the super amplification refractory mutation system (Super ARMS) polymerase chain reaction (PCR) and Droplet Digital PCR (dd PCR) to evaluate the T790M gene mutation, in plasmatic ctDNA samples from 212 cases of NSCLC. The association between T790M mutations and clinical parameters were further explored. Next, to investigate the mechanism of drug resistance that resulted from T790M mutation, subgroup analyses according to duration of medicine (EGFR-TKIs) were carried out. Finally, we also evaluate the effectiveness of blood-based circulating tumor DNA (ctDNA) on detecting the T790M mutation by calculating Super ARMS’s detection efficiency. We found that the T790M mutation rate was 8.4% (18/212) in overall patients. The T790M mutation was more frequent in patients with brain metastasis 30.0% (12/40) (p < 0.01). We found that post-TKI samples 42.8% (15/35) were associated with a higher T790M mutation rate (p < 0.01). Subgroup analysis showed that the duration of TKI therapy for 6 to 10 months 66.6% (8/12) (p < 0.01) and >10 months 75.0% (9/12) (p < 0.01) were also associated with a higher T790M mutation rate. Super ARMS’s sensitivity, specificity, PPV, NPV, and accuracy were 100.0%, 99.4%, 94.7%, 100.0%, and 99.5% respectively. Generally, the EGFR-T790M mutation was more common in NSCLC patients with brain metastasis and those who received TKI therapy for more than 6 months. Moreover, Super ARMS is a sensitive, efficient, and practical clinic method for dynamically monitoring T790M mutation status and effectively guiding clinic treatment.
Collapse
Affiliation(s)
- Yongchun Zhou
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China.,International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Yuhui Ma
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China
| | - Hutao Shi
- Department of imaging, The Kunming Tongren hospital, Kunming, 650118, P.R. China
| | - Yaxi Du
- Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China
| | - Yunchao Huang
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China. .,Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan cancer Hospital), Kunming, 650118, P.R. China. .,International Joint Laboratory on High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, P.R. China.
| |
Collapse
|
29
|
Zhang X, Wu L, Xu Y, Zhang B, Wu X, Wang Y, Pang Z. Trends in the incidence rate of lung cancer by histological type and gender in Sichuan, China, 1995-2015: A single-center retrospective study. Thorac Cancer 2018; 9:532-541. [PMID: 29504256 PMCID: PMC5928362 DOI: 10.1111/1759-7714.12601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In recent years, lung cancer incidence has been increasing; however the impact of different histological types of lung cancer is not yet clear. METHODS Trends in the lung cancer incidence rate by histological type were examined based on data of 36 658 primary lung cancer patients from West China Hospital between 1995 and 2015. RESULTS The most common histological type of lung cancer in our hospital was adenocarcinoma (ADC) in both genders, followed by squamous cell carcinoma (SQCC), and small cell carcinoma (SCLC), which is consistent with general worldwide trends. The proportion of young patients with SCLC showed a downward trend. In the overall population with lung cancer, the number of elderly patients with lung cancer increased significantly, while the proportion of elderly patients increased gradually. The mean age at diagnosis also increased. The number of women with ADC increased sharply in recent years, especially in young patients, and the incidence rate in women is now greater than in men. CONCLUSION Significant increases in the number of patients with ADC and the rate of lung cancer in women over recent years were observed, indicating that research on the pathogenesis of disease in these patients is urgent.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Li Wu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
- Department of OncologySuining Central HospitalSuiningChina
| | - Yong Xu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Benxia Zhang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Xueqian Wu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Yongsheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Zongguo Pang
- Department of PathologyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
30
|
Challenges and future direction of molecular research in air pollution-related lung cancers. Lung Cancer 2018; 118:69-75. [DOI: 10.1016/j.lungcan.2018.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/29/2017] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
|
31
|
Jiang CL, He SW, Zhang YD, Duan HX, Huang T, Huang YC, Li GF, Wang P, Ma LJ, Zhou GB, Cao Y. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget 2018; 8:1369-1391. [PMID: 27901495 PMCID: PMC5352062 DOI: 10.18632/oncotarget.13622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.
Collapse
Affiliation(s)
- Cheng-Lan Jiang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Shui-Wang He
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yun-Dong Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - He-Xian Duan
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Chao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Li-Ju Ma
- Clinical Medicine Research Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
32
|
Wei MM, Zhou YC, Wen ZS, Zhou B, Huang YC, Wang GZ, Zhao XC, Pan HL, Qu LW, Zhang J, Zhang C, Cheng X, Zhou GB. Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis. Oncotarget 2018; 7:59556-59571. [PMID: 27322209 PMCID: PMC5312331 DOI: 10.18632/oncotarget.10006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023] Open
Abstract
Indoor and outdoor air pollution has been classified as group I carcinogen in humans, but the underlying tumorigenesis remains unclear. Here, we screened for abnormal long noncoding RNAs (lncRNAs) in lung cancers from patients living in Xuanwei city which has the highest lung cancer incidence in China due to smoky coal combustion-generated air pollution. We reported that Xuanwei patients had much more dysregulated lncRNAs than patients from control regions where smoky coal was not used. The lncRNA CAR intergenic 10 (CAR10) was up-regulated in 39/62 (62.9%) of the Xuanwei patients, which was much higher than in patients from control regions (32/86, 37.2%; p=0.002). A multivariate regression analysis showed an association between CAR10 overexpression and air pollution, and a smoky coal combustion-generated carcinogen dibenz[a,h]anthracene up-regulated CAR10 by increasing transcription factor FoxF2 expression. CAR10 bound and stabilized transcription factor Y-box-binding protein 1 (YB-1), leading to up-regulation of the epidermal growth factor receptor (EGFR) and proliferation of lung cancer cells. Knockdown of CAR10 inhibited cell growth in vitro and tumor growth in vivo. These results demonstrate the role of lncRNAs in environmental lung carcinogenesis, and CAR10-YB-1 represents a potential therapeutic target.
Collapse
Affiliation(s)
- Ming-Ming Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650106, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510060, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650106, China
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin-Chun Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Li Pan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Wei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Wang P, Pan B, Li H, Huang Y, Dong X, Ai F, Liu L, Wu M, Xing B. The Overlooked Occurrence of Environmentally Persistent Free Radicals in an Area with Low-Rank Coal Burning, Xuanwei, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1054-1061. [PMID: 29316392 DOI: 10.1021/acs.est.7b05453] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mining and burning of low-rank coal in Xuanwei, China have attracted a great deal of research attention because of the generated polyaromatic hydrocarbons (PAHs) and the high incidence of lung cancer in this region. Given the abundant transition metals in the allitic soil, we hypothesized that environmentally persistent free radicals (EPFRs) are formed in this region and the potential risk had not been addressed. Strong electron paramagnetic resonance (EPR) signals of 3.20 × 1017 - 3.10 × 1019 spins/g were detected in environmental samples, including chimney soot, coal, soil and total suspended particles (TSP). These EPR signals did not significantly change after 18-months storage and had g-values in the range of 2.0039-2.0046, suggesting typical organic free radicals. Similar strong EPR signals were observed in PAH (anthracene and pyrene as model compounds) degradation on simulated soil particles and lasted over one month even when the applied PAHs were 100% degraded. Based on g-value and bond width, we propose that EPR signals detected in TSP and soot originated from both coal combustion and PAH photodegradation. Further research is thus urgently required to investigate EPFR generation, exposure and risk in Xuanwei to better understand the cause of high lung cancer incidence.
Collapse
Affiliation(s)
- Peng Wang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Yu Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Xudong Dong
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Fang Ai
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Lingyan Liu
- The affiliated Hospital of Kunming University of Science and Technology , Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology , Kunming 650500, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Abstract
The morbidity and mortality of lung cancer in Xuanwei, China, are the highest in the world. This study attempts to identify differentially expressed genes (DEGs) related to lung adenocarcinoma in Xuanwei. The expression profiles of eight paired lung adenocarcinoma tissues and corresponding nontumor tissues were acquired by microarrays. Functional annotations of DEGs were carried out by bioinformatics analysis. The results of the microarrays were further verified by real-time quantitative PCR (RTq-PCR). A total of 5290 genes were classified as DEGs in lung adenocarcinoma in Xuanwei; 3325 genes were upregulated and 1965 genes were downregulated, whereas the expression of the other 11 970 genes did not change. These DEGs are involved in a wide range of cancer-related processes, which include cell division, cell adhesion, cell proliferation, and DNA replication, and in many pathways such as the p53 signaling pathway, the MAPK pathway, the Jak-STAT signaling pathway, the hedgehog signaling pathway, and the non-small-cell lung cancer pathway. The tendency of changes in the expression of 12 selected DEGs (five downregulated genes, PIK3R1, RARB, HGF, MAPK11, and SESN1, and seven upregulated genes, PAK1, E2F1, CCNE1, EGF, CDC25A, PTTG1, and UHRF1) in RTq-PCR was consistent with the expression profiling data. Expression of PAK1 was significantly increased in the low differentiation group (P=0.031), whereas expression of HGF was significantly decreased in the low differentiation group (P=0.045). RARB and MAPK11 were significantly increased in the nonsmoker group (P=0.033 and 0.040, respectively). A large number of DEGs in lung adenocarcinoma in Xuanwei have been detected, which may enable us to understand the pathogenesis and lay an important foundation for the prevention and treatment of lung adenocarcinoma in Xuanwei.
Collapse
|
35
|
Epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) of Yunnan in southwestern China. Oncotarget 2017; 8:15023-15033. [PMID: 28107191 PMCID: PMC5362464 DOI: 10.18632/oncotarget.14706] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
To investigate the Epidermal Growth Factor Receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) in Yunnan province in southwestern China, we detected EGFR mutation by Amplification Refractory Mutation System (ARMS) polymerase chain reaction (PCR) using DNA samples from 447 pathologically confirmed NSCLC specimens (175 tissue, 256 plasma and 16 cytologic samples). The relationship between EGFR mutations and demographic and clinical factors were further explored. Subgroup analyses according to sample type (tissue and plasma) and histological type (adenocarcinoma) were done. We found the mutation rate was 34.9% in overall patients (42.3%, 29.7%, and 37.5% for tissue, plasma, and cytologic samples respectively). We found female (p < 0.0001), no smoking (p = 0.001), adenocarcinoma (p < 0.0001), and tissue specimen (p = 0.026) were associated with higher EGFR mutation rate. The most common mutations were exon 19 deletions (40%) and L858R point (30%) mutation. Interestingly, NSCLC patients from Xuanwei harbored a strikingly divergent mutational pattern for EGFR when compared with non-Xuanwei patients (higher G719X, G719X+S768I mutations, but lower 19 deletion and L858R mutations). Generally, EGFR mutation rate and pattern in Yunnan province was in accord with other Asian populations. However, Xuanwei subgroup showed strikingly divergent EGFR mutation spectrum from other general population. Our analysis also indicated that cftDNA analysis for EGFR mutations detection was feasibility for the patients lacking sufficient tissue for molecular analyses.
Collapse
|
36
|
Wong TY. Smog induces oxidative stress and microbiota disruption. J Food Drug Anal 2017; 25:235-244. [PMID: 28911664 PMCID: PMC9332540 DOI: 10.1016/j.jfda.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023] Open
Abstract
Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations.
Collapse
Affiliation(s)
- Tit-Yee Wong
- Department of Biological Sciences, University of Memphis, Memphis, TN 38120,
USA
| |
Collapse
|
37
|
Zhang Y, Xue Q, Pan G, Meng QH, Tuo X, Cai X, Chen Z, Li Y, Huang T, Duan X, Duan Y. Integrated Analysis of Genome-Wide Copy Number Alterations and Gene Expression Profiling of Lung Cancer in Xuanwei, China. PLoS One 2017; 12:e0169098. [PMID: 28056099 PMCID: PMC5215791 DOI: 10.1371/journal.pone.0169098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/11/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives Lung cancer in Xuanwei (LCXW), China, is known throughout the world for its distinctive characteristics, but little is known about its pathogenesis. The purpose of this study was to screen potential novel “driver genes” in LCXW. Methods Genome-wide DNA copy number alterations (CNAs) were detected by array-based comparative genomic hybridization and differentially expressed genes (DEGs) by gene expression microarrays in 8 paired LCXW and non-cancerous lung tissues. Candidate driver genes were screened by integrated analysis of CNAs and DEGs. The candidate genes were further validated by real-time quantitative polymerase chain reaction. Results Large numbers of CNAs and DEGs were detected, respectively. Some of the most frequently occurring CNAs included gains at 5p15.33-p15.32, 5p15.1-p14.3, and 5p14.3-p14.2 and losses at 11q24.3, 21q21.1, 21q22.12-q22.13, and 21q22.2. Integrated analysis of CNAs and DEGs identified 24 candidate genes with frequent copy number gains and concordant upregulation, which were considered potential oncogenes, including CREB3L4, TRIP13, and CCNE2. In addition, the analysis identified 19 candidate genes with a negative association between copy number change and expression change, considered potential tumor suppressor genes, including AHRR, NKD2, and KLF10. One of the most studied oncogenes, MYC, may not play a carcinogenic role in LCXW. Conclusions This integrated analysis of CNAs and DEGs identified several potential novel LCXW-related genes, laying an important foundation for further research on the pathogenesis of LCXW and identification of novel biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yanliang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| | - Qiuyue Xue
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| | - Guoqing Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China
| | - Qing H Meng
- Department of Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xiaoyu Tuo
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China
| | - Xuemei Cai
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| | - Zhenghui Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| | - Ya Li
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| | - Tao Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China
| | - Xincen Duan
- Department of Biological Sciences, University of Wisconsin-Parkside, Somers, Wisconsin, United States of America
| | - Yong Duan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Institute of Laboratory Diagnosis, Kunming, Yunnan Province, the People's Republic of China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, Yunnan Province, the People's Republic of China
| |
Collapse
|
38
|
Zhou L, Yao Q, Li Y, Huang YC, Jiang H, Wang CQ, Fan L. Sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC-05. Thorac Cancer 2016; 8:16-25. [PMID: 27878984 PMCID: PMC5217876 DOI: 10.1111/1759-7714.12396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 12/02/2022] Open
Abstract
Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non‐smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL‐05) to explore the value of sulforaphane in lung cancer prevention and treatment. Methods Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B‐cell lymphoma 2 (Bcl‐2) and Bcl‐2‐like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl‐2, and caspase‐9 protein expression were detected by Western blotting. Results Sulforaphane inhibited XWLC‐05 cell growth with inhibitory concentration (IC)50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC‐05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl‐2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase‐9 protein expression (P < 0.05). Conclusion Sulforaphane induces Xuanwei lung adenocarcinoma cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti‐apoptotic gene Bcl‐2, and activation of caspase‐9. It may also involve downregulation of the mutant p53 protein.
Collapse
Affiliation(s)
- Lan Zhou
- Department of Clinical Nutrition, Yunnan Provincial Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Yao
- Department of Tumor Cytobiology, Institute of Oncology, Yunnan Provincial Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Li
- Department of Maternal and Child Health, Public Health College, Kunming Medical University, Kunming, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, Yunnan Provincial Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Jiang
- Department of Schistosomiasis Prevention and Control, Yunnan Provincial Institute of Endemic Disease Control, Dali, China
| | - Chuan-Qiong Wang
- Department of Clinical Nutrition, Yunnan Provincial Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Fan
- Department of Clinical Nutrition, Yunnan Provincial Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Lung Cancer Mortality and Topography: A Xuanwei Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050473. [PMID: 27164122 PMCID: PMC4881098 DOI: 10.3390/ijerph13050473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/10/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
Abstract
The epidemic of lung cancer in Xuanwei City, China, remains serious despite the reduction of the risk of indoor air pollution through citywide stove improvement. The main objective of this study was to characterize the influences of topography on the spatiotemporal variations of lung cancer mortality in Xuanwei during 1990-2013. Using the spatially empirical Bayes method, the smoothed mortality rate of lung cancer was obtained according to the mortality data and population data collected from the retrospective survey (1990-2005) and online registration data (2011-2013). Spatial variations of the village-level mortality rate and topographic factors, including the relief degree of land surface (RDLS) and dwelling conditions (VDC), were characterized through spatial autocorrelation and hotspot analysis. The relationship between topographic factors and the epidemic of lung cancer was explored using correlation analysis and geographically weighted regression (GWR). There is a pocket-like area (PLA) in Xuanwei, covering the clustered villages with lower RDLS and higher VDC. Although the villages with higher mortality rate (>80 per 10⁵) geographically expanded from the center to the northeast of Xuanwei during 1990-2013, the village-level mortality rate was spatially clustered, which yielded a persistent hotspot area in the upward part of the PLA. In particular, the epidemic of lung cancer was closely correlated with both RDLS and VDC at the village scale, and its spatial heterogeneity could be greatly explained by the village-level VDC in the GWR model. Spatiotemporally featured lung cancer mortality in Xuanwei was potentially influenced by topographic conditions at the village scale.
Collapse
|
40
|
Cao SM, Xu YJ, Lin GZ, Huang QH, Wei KR, Xie SH, Liu Q. Estimation of cancer burden in Guangdong Province, China in 2009. CHINESE JOURNAL OF CANCER 2015; 34:594-601. [PMID: 26573607 PMCID: PMC4647496 DOI: 10.1186/s40880-015-0060-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023]
Abstract
Background Surveying regional cancer incidence and mortality provides significant data that can assist in making health policy for local areas; however, the province- and region-based cancer burden in China is seldom reported. In this study, we estimated cancer incidence and mortality in Guangdong Province, China and presented basic information for making policies related to health resource allocation and disease control. Methods A log-linear model was used to calculate the sex-, age-, and registry-specific ratios of incidence to mortality (I/M) based on cancer registry data from Guangzhou, Zhongshan, and Sihui between 2004 and 2008. The cancer incidences in 2009 were then estimated according to representative I/M ratios and the mortality records from eight death surveillance sites in Guangdong Province. The cancer incidences in each city were estimated by the corresponding sex- and age-specific incidences from cancer registries or death surveillance sites in each area. Finally, the total and region-based cancer incidences and mortalities for the entire population of Guangdong Province were summarized. Results The estimated I/M ratios in Guangzhou (3.658), Zhongshan (2.153), and Sihui (1.527) were significantly different (P < 0.001), with an average I/M ratio of 2.446. Significant differences in the estimated I/M ratios were observed between distinct age groups and the three cancer registries. The estimated I/M ratio in females was significantly higher than that in males (2.864 vs. 2.027, P < 0.001). It was estimated that there were 163,376 new cancer cases (99,689 males and 63,687 females) in 2009; it was further estimated that 115,049 people (75,054 males and 39,995 females) died from cancer in Guangdong Province in 2009. The estimated crude and age-standardized rate of incidences (ASRI) in Guangdong Province were 231.34 and 246.87 per 100,000 males, respectively, and 156.98 and 163.57 per 100,000 females, respectively. The estimated crude and age-standardized rate of mortalities (ASRM) in Guangdong Province were 174.17 and 187.46 per 100,000 males, respectively, and 98.59 and 102.00 per 100,000 females, respectively. In comparison with the western area and the northern mountain area, higher ASRI and ASRM were recorded in the Pearl River Delta area and the eastern area in both males and females. Conclusions Cancer imposes a heavy disease burden, and cancer patterns are unevenly distributed throughout Guangdong Province. More health resources should be allocated to cancer control, especially in the western and northern mountain areas.
Collapse
Affiliation(s)
- Su-Mei Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China.
| | - Yan-Jun Xu
- Institute of Control and Prevention for Chronic Non-infective Disease, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, P.R. China.
| | - Guo-Zhen Lin
- Department of Disease Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, Guangdong, P.R. China.
| | - Qi-Hong Huang
- Sihui Institute of Cancer, Sihui, 530000, Guangdong, P.R. China.
| | - Kuang-Rong Wei
- Institute of Cancer, Zhongshan People's Hospital, Zhongshan, 528403, Guangdong, P.R. China.
| | - Shang-Hang Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China.
| | - Qing Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China. .,Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China.
| |
Collapse
|
41
|
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB, Li GF, Huang ZL, Zhou YC, Feng L, Wei MM, Qu LW, Cao Y, Zhou GB. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 2015; 4:e09419. [PMID: 26565418 PMCID: PMC4764582 DOI: 10.7554/elife.09419] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
More than 90% of lung cancers are caused by cigarette smoke and air pollution, with polycyclic aromatic hydrocarbons (PAHs) as key carcinogens. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China, attributed to smoky coal combustion-generated PAH pollution. Here, we screened for abnormal inflammatory factors in non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used, and found that a chemokine CXCL13 was overexpressed in 63/70 (90%) of Xuanwei NSCLCs and 44/71 (62%) of smoker and 27/60 (45%) of non-smoker CR patients. CXCL13 overexpression was associated with the region Xuanwei and cigarette smoke. The key carcinogen benzo(a)pyrene (BaP) induced CXCL13 production in lung epithelial cells and in mice prior to development of detectable lung cancer. Deficiency in Cxcl13 or its receptor, Cxcr5, significantly attenuated BaP-induced lung cancer in mice, demonstrating CXCL13's critical role in PAH-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao-Bin Chen
- Department of Pathology, The First People’s Hospital of Qu Jing City, Qu Jing, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi-Liang Huang
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Feng
- Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Ming-Ming Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Wei Qu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Pan HL, Wen ZS, Huang YC, Cheng X, Wang GZ, Zhou YC, Wang ZY, Guo YQ, Cao Y, Zhou GB. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep 2015; 5:14331. [PMID: 26395400 PMCID: PMC4585805 DOI: 10.1038/srep14331] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
Air pollution has been classified as a group 1 carcinogen in humans, but the underlying tumourigenic mechanisms remain unclear. In Xuanwei city of Yunnan Province, the lung cancer incidence is among the highest in China, owing to severe air pollution generated by the combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis. To identify abnormal miRNAs critical for air pollution-related tumourigenesis, we performed microRNA microarray analysis in 6 Xuanwei non-small cell lung cancers (NSCLCs) and 4 NSCLCs from control regions where smoky coal was not used. We found 13 down-regulated and 2 up-regulated miRNAs in Xuanwei NSCLCs. Among them, miR-144 was one of the most significantly down-regulated miRNAs. The expanded experiments showed that miR-144 was down-regulated in 45/51 (88.2%) Xuanwei NSCLCs and 34/54 (63%) control region NSCLCs (p = 0.016). MiR-144 interacted with the oncogene Zeb1 at 2 sites in its 3' untranslated region, and a decrease in miR-144 resulted in increased Zeb1 expression and an epithelial mesenchymal transition phenotype. Ectopic expression of miR-144 suppressed NSCLCs in vitro and in vivo by targeting Zeb1. These results indicate that down-regulation of miR-144 is critical for air pollution-related lung cancer, and the miR-144-Zeb1 signalling pathway could represent a potential therapeutic target.
Collapse
Affiliation(s)
- Hong-Li Pan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & Graduate School of the University of Chinese Academy of Sciences, Beijing 100101
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, the Cancer Hospital, Sun Yat-Sen University, Guangzhou 510060
| | - Yun-Chao Huang
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650106, China
| | - Xin Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & Graduate School of the University of Chinese Academy of Sciences, Beijing 100101
| | - Gui-Zhen Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & Graduate School of the University of Chinese Academy of Sciences, Beijing 100101
| | - Yong-Chun Zhou
- Department of Thoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming 650106, China
| | - Zai-Yong Wang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029
| | - Yong-Qing Guo
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing 100029
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences & Graduate School of the University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
43
|
Lin H, Ning B, Li J, Zhao G, Huang Y, Tian L. Temporal trend of mortality from major cancers in Xuanwei, China. Front Med 2015; 9:487-95. [PMID: 26303302 DOI: 10.1007/s11684-015-0413-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
Abstract
Although a number of studies have examined the etiology of lung cancer in Xuanwei County, China, other types of cancer in this county have not been reported systematically. This study aimed to investigate the temporal trend of eight major cancers in Xuanwei County using data from three mortality surveys (1973-1975, 1990-1992, and 2004-2005). The Chinese population in 1990 was used as a standard population to calculate agestandardized mortality rates. Cancers of lung, liver, breast, brain, esophagus, leukemia, rectum, and stomach were identified as the leading cancers in this county in terms of mortality rate. During the three time periods, lung cancer remained as the most common type of cancer. The mortality rates for all other types of cancer were lower than those of the national average, but an increasing trend was observed for all the cancers, particularly from 1990-1992 to 2004-2005. The temporal trend could be partly explained by changes in risk factors, but it also may be due to the improvement in cancer diagnosis and screening. Further epidemiological studies are warranted to systematically examine the underlying reasons for the temporal trend of the major cancers in Xuanwei County.
Collapse
Affiliation(s)
- Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei, 655400, China
| | - Jihua Li
- Qujing Center for Disease Control and Prevention, Qujing, 655000, China
| | - Guangqiang Zhao
- Yunnan Province Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, China
| | - Yunchao Huang
- Yunnan Province Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University, Kunming, 650106, China
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Chen G, Sun X, Ren H, Wan X, Huang H, Ma X, Ning B, Zou X, Hu W, Yang G. The mortality patterns of lung cancer between 1990 and 2013 in Xuanwei, China. Lung Cancer 2015; 90:155-60. [PMID: 26314615 DOI: 10.1016/j.lungcan.2015.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 08/01/2015] [Accepted: 08/13/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To explore the variations in the mortality trends, especially death due to lung cancer, from 1990 to 2013 in Xuanwei City. MATERIALS AND METHODS Mortality data were collected in Xuanwei during the 2nd and 3rd National Retrospective Sampling Survey on Mortality and Routine Death Registration System (DRS) during 2011-2013. According to the result of the survey on under-reported deaths, mortality data from DRS during 2011-2013 were adjusted. Disease specific mortality rate, age-standardized mortality rate (ASMR) and 45Q15 were calculated in Xuanwei and compared with those in rural areas of China. RESULTS During three periods, 1990-1992, 2004-2005 and 2011-2013, lung cancer contributed to 56.86%, 58.45% and 63.03% of deaths from all cancers respectively with a much higher proportion than rural areas nationally. The ASMR of lung cancer for males surged from 41.43/10(5) to 88.17/10(5) during 1990-2005 and it surged from 37.70/10(5) to 74.45/10(5) for females. Although they declined slightly during 2011-2013 (82.53/10(5) and 62.62/10(5) for males and females respectively), the ASMR of lung cancer among males in Xuanwei was three times of that in rural areas in China, and it was six times higher among females. The 45Q15 of lung cancer for males in Xuanwei was 3-5 times of that in rural areas of China and for females it was 7-9 times. The high-mortality areas of lung cancer were still located in Laibin, Longchang, Wanshui and Shuanglong Communities. High-mortality areas of lung cancer expanded to their surrounding areas and those in southeast. CONCLUSIONS Although indoor air pollution caused by smoky coal has been fairly well controlled, patterns of death due to lung cancer have not obviously changed. The mortality rate of lung cancer among females was similar to that among males. Therefore, further studies should be conducted to comprehensively explore the risk factors of lung cancer in Xuanwei.
Collapse
Affiliation(s)
- Gongbo Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Cancer Hospital/Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xin Sun
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hongyan Ren
- Institute of Geographic Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Wan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hecang Huang
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Qujing, Yunnan 655400, China
| | - Xiangyun Ma
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Qujing, Yunnan 655400, China
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Qujing, Yunnan 655400, China
| | - Xiaonong Zou
- Cancer Hospital/Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Weijiang Hu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Gonghuan Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
45
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
46
|
Yu XJ, Yang MJ, Zhou B, Wang GZ, Huang YC, Wu LC, Cheng X, Wen ZS, Huang JY, Zhang YD, Gao XH, Li GF, He SW, Gu ZH, Ma L, Pan CM, Wang P, Chen HB, Hong ZP, Wang XL, Mao WJ, Jin XL, Kang H, Chen ST, Zhu YQ, Gu WY, Liu Z, Dong H, Tian LW, Chen SJ, Cao Y, Wang SY, Zhou GB. Characterization of Somatic Mutations in Air Pollution-Related Lung Cancer. EBioMedicine 2015; 2:583-90. [PMID: 26288819 PMCID: PMC4534757 DOI: 10.1016/j.ebiom.2015.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 04/03/2015] [Indexed: 12/22/2022] Open
Abstract
Air pollution has been classified as Group 1 carcinogenic to humans, but the underlying tumorigenesis remains unclear. In Xuanwei City of Yunnan Province, the lung cancer incidence is among the highest in China attributed to severe air pollution generated by combustion of smoky coal, providing a unique opportunity to dissect lung carcinogenesis of air pollution. Here we analyzed the somatic mutations of 164 non-small cell lung cancers (NSCLCs) from Xuanwei and control regions (CR) where smoky coal was not used. Whole genome sequencing revealed a mean of 289 somatic exonic mutations per tumor and the frequent C:G → A:T nucleotide substitutions in Xuanwei NSCLCs. Exome sequencing of 2010 genes showed that Xuanwei and CR NSCLCs had a mean of 68 and 22 mutated genes per tumor, respectively (p < 0.0001). We found 167 genes (including TP53, RYR2, KRAS, CACNA1E) which had significantly higher mutation frequencies in Xuanwei than CR patients, and mutations in most genes in Xuanwei NSCLCs differed from those in CR cases. The mutation rates of 70 genes (e.g., RYR2, MYH3, GPR144, CACNA1E) were associated with patients' lifetime benzo(a)pyrene exposure. This study uncovers the mutation spectrum of air pollution-related lung cancers, and provides evidence for pollution exposure-genomic mutation relationship at a large scale.
Collapse
Affiliation(s)
- Xian-Jun Yu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Min-Jun Yang
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Bo Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Zhen Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming 650106, China
| | - Li-Chuan Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Cheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Zhe-Sheng Wen
- Department of Thoracic Surgery, The Cancer Hospital, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jin-Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, and Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200025, China
| | - Yun-Dong Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiao-Hong Gao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, Kunming 650106, China
| | - Shui-Wang He
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Hui Gu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, and Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200025, China
| | - Liang Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Ming Pan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, and Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200025, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Hao-Bin Chen
- Department of Pathology, The First People's Hospital of Qu Jing City, Qu Jing 655000, Yunnan Province, China
| | - Zhi-Peng Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiao-Lu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Jing Mao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Long Jin
- Department of Pathology, Rui Jin Hospital Affiliated to SJTU School of Medicine, Shanghai 200025, China
| | - Hui Kang
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Shu-Ting Chen
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Yong-Qiang Zhu
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Wen-Yi Gu
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Zi Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Dong
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Lin-Wei Tian
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University (SJTU) School of Medicine, and Shanghai Center for Systems Biomedicine, SJTU, Shanghai 200025, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Sheng-Yue Wang
- The Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| | - Guang-Biao Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences & University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
47
|
Kong J, Xu F, He M, Chen K, Qian B. The incidence of lung cancer by histological type: A population-based study in Tianjin, China during 1981-2005. Respirology 2014; 19:1222-8. [PMID: 25168588 DOI: 10.1111/resp.12373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/21/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyu Kong
- Department of Cancer Epidemiology and Biostatistics; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Ministry of Education; Tianjin China
| | - Fangxiu Xu
- Department of Cancer Epidemiology and Biostatistics; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Ministry of Education; Tianjin China
| | - Min He
- Department of Cancer Epidemiology and Biostatistics; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Ministry of Education; Tianjin China
| | - Kexin Chen
- Department of Cancer Epidemiology and Biostatistics; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Ministry of Education; Tianjin China
| | - Biyun Qian
- Department of Cancer Epidemiology and Biostatistics; Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Ministry of Education; Tianjin China
- School of Public Health; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|