1
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Pan J, Kothan S, Moe Moe AT, Huang K. Dysfunction of insulin-AKT-UCP1 signalling inhibits transdifferentiation of human and mouse white preadipocytes into brown-like adipocytes. Adipocyte 2022; 11:213-226. [PMID: 35416120 PMCID: PMC9009895 DOI: 10.1080/21623945.2022.2062852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The mechanism of insulin signaling on browning of white preadipocytes remains unclear. Human and mouse primary subcutaneous white preadipocytes (hsASCs and WT lean and obese msASCs, respectively) were induced to transdifferentiate into beige adipocytes under conditions of intact or blocked insulin signaling, respectively. Level of phosphoinositide-3-kinase (PI3K) after induction of beige adipocytes under conditions of normal insulin signaling, phosphorylated protein kinase B (pAKT), peroxisome proliferator-activated receptor γ coactivator-1 alpha (PGC-1α), zinc-fifinger transcriptional factor PRD1-BF1-RIZ1 homologous domain-containing protein 16 (PRDM16), uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer binding protein beta (C/EBPβ) were significantly increased. Conversely, when insulin signaling is incompletely inhibited, the expression of the thermogenic and adipogenic factors is significantly reduced, with obvious impairment of adipogenesis. However, phosphorylation level of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and expression level of sirtuin type 1 (SIRT1) had increased. These white preadipocytes from different donors showed similar dynamic change in morphology and molecular levels during the browning. The present data indicate that insulin signaling plays a important role in regulation of browning of hsASCs and msASCs through PI3K-AKT-UCP1 signaling pathway. The insulin-AMPK-SIRT1 pathway was also involved in the adipocytes browning, while its effect is limited.
Collapse
Affiliation(s)
- Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aye Thidar Moe Moe
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kun Huang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Wang T, Han J, Dai H, Sun J, Ren J, Wang W, Qiao S, Liu C, Sun L, Liu S, Li D, Wei S, Liu H. Polysaccharides from Lyophyllum decastes reduce obesity by altering gut microbiota and increasing energy expenditure. Carbohydr Polym 2022; 295:119862. [DOI: 10.1016/j.carbpol.2022.119862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
|
4
|
Yan Y, Zhang X, Ren H, An X, Fan W, Liang J, Huang Y. Anterior Circulation Acute Ischemic Stroke in the Plateau of China: Risk Factors and Clinical Characteristics. Front Neurol 2022; 13:859616. [PMID: 35493834 PMCID: PMC9043326 DOI: 10.3389/fneur.2022.859616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Acute ischemic stroke has a high incidence in the plateau of China. It has unique characteristics compared to the plains, and the specific relationship with altitude has not yet been appreciated. This study aimed to investigate the specificity of the plateau's anterior circulation acute ischemic stroke in China. Methods To retrospectively collect clinical data of patients with first-episode acute ischemic stroke in the anterior circulation in Tianjin and Xining city. The differences in clinical presentation, laboratory, and imaging examinations were compared. Results Patients at high altitudes showed a significant trend toward lower age (61.0 ± 10.2 vs. 64.8 ± 8.1, P = 0.010) and had a history of dyslipidemia, higher levels of inflammatory markers, erythrocytosis, and alcohol abuse. The main manifestations were higher diastolic blood pressure (85.5 ± 14.0 mmHg vs. 76.8 ± 11.6 mmHg, P < 0.001), triglycerides [2.0 (1.8) mmol/L vs. 1.3 (0.9) mmol/L, P < 0.001], CRP [4.7 (4.4) mg/L vs. 2.1 (1.9) mg/L, P < 0.001], homocysteine levels [14.5 (11.7) μmol/L vs. 11.2 (5.2) μmol/L, P < 0.001]; larger infarct volume [3.5 (4.8) cm3 vs. 9.0 (6.9) cm3, P < 0.001] and worse prognosis. Patients at high altitudes had higher atherosclerotic indexes in cIMT and plaque than those in plains. Conclusions The natural habituation and genetic adaptation of people to the particular geo-climatic environment of the plateau have resulted in significant differences in disease characteristics. Patients with the anterior circulation acute ischemic stroke in the plateau show more unfavorable clinical manifestations and prognosis. This study provides a preliminary interpretation of the effects of altitude and suggests developing preventive and therapeutic protocol measures that are more appropriate for the plateau of China.
Collapse
Affiliation(s)
- Yujia Yan
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiqiang Zhang
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Center for Brain Science, Tianjin, China
| | - Wanpeng Fan
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Jingbo Liang
- Department of Neurosurgery, Third People Hospital of Xining City, Xining, China
| | - Ying Huang
- Department of Neurosurgery, Tianjin University Huanhu Hospital, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Ying Huang
| |
Collapse
|
5
|
Zhang F, Ma T, Tong X, Liu Y, Cui P, Xu X, Shi J, Hu W, Lu W, Pei Z, Xu M, Li X, Xu C, Feng Y. Electroacupuncture improves metabolic and ovarian function in a rat model of polycystic ovary syndrome by decreasing white adipose tissue, increasing brown adipose tissue, and modulating the gut microbiota. Acupunct Med 2021; 40:347-359. [PMID: 34892981 DOI: 10.1177/09645284211056663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) affects 8%-15% of reproductive-age women and is associated with reproductive disorders, abdominal obesity, hyperinsulinemia, insulin resistance, type 2 diabetes, and cardiovascular diseases. Acupuncture, as a traditional physical therapy method, could affect various metabolic disorders such as obesity, hyperplasia, gout, and cardiovascular and cerebrovascular diseases in clinical practice. Moreover, electroacupuncture (EA) has been shown to decrease body weight in rats with PCOS; however, the mechanism of weight loss and the relationship between adipose tissue and gut microbiota remain unclear. OBJECTIVE To explore the effect and mechanism of EA on white and brown adipose tissues and gut microbiota, and its follow-up effect on reproductive function, in a rat model of PCOS. METHODS Daily EA treatment was administered at ST29 and SP6 in a dihydrotestosterone (DHT)-induced PCOS-like rat model (PCOS + EA group). Effects of EA on in vivo and in vitro adipose volume and weight, organ weight coefficients, body weight, hormonal profiles, and estrous cyclicity were measured, and compared with untreated PCOS model rats (PCOS group) and healthy rats (control group). Microbial DNA was extracted from the fecal samples to analyze group abundance and diversity. RESULTS EA improved estrous cyclicity, decreased body weight, decreased visceral and subcutaneous fat content, and increased brown adipose tissue weight. EA also normalized serum DHT and progesterone levels and improved glucose tolerance. There were few significant differences in the composition or diversity of the gut microbiota between control, PCOS, and PCOS + EA groups, except for the relative abundances of Tenericutes at the phylum level and Prevotella_9 at the genus level, which were significantly different in the PCOS group before and after EA treatment. Both are important microflora, strongly related to body weight. CONCLUSION EA regulated the metabolic disorders and improved reproductive function in this PCOS-like rat model by adjusting visceral fat and brown fat, as well as intestinal flora.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yanjun Liu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaoqing Xu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jiemei Shi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenhan Lu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhenle Pei
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Minzhen Xu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xin Li
- Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Congjian Xu
- Department of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Chen X, Xie J, Tan Q, Li H, Lu J, Zhang X. Genistein improves systemic metabolism and enhances cold resistance by promoting adipose tissue beiging. Biochem Biophys Res Commun 2021; 558:154-160. [PMID: 33915329 DOI: 10.1016/j.bbrc.2021.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/31/2022]
Abstract
Genistein, a naturally occurring phytoestrogen and a member of the large class of compounds known as isoflavones, exerts protective effects in several diseases. Recent studies indicate that genistein plays a critical role in controlling body weight, obesity-associated insulin resistance, and metabolic disorders, but its target organs in reversing obesity and related pathological conditions remain unclear. In this study, we showed that mice supplemented with 0.2% genistein in a high-fat diet for 12 weeks showed enhanced metabolic homeostasis, including reduced obesity, improved glucose uptake and insulin sensitivity, and alleviated hepatic steatosis. We also observed a beiging phenomenon in the white adipose tissue and reversal of brown adipose tissue whitening in these mice. These changes led to enhanced resistance to cold stress. Altogether, our data suggest that the improved metabolic profile in mice treated with genistein is likely a result of enhanced adipose tissue function.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pediatrics, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China; Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Juanyu Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Qingqing Tan
- Department of Biology, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Huan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| | - Jun Lu
- Department of Pediatrics, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, China.
| | - Xingxing Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410010, China.
| |
Collapse
|
7
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
8
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
9
|
Wu H, Li X, Shen C. Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation. Physiol Res 2020; 69:759-773. [PMID: 32901494 DOI: 10.33549/physiolres.934411] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In as early as 1997, the World Health Organization officially recognized obesity as a chronic disease. The current epidemic of obesity and overweightness has aroused great interest in the study of adipose tissue formation. The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) binds to the target gene promoter regulatory sequences, acting as a key factor in regulating the differentiation of preadipocytes in the adipose tissue, and plays an important role in regulating the adipocyte metabolism. A further understanding of the structure and expression characteristics of PPARgamma, in addition to its mechanisms of action in adipocyte differentiation, may be applied to control obesity and prevent obesity-related diseases. In this article, recent studies investigating the effect of regulating PPARgamma on adipocyte differentiation are reviewed. In particular, the structural characteristics, expression patterns, and molecular mechanisms of PPARgamma function in adipocyte differentiation are considered.
Collapse
Affiliation(s)
- H Wu
- Nutritional Department, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Gaoqiao Town, Pudong New Area, Shanghai, China.
| | | | | |
Collapse
|
10
|
Zhou F, Guo J, Han X, Gao Y, Chen Q, Huang W, Zhan J, Huang D, You Y. Cranberry Polyphenolic Extract Exhibits an Antiobesity Effect on High-Fat Diet-Fed Mice through Increased Thermogenesis. J Nutr 2020; 150:2131-2138. [PMID: 32533770 DOI: 10.1093/jn/nxaa163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although polyphenol-rich cranberry extracts reportedly have an antiobesity effect, the exact reason for this remains unclear. OBJECTIVES In light of the reported health benefits of the polyphenolic compounds in cranberry, we investigated the effects and mechanism of a cranberry polyphenolic extract (CPE) in high-fat diet (HFD)-fed obese mice. METHODS The distributions of individual CPE compounds were characterized by HPLC fingerprinting. Male C57BL/6J mice (4 wk old) were fed for 16 wk normal diet (ND, 10% fat energy) or HFD (60% fat energy) with or without 0.75% CPE in drinking water (HFD + CPE). Body and adipose depot weights, indices of glucose metabolism, energy expenditure (EE), and expression of genes related to brown adipose tissue (BAT) thermogenesis, and inguinal/epididymal white adipose tissue (iWAT/eWAT) browning were measured. RESULTS After 16 wk, the body weight was 22.5% lower in the CPE-treated mice than in the HFD group but remained 17.9% higher than in the ND group. CPE treatment significantly increased EE compared with that of the ND and HFD groups. The elevated EE was linked with BAT thermogenesis, and iWAT/eWAT browning, shown by the induction of thermogenic genes, especially uncoupling protein 1 (Ucp1), and browning-related genes, including Cd137, a member of the tumor necrosis factor receptor superfamily (Tnfrsf9). The mRNA expression and abundance of uncoupling protein 1 in BAT of CPE-fed mice were 5.78 and 1.47 times higher than in the HFD group, and 0.61 and 1.12 times higher than in the ND group, respectively. Cd137 gene expression in iWAT and eWAT of CPE-fed mice were 2.35 and 3.13 times higher than in the HFD group, and 0.84 and 1.39 times higher than in the ND group, respectively. CONCLUSIONS Dietary CPE reduced but did not normalize HFD-induced body weight gain in male C57BL/6J mice, possibly by affecting energy metabolism.
Collapse
Affiliation(s)
- Fang Zhou
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jielong Guo
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xue Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Qimin Chen
- Department of Science and Technology, National University of Singapore, Singapore
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Dejian Huang
- Department of Science and Technology, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, China
| |
Collapse
|
11
|
Zhu R, Wei J, Liu H, Liu C, Wang L, Chen B, Li L, Jia Q, Tian Y, Li R, Zhao D, Mo F, Li Y, Gao S, Wang XD, Zhang D. Lycopene attenuates body weight gain through induction of browning via regulation of peroxisome proliferator-activated receptor γ in high-fat diet-induced obese mice. J Nutr Biochem 2020; 78:108335. [DOI: 10.1016/j.jnutbio.2019.108335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/03/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
|
12
|
Identification of isotschimgine as a novel farnesoid X receptor agonist with potency for the treatment of obesity in mice. Biochem Biophys Res Commun 2020; 521:639-645. [DOI: 10.1016/j.bbrc.2019.10.169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
|
13
|
Lizcano F. The Beige Adipocyte as a Therapy for Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20205058. [PMID: 31614705 PMCID: PMC6834159 DOI: 10.3390/ijms20205058] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia.
| |
Collapse
|
14
|
Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 2019; 439:80-105. [PMID: 31351140 DOI: 10.1016/j.neuroscience.2019.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
A new mammalian neuromuscular preparation is introduced for physiology and microscopy of all sorts: the intrinsic muscle of the mouse ear. The great utility of this preparation is demonstrated by illustrating how it has permitted us to develop a wholly new technique for staining muscle T-tubules, the critical conductive-elements in muscle. This involves sequential immersion in dilute solutions of osmium and ferrocyanide, then tannic acid, and then uranyl acetate, all of which totally blackens the T-tubules but leaves the muscle pale, thereby revealing that the T-tubules in mouse ear-muscles become severely distorted in several pathological conditions. These include certain mouse-models of muscular dystrophy (specifically, dysferlin-mutations), certain mutations of muscle cytoskeletal proteins (specifically, beta-tubulin mutations), and also in denervation-fibrillation, as observed in mouse ears maintained with in vitro tissue-culture conditions. These observations permit us to generate the hypothesis that T-tubules are the "Achilles' heel" in several adult-onset muscular dystrophies, due to their unique susceptibility to damage via muscle lattice-dislocations. These new observations strongly encourage further in-depth studies of ear-muscle architecture, in the many available mouse-models of various devastating human muscle-diseases. Finally, we demonstrate that the delicate and defined physical characteristics of this 'new' mammalian muscle are ideal for ultrastructural study, and thereby facilitate the imaging of synaptic vesicle membrane recycling in mammalian neuromuscular junctions, a topic that is critical to myasthenia gravis and related diseases, but which has, until now, completely eluded electron microscopic analysis. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
|
15
|
Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2019; 10:69. [PMID: 30800100 PMCID: PMC6375842 DOI: 10.3389/fendo.2019.00069] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or brown adipose tissue (BAT) for its location, feature and function. As a largely ignored adipose depot, it is situated in bone marrow space and resided with bone tissue side-by-side. MAT is considered not only as a regulator of bone metabolism through paracrine, but also as a functionally particular adipose tissue that may contribute to global metabolism. Adipokines, inflammatory factors and other molecules derived from bone marrow adipocytes may exert systematic effects. In this review, we summary the evidence from several aspects including development, distribution, histological features and phenotype to elaborate the basic characteristics of MAT. We discuss the association between bone metabolism and MAT, and highlight our current understanding of this special adipose tissue. We further demonstrate the probable relationship between MAT and energy metabolism, as well as glucose metabolism. On the basis of preliminary results from animal model and clinical studies, we propose that MAT has its unique secretory and metabolic function, although there is no in-depth study at present.
Collapse
Affiliation(s)
- Yujue Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
16
|
Evers M, Salma N, Osseiran S, Casper M, Birngruber R, Evans CL, Manstein D. Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM. Sci Rep 2018; 8:8757. [PMID: 29884881 PMCID: PMC5993796 DOI: 10.1038/s41598-018-27093-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) of intrinsic fluorophores such as nicotinamide adenine dinucleotide (NADH) allows for label-free quantification of metabolic activity of individual cells over time and in response to various stimuli, which is not feasible using traditional methods due to their destructive nature and lack of spatial information. This study uses FLIM to measure pharmacologically induced metabolic changes that occur during the browning of white fat. Adipocyte browning increases energy expenditure, making it a desirable prospect for treating obesity and related disorders. Expanding from the traditional two-lifetime model of NADH to a four-lifetime model using exponential fitting and phasor analysis of the fluorescence decay results in superior metabolic assessment compared to traditional FLIM analysis. The four lifetime components can also be mapped to specific cellular compartments to create a novel optical ratio that quantitatively reflects changes in mitochondrial and cytosolic NADH concentrations and binding states. This widely applicable approach constitutes a powerful tool for studies where monitoring cellular metabolism is of key interest.
Collapse
Affiliation(s)
- Michael Evers
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,Institute of Biomedical Optics, University of Lübeck, Lübeck, 23562, Germany.
| | - Nunciada Salma
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sam Osseiran
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Malte Casper
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Institute of Biomedical Optics, University of Lübeck, Lübeck, 23562, Germany
| | - Reginald Birngruber
- Institute of Biomedical Optics, University of Lübeck, Lübeck, 23562, Germany
| | - Conor L Evans
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Dieter Manstein
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Bukowska J, Frazier T, Smith S, Brown T, Bender R, McCarthy M, Wu X, Bunnell BA, Gimble JM. Bone Marrow Adipocyte Developmental Origin and Biology. Curr Osteoporos Rep 2018; 16:312-319. [PMID: 29667012 PMCID: PMC5948173 DOI: 10.1007/s11914-018-0442-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review explores how the relationships between bone marrow adipose tissue (BMAT) adipogenesis with advancing age, obesity, and/or bone diseases (osteopenia or osteoporosis) contribute to mechanisms underlying musculoskeletal pathophysiology. RECENT FINDINGS Recent studies have re-defined adipose tissue as a dynamic, vital organ with functions extending beyond its historic identity restricted solely to that of an energy reservoir or sink. "State of the art" methodologies provide novel insights into the developmental origin, physiology, and function of different adipose tissue depots. These include genetic tracking of adipose progenitors, viral vectors application, and sophisticated non-invasive imaging modalities. While constricted within the rigid bone cavity, BMAT vigorously contributes to local and systemic metabolic processes including hematopoiesis, osteogenesis, and energy metabolism and undergoes dynamic changes as a function of age, diet, bone topography, or sex. These insights will impact future research and therapies relating to osteoporosis.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Trivia Frazier
- LaCell LLC, New Orleans, LA, USA
- Obatala Sciences, Inc., New Orleans, LA, USA
| | | | - Theodore Brown
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Michelle McCarthy
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiying Wu
- LaCell LLC, New Orleans, LA, USA
- Obatala Sciences, Inc., New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jeffrey M Gimble
- LaCell LLC, New Orleans, LA, USA.
- Obatala Sciences, Inc., New Orleans, LA, USA.
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
18
|
TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 2018; 9:245. [PMID: 29339725 PMCID: PMC5770450 DOI: 10.1038/s41467-017-02068-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023] Open
Abstract
Remodelling of energy storing white fat into energy expending beige fat could be a promising strategy to reduce adiposity. Here, we show that the bile acid-responsive membrane receptor TGR5 mediates beiging of the subcutaneous white adipose tissue (scWAT) under multiple environmental cues including cold exposure and prolonged high-fat diet feeding. Moreover, administration of TGR5-selective bile acid mimetics to thermoneutral housed mice leads to the appearance of beige adipocyte markers and increases mitochondrial content in the scWAT of Tgr5+/+ mice but not in their Tgr5−/− littermates. This phenotype is recapitulated in vitro in differentiated adipocytes, in which TGR5 activation increases free fatty acid availability through lipolysis, hence fuelling β-oxidation and thermogenic activity. TGR5 signalling also induces mitochondrial fission through the ERK/DRP1 pathway, further improving mitochondrial respiration. Taken together, these data identify TGR5 as a druggable target to promote beiging with potential applications in the management of metabolic disorders. White adipose tissue can undergo a process of beiging and acquire functional characteristics similar to brown adipose tissue, including the ability to dissipate energy via uncoupled respiration. Here, Velazquez-Villegas et al. show that activation of the bile acid membrane receptor, TGR5, leads to white adipocyte beiging by promoting mitochondrial fission.
Collapse
|
19
|
Abstract
More than one-third of adults in the USA have obesity, which causes, exacerbates or adversely impacts numerous medical comorbidities, including diabetes mellitus and cardiovascular disease. Despite intensive lifestyle modifications, the disease severity warrants further aggressive intervention, including pharmacotherapy, medical devices and bariatric surgery. Noninvasive anti-obesity drugs have thus now resurfaced as targeted adjunctive therapeutic approaches to intensive lifestyle intervention, bridging the gap between lifestyle and bariatric surgery. In this Review, we discuss FDA-approved anti-obesity drugs in terms of safety and efficacy. As most of these drugs have a mean percentage weight loss reported in clinical trials but individual variations in response rates, a future direction of obesity pharmacotherapy research might include the potential for personalized medicine to target early responders to these anti-obesity drugs.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| | - Caroline M Apovian
- Section of Endocrinology, Diabetes and Nutrition, Department of Medicine, Boston University School of Medicine, 720 Harrison Avenue, 8 th Floor, Suite 801, Boston, Massachusetts 02118, USA
| |
Collapse
|
20
|
Miyashita K, Hosokawa M. Fucoxanthin in the management of obesity and its related disorders. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
21
|
Thyagarajan B, Foster MT. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0016/hmbci-2017-0016.xml. [PMID: 28672737 DOI: 10.1515/hmbci-2017-0016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
Abstract
An imbalance between energy intake and expenditure leads to obesity. Adiposity associated with obesity progressively causes inflammation, type 2 diabetes, hypertension, hyperlipidemia and cardiovascular disease. Excessive dietary intake of fat results in its accumulation and storage in the white adipose tissue (WAT), whereas energy expenditure by fat utilization and oxidation predominately occurs in the brown adipose tissue (BAT). Recently, the presence of a third type of fat, referred to as beige or brite (brown in white), has been recognized in certain kinds of WAT depots. It has been suggested that WAT can undergo the process of browning in response to stimuli that induce and enhance the expression of thermogenes characteristic of those typically associated with brown fat. The resultant beige or brite cells enhance energy expenditure by reducing lipids stored within adipose tissue. This has created significant excitement towards the development of a promising strategy to induce browning/beiging in WAT to combat the growing epidemic of obesity. This review systematically describes differential locations and functions of WAT and BAT, mechanisms of beiging of WAT and a concise analysis of drug molecules and natural products that activate the browning phenomenon in vitro and in vivo. This review also discusses potential approaches for targeting WAT with compounds for site-specific beiging induction. Overall, there are numerous mechanisms that govern browning of WAT. There are a variety of newly identified targets whereby potential molecules can promote beiging of WAT and thereby combat obesity.
Collapse
|
22
|
Wang S, Liang X, Yang Q, Fu X, Zhu M, Rodgers BD, Jiang Q, Dodson MV, Du M. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food Res 2017; 61. [PMID: 27873458 DOI: 10.1002/mnfr.201600746] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
SCOPE Enhancing the formation and function of brown adipose tissue (BAT) increases thermogenesis and hence reduces obesity. Thus, we investigate the effects of resveratrol (Resv) on brown adipocyte formation and function in mouse interscapular BAT (iBAT). METHODS AND RESULTS CD1 mice and stromal vascular cells (SVCs) isolated from iBAT were treated with Resv. Expression of brown adipogenic and thermogenic markers, and involvement of AMP-activated protein kinase (AMPK)α1 were assessed. In vivo, Resv-enhanced expression of brown adipogenic markers, PR domain-containing 16 (PRDM16) and thermogenic genes, uncoupling protein 1 (UCP1) and cytochrome C in iBAT, along with smaller lipid droplets, elevated AMPKα activity and increased oxygen consumption. Meanwhile, Resv promoted expression of PRDM16, UCP1, PGC1α, cytochrome C and pyruvate dehydrogenase (PDH) in differentiated iBAT SVCs, suggesting that Resv enhanced brown adipocyte formation and function in vitro. In addition, Resv stimulated AMPKα and oxygen consumption in differentiated iBAT SVCs. However, the promotional effects of Resv were diminished by AMPK inhibition or AMPKα1 knockout, implying the involvement of AMPKα1 in this process. CONCLUSION Resv enhanced brown adipocyte formation and thermogenic function in mouse iBAT by promoting the expression of brown adipogenic markers via activating AMPKα1, which contributed to the anti-obesity effects of Resv.
Collapse
Affiliation(s)
- Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P.R. China.,Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Xingwei Liang
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology, Guangxi University, Nanning, P.R. China
| | - Qiyuan Yang
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Xing Fu
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Meijun Zhu
- School of Food Sciences, Washington State University, Pullman, WA, USA
| | - B D Rodgers
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, P.R. China
| | - Michael V Dodson
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
23
|
Combellack EJ, Jessop ZM, Naderi N, Griffin M, Dobbs T, Ibrahim A, Evans S, Burnell S, Doak SH, Whitaker IS. Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surg 2016; 5:227-41. [PMID: 27047789 PMCID: PMC4791352 DOI: 10.3978/j.issn.2227-684x.2016.01.01] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/17/2015] [Indexed: 12/20/2022]
Abstract
The evolution of breast reconstruction and management of breast cancer has evolved significantly since the earliest descriptions in the Edwin Smith Papyrus (3,000 BC). The development of surgical and scientific expertise has changed the way that women are managed, and plastic surgeons are now able to offer a wide range of reconstructive options to suit individual needs. Beyond the gold standard autologous flap based reconstructions, regenerative therapies promise the elimination of donor site morbidity whilst providing equivalent aesthetic and functional outcomes. Future research aims to address questions regarding ideal cell source, optimisation of scaffold composition and interaction of de novo adipose tissue in the microenvironment of breast cancer.
Collapse
|
24
|
Lizcano F, Vargas D. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity. Int J Endocrinol 2016; 2016:9542061. [PMID: 27528872 PMCID: PMC4977401 DOI: 10.1155/2016/9542061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/12/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022] Open
Abstract
All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
- Fundacion Cardioinfantil IC, Bogota, Colombia
- *Fernando Lizcano:
| | - Diana Vargas
- Center of Biomedical Research (CIBUS), Universidad de La Sabana, Chia, Colombia
| |
Collapse
|
25
|
Singh R, Parveen M, Basgen JM, Fazel S, Meshesha MF, Thames EC, Moore B, Martinez L, Howard CB, Vergnes L, Reue K, Pervin S. Increased Expression of Beige/Brown Adipose Markers from Host and Breast Cancer Cells Influence Xenograft Formation in Mice. Mol Cancer Res 2015; 14:78-92. [PMID: 26464213 DOI: 10.1158/1541-7786.mcr-15-0151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED The initiation and progression of breast cancer is a complex process that is influenced by heterogeneous cell populations within the tumor microenvironment. Although adipocytes have been shown to promote breast cancer development, adipocyte characteristics involved in this process remain poorly understood. In this study, we demonstrate enrichment of beige/brown adipose markers, contributed from the host as well as tumor cells, in the xenografts from breast cancer cell lines. In addition to uncoupling protein-1 (UCP1) that is exclusively expressed in beige/brown adipocytes, gene expression for classical brown (MYF5, EVA1, and OPLAH) as well as beige (CD137/TNFRSF9 and TBX1) adipocyte markers was also elevated in the xenografts. Enrichment of beige/brown characteristics in the xenografts was independent of the site of implantation of the breast tumor cells. Early stages of xenografts showed an expansion of a subset of mammary cancer stem cells that expressed PRDM16, a master regulator of brown adipocyte differentiation. Depletion of UCP1(+) or Myf5(+) cells significantly reduced tumor development. There was increased COX2 (MT-CO2) expression, which is known to stimulate formation of beige adipocytes in early xenografts and treatment with a COX2 inhibitor (SC236) reduced tumor growth. In contrast, treatment with factors that induce brown adipocyte differentiation in vitro led to larger tumors in vivo. A panel of xenografts derived from established breast tumor cells as well as patient tumor tissues were generated that expressed key brown adipose tissue-related markers and contained cells that morphologically resembled brown adipocytes. IMPLICATIONS This is the first report demonstrating that beige/brown adipocyte characteristics could play an important role in breast tumor development and suggest a potential target for therapeutic drug design.
Collapse
Affiliation(s)
- Rajan Singh
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California
| | - Meher Parveen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - John M Basgen
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Sayeda Fazel
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Meron F Meshesha
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Brandis Moore
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Luis Martinez
- Charles R. Drew University of Medicine and Science, Los Angeles, California
| | | | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shehla Pervin
- Charles R. Drew University of Medicine and Science, Los Angeles, California. Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California. Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California.
| |
Collapse
|