1
|
Chao PC, Li Y, Chang CH, Shieh JP, Cheng JT, Cheng KC. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes. Biomed Pharmacother 2018; 101:155-161. [PMID: 29486333 DOI: 10.1016/j.biopha.2018.02.084] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
Animal models are widely used to develop drugs for treating diabetes mellitus (DM). Insulin resistance (IR) is one of the main problems in type-2 DM (T2DM). Streptozotocin (STZ) is used to damage pancreatic cells for induction of DM. Many rat models were applied in research as T2DM. However, the degree of IR in each model is unknown. In the present study, IR and insulin signaling were compared in four models of type 2 diabetes: rats fed a fructose-rich chow for 8 weeks, rats feed high-fat chow for 4 weeks followed by injection with streptozotocin (35 mg/kg, i.p.), rats injected with a single low dose streptozotocin (45 mg/kg, i.p.), and rats injected with a single dose of nicotinamide followed by a single high dose of streptozotocin (60 mg/kg, i.p.). Values from these determinations in diabetic rats showing the order that insulin resistance is most marked in rats received fructose-rich chow followed by high-fat diet before STZ injection induced model (HFD/STZ rats), and rats injected with low dose of STZ but it is less marked in rats induced by nicotinamide and STZ. Additionally, insulin secretion was reduced in three rat models except the rats receiving fructose-rich chow. Western blots also showed the same changes in phosphorylation of IRS-1 or Akt using soleus muscle from each model. The obtained data suggest a lack of pronounced IR in the rats with acute diabetes induced by nicotinamide and STZ while IR is markedly identified in rats fed fructose-rich chow. However, the increase of plasma glucose levels in fructose-rich chow-fed rats was not so significant as other groups. Therefore, HFD/STZ rats is an appropriate and stable animal model which is analogous to the human T2DM through a combination of high-fat diet with multiple low-dose STZ injections.
Collapse
Affiliation(s)
- Pin-Chun Chao
- Bachelor Program of Senior Services, College of Humanities and Social Sciences, Southern Taiwan University of Science and Technology, Yong Kang, Tainan City, 71005, Taiwan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan; Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Chin-Hong Chang
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Ja Ping Shieh
- Department of Anesthesiology, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, 71003, Taiwan; Institute of Medical Sciences, Chang Jung Christian University, Gueiren, Tainan City, 71101, Taiwan.
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan.
| |
Collapse
|
2
|
Expedited Biliopancreatic Juice Flow to the Distal Gut Benefits the Diabetes Control After Duodenal-Jejunal Bypass. Obes Surg 2016; 25:1802-9. [PMID: 25726319 DOI: 10.1007/s11695-015-1633-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Serum bile acids (BAs) are elevated after metabolic surgeries including Roux-en-Y gastric bypass (RYGB), ileal transposition (IT), and duodenal-jejunal bypass (DJB). Recently, BAs have emerged as a kind of signaling molecules, which can not only promote glucagon-like peptide-1 (GLP-1) secretion but can also regulate multiple enzymes involved in glucose metabolism. The aim of this study was to investigate whether expedited biliopancreatic juice flow to the distal gut contributes to the increased serum GLP-1 and BAs and benefits the diabetes control after DJB. METHODS DJB, long alimentary limb DJB (LDJB), duodenal-jejunal anastomosis (DJA), and sham operation were performed in diabetic rats induced by high-fat diet (HFD) and low dose of streptozotocin (STZ). Body weight, food intake, oral glucose tolerance, insulin tolerance, glucose-stimulated insulin and GLP-1 secretion, fasting serum total bile acids (TBAs), and lipid profiles were measured at indicated time points. RESULTS Compared with sham operation, DJA, DJB, and LDJB all achieved rapid and dramatic improvements in glucose tolerance and insulin sensitivity independently of food restriction and weight loss. DJB and LDJB-operated rats exhibited even better glucose tolerance, higher fasting serum TBAs, and higher glucose-stimulated GLP-1 secretion than the DJA group postoperatively. No difference was detected in insulin sensitivity and glucose-stimulated insulin secretion between DJA, DJB, and LDJB groups. CONCLUSIONS Expedited biliopancreatic juice flow to the distal gut was associated with augmented GLP-1 secretion and increased fasting serum TBA concentration, which may partly explain the metabolic benefits of DJB.
Collapse
|
3
|
Márquez-Ibarra A, Huerta M, Villalpando-Hernández S, Ríos-Silva M, Díaz-Reval MI, Cruzblanca H, Mancilla E, Trujillo X. The Effects of Dietary Iron and Capsaicin on Hemoglobin, Blood Glucose, Insulin Tolerance, Cholesterol, and Triglycerides, in Healthy and Diabetic Wistar Rats. PLoS One 2016; 11:e0152625. [PMID: 27064411 PMCID: PMC4827844 DOI: 10.1371/journal.pone.0152625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Objective Our aim was to assess the effects of dietary iron, and the compound capsaicin, on hemoglobin as well as metabolic indicators including blood glucose, cholesterol, triglycerides, insulin, and glucose tolerance. Materials and Methods Our animal model was the Wistar rat, fed a chow diet, with or without experimentally induced diabetes. Diabetic males were fed control, low, or high-iron diets, the latter, with or without capsaicin. Healthy rats were fed identical diets, but without the capsaicin supplement. We then measured the parameters listed above, using the Student t-test and ANOVA, to compare groups. Results Healthy rats fed a low-iron diet exhibited significantly reduced total cholesterol and triglyceride levels, compared with rats fed a control diet. Significantly reduced blood lipid was also provoked by low dietary iron in diabetic rats, compared with those fed a control diet. Insulin, and glucose tolerance was only improved in healthy rats fed the low-iron diet. Significant increases in total cholesterol were found in diabetic rats fed a high-iron diet, compared with healthy rats fed the same diet, although no statistical differences were found for triglycerides. Hemoglobin levels, which were not statistically different in diabetic versus healthy rats fed the high-iron diet, fell when capsaicin was added. Capsaicin also provoked a fall in the level of cholesterol and triglycerides in diabetic animals, versus diabetics fed with the high iron diet alone. In conclusion, low levels of dietary iron reduced levels of serum triglycerides, hemoglobin, and cholesterol, and significantly improved insulin, and glucose tolerance in healthy rats. In contrast, a high-iron diet increased cholesterol significantly, with no significant changes to triglyceride concentrations. The addition of capsaicin to the high-iron diet (for diabetic rats) further reduced levels of hemoglobin, cholesterol, and triglycerides. These results suggest that capsaicin, may be suitable for the treatment of elevated hemoglobin, in patients.
Collapse
Affiliation(s)
- Adriana Márquez-Ibarra
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Miguel Huerta
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Salvador Villalpando-Hernández
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Universidad No. 655 Colonia Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera C.P., Cuernavaca, Morelos, México
| | - Mónica Ríos-Silva
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - María I. Díaz-Reval
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Humberto Cruzblanca
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Evelyn Mancilla
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
| | - Xóchitl Trujillo
- Unidad de Investigación Dr. Enrico Stefani, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Col. Villas San Sebastián, Colima, Colima, México
- * E-mail:
| |
Collapse
|
4
|
Bowel length: measurement, predictors, and impact on bariatric and metabolic surgery. Surg Obes Relat Dis 2014; 11:328-34. [PMID: 25614357 DOI: 10.1016/j.soard.2014.09.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Small bowel length (SBL) determines the caloric absorptive capacity. The aim of this study was to evaluate SBL to identify patient-specific predictors and the interrelationships of SBL with anthropometric variables. METHODS Sex, age, and weight were recorded at the time of surgery when SBL and the estimated jejunal length (JLe) were measured by 3 different methods. RESULTS The mean SBL of 443 patients undergoing laparotomy (78% female) was 690±93.7 cm (range 350-1049 cm). Sex was correlated with SBL, as men had a longer small bowel than women (729±85 versus 678±92, P<.0001) and were significantly taller (173±8.2 versus 161±6.9, P<.001). Age did not correlate with SBL. The differences in length between fully stretched small bowel and nonstretched small bowel and between fully stretched small bowel and laparoscopic bowel were 137±19 cm and 32.4±11.4 cm, respectively. In a multivariate linear regression analysis model that included sex, age, height, and weight, only height was significantly correlated with SBL (P<.00001) and explained 12% of the variance in SBL. Sex, age, height, and JLe, but not SBL, were statistically highly significant in predicting 75% of the variance of body weight. CONCLUSIONS A positive association between height and SBL was found. Sex, age, height, and JLe may be strong predictors of weight. Individual JLe may be of importance in determining the weight loss and resolution of metabolic co-morbidities. Measuring the SBL can prevent the risk of nutritional consequences in malabsorptive, revisional, and metabolic procedures.
Collapse
|
5
|
Bonfleur ML, Ribeiro RA, Pavanello A, Soster R, Lubaczeuski C, Cezar Faria Araujo A, Boschero AC, Balbo SL. Duodenal-Jejunal Bypass Restores Insulin Action and Βeta-Cell Function in Hypothalamic-Obese Rats. Obes Surg 2014; 25:656-65. [PMID: 25204409 DOI: 10.1007/s11695-014-1427-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TKT. Hormonal signaling in the gut. J Biol Chem 2014; 289:11642-11649. [PMID: 24577102 DOI: 10.1074/jbc.o114.556068] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gut is anatomically positioned to play a critical role in the regulation of metabolic homeostasis, providing negative feedback via nutrient sensing and local hormonal signaling. Gut hormones, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), are released following a meal and act on local receptors to regulate glycemia via a neuronal gut-brain axis. Additionally, jejunal nutrient sensing and leptin action are demonstrated to suppress glucose production, and both are required for the rapid antidiabetic effect of duodenal jejunal bypass surgery. Strategies aimed at targeting local gut hormonal signaling pathways may prove to be efficacious therapeutic options to improve glucose control in diabetes.
Collapse
Affiliation(s)
- Clémence D Côté
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Melika Zadeh-Tahmasebi
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Brittany A Rasmussen
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - Frank A Duca
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Medicine, University of Toronto, Toronto, Ontario M5S 1A8
| | - Tony K T Lam
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7; Departments of Physiology, University of Toronto, Toronto, Ontario M5S 1A8; Departments of Medicine, University of Toronto, Toronto, Ontario M5S 1A8; Departments of Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|