1
|
Hui J, You H, Van Beek A, Zhang J, Elahi A, Downing JR, Chaney LE, Lee D, Ainsworth EA, Chaudhuri S, Dunn JB, Chen W, Rowan SJ, Hersam MC. Biorenewable Exfoliation of Electronic-Grade Printable Graphene Using Carboxylated Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57534-57543. [PMID: 39392856 DOI: 10.1021/acsami.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass Miscanthus × giganteus as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 104 S m-1. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 μm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.
Collapse
Affiliation(s)
- Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyang You
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anton Van Beek
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arash Elahi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - DoKyoung Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Urbana, Illinois 61801, United States
| | - Santanu Chaudhuri
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Orellana J, Araya-Hermosilla E, Pucci A, Araya-Hermosilla R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites. Polymers (Basel) 2024; 16:2273. [PMID: 39204493 PMCID: PMC11359776 DOI: 10.3390/polym16162273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Exfoliated graphite (ExG) embedded in a polymeric matrix represents an accessible, cost-effective, and sustainable method for generating nanosized graphite-based polymer composites with multifunctional properties. This review article analyzes diverse methods currently used to exfoliate graphite into graphite nanoplatelets, few-layer graphene, and polymer-assisted graphene. It also explores engineered methods for small-scale pilot production of polymer nanocomposites. It highlights the chemistry involved during the graphite intercalation and exfoliation process, particularly emphasizing the interfacial interactions related to steric repulsion forces, van der Waals forces, hydrogen bonds, π-π stacking, and covalent bonds. These interactions promote the dispersion and stabilization of the graphite derivative structures in polymeric matrices. Finally, it compares the enhanced properties of nanocomposites, such as increased thermal and electrical conductivity and electromagnetic interference (EMI) shielding applications, with those of neat polymer materials.
Collapse
Affiliation(s)
- Jaime Orellana
- Programa de Doctorado en Ciencias de Materiales e Ingeniería de Procesos, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8940577, Chile
| | - Esteban Araya-Hermosilla
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 851, Box, Santiago 8370456, Chile
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Rodrigo Araya-Hermosilla
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago 8370456, Chile
| |
Collapse
|
3
|
Chaney LE, van Beek A, Downing JR, Zhang J, Zhang H, Hui J, Sorensen EA, Khalaj M, Dunn JB, Chen W, Hersam MC. Bayesian Optimization of Environmentally Sustainable Graphene Inks Produced by Wet Jet Milling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309579. [PMID: 38530067 DOI: 10.1002/smll.202309579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/24/2024] [Indexed: 03/27/2024]
Abstract
Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high-speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high-boiling-point solvents such as n-methyl-2-pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data-driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr-1 with the resulting graphene nanoplatelets being suitable for screen-printed micro-supercapacitors. Finally, life cycle assessment reveals that ethanol-based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.
Collapse
Affiliation(s)
- Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Anton van Beek
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hengrui Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Janan Hui
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - E Alexander Sorensen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer B Dunn
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Chen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Gao J, Xiong H, Han X, An F, Chen T. Synergistic Effect of Aluminum Nitride and Carbon Nanotube-Reinforced Silicon Rubber Nanocomposites. Molecules 2024; 29:2864. [PMID: 38930929 PMCID: PMC11206600 DOI: 10.3390/molecules29122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Constructing a synergistic effect with different structural fillers is an important strategy for improving the comprehensive properties of polymeric composites. To improve the comprehensive properties of two-component additive liquid silicon rubber (SR) materials used in electronics packaging, the synergistic effect of granular aluminum nitride (AlN) and tubular carbon nanotube (CNT)-reinforced SR nanocomposites was investigated. AlN/CNT/SR composites with different AlN/CNT ratios were fabricated with two-component additive liquid SR via the thermal curing technique, and the influence of AlN/CNT hybrid fillers on the hardness, strength, elongation at break, surface resistivity, thermal conductivity, and thermal decomposition was investigated in detail. With the incorporation of AlN/CNT hybrid fillers, the comprehensive properties of the obtained AlN/CNT/SR composites are better than those of the AlN/SR and CNT/SR composites. The synergistic thermal conductive mechanism of AlN/CNT hybrid fillers was proposed and demonstrated with the fractural surface morphology of the obtained composites. The obtained AlN/CNT/SR composites show promising applications in electronic packaging, where necessary mechanical strength, electrical insulating, thermal conductivity, and thermal stable materials are needed.
Collapse
Affiliation(s)
| | | | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (H.X.); (F.A.)
| | | | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (J.G.); (H.X.); (F.A.)
| |
Collapse
|
5
|
Yu H, Peng L, Chen C, Qin M, Feng W. Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction. NANO-MICRO LETTERS 2024; 16:198. [PMID: 38758464 PMCID: PMC11101387 DOI: 10.1007/s40820-024-01426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Vertically oriented carbon structures constructed from low-dimensional carbon materials are ideal frameworks for high-performance thermal interface materials (TIMs). However, improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task. Herein, an orthotropic three-dimensional (3D) hybrid carbon network (VSCG) is fabricated by depositing vertically aligned carbon nanotubes (VACNTs) on the surface of a horizontally oriented graphene film (HOGF). The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy. After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsiloxane (PDMS), VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained. The highest in-plane and through-plane thermal conductivities of the composites are 113.61 and 24.37 W m-1 K-1, respectively. The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance. In addition, the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3% compared to that of a state-of-the-art thermal pad. This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
Collapse
Affiliation(s)
- Huitao Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Lianqiang Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Can Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Mengmeng Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
6
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
7
|
Gao Z, Li Y, Huang P, Zou R, Li Y, Fu S. Graphene nanoplatelet/cellulose acetate film with enhanced antistatic, thermal dissipative and mechanical properties for packaging. CELLULOSE (LONDON, ENGLAND) 2023; 30:4499-4509. [PMID: 37113142 PMCID: PMC10066947 DOI: 10.1007/s10570-023-05155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED With the increased concern over environment protection, cellulose acetate (CA) has drawn great interests as an alternative for packaging material due to its biodegradability and abundant resources; whereas, the poor antistatic property and thermal conductivity restrict its application in packaging. In this work, we proposed a simple but effective strategy to produce high performance graphene nanoplatelet (GNP)/CA composite films via the consecutive homogenization and solvent casting processes. Relying on the spontaneous absorption of CA during homogenization, the GNP/CA produced shows an excellent dispersibility in the N,N-Dimethylformamide (DMF) solution and many fewer structural defects compared with GNPs alone. As a result, the composite films obtained exhibit simultaneously and significantly enhanced antistatic, heat dissipative and mechanical properties compared with CA. Specifically, the GNP/CA composite with the optimal formula has promising overall performances (namely, surface resistivity of 3.33 × 107 Ω/sq, in-plane thermal conductivity of 5.359 W ( m · K ) , out-of-plane thermal conductivity of 0.785 W ( m · K ) , and tensile strength of 37.1 MPa). Featured by its promising overall properties, simple production processes and biodegradability, the as-prepared GNP/CA composite film shows a great potential for application in packaging. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10570-023-05155-2.
Collapse
Affiliation(s)
- Zijun Gao
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Yao Li
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Rui Zou
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130 China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Yuanqing Li
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| | - Shaoyun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044 China
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 China
| |
Collapse
|
8
|
Shibly MAH, Al Tahsin A, Chisty MAH. Ultrasonication-aided dye extraction from waste onion peel and eco-friendly dyeing on organic cotton fabric with enhanced efficacy in color fixation. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Han X, Gao J, Chen T, Qian L, Xiong H, Chen Z. Application Progress of PALS in the Correlation of Structure and Properties for Graphene/Polymer Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4161. [PMID: 36500784 PMCID: PMC9738869 DOI: 10.3390/nano12234161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Giving a deep insight into the microstructure, and realizing the correlation between microstructure and properties is very important to the precise construction of high-performance graphene/polymer nanocomposites (GPN). For the promising application in microstructure characterization, much attention has been focused on the effective technique of positron annihilation lifetime spectroscopy (PALS). Based on the introduction of the basic principle, this review summarized the application progress of PALS in the correlation of microstructure and properties for GPN, especially for the characterization of free volume and interfacial interaction, and the correlation of these microstructures and properties.
Collapse
Affiliation(s)
| | - Jie Gao
- Correspondence: (J.G.); (Z.C.)
| | | | | | | | | |
Collapse
|
10
|
Han X, Yue J, Hu X, Feng L, Yan X, Zhang Y. Ultrafast soliton delivered by miniaturized mode-locker with MoTe 2 and core-expanded fiber. APPLIED OPTICS 2022; 61:5524-5531. [PMID: 36256122 DOI: 10.1364/ao.460428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 06/16/2023]
Abstract
Thermally expanded core (TEC) technology is an effective method of high-power fiber lasers. Miniaturization is also a major challenge for high-power lasers. We have proposed a miniaturized mode-locker based on TEC fiber and MoTe2-polyvinyl alcohol (PVA) film. The proposed mode-locker is consisting of two TEC ferrules, a piece of MoTe2-PVA film and a ceramic sleeve. The length of the proposed device is about 20 mm, and its outer diameter is about 2 mm. The relations between heating time, heating temperature, and mode field diameter (MFD) have been numerically simulated. The bending loss with respect to MFD has also been analyzed. The simulation results have revealed the trade-off relation between maximal tolerable intensity and low cavity loss, which means that there is an optimal MFD corresponding to optimal heating time and heating temperature. The proposed mode-locker has been applied in an integrated fiber laser, which has emitted ultrafast soliton with 3 times intensity larger than that of conventional sandwiched-type saturable absorber. The proposed mode-locker and fiber laser will find important applications in laser processing, laser ranging, and optical communication.
Collapse
|
11
|
Design, Synthesis and Adsorption Evaluation of Bio-Based Lignin/Chitosan Beads for Congo Red Removal. MATERIALS 2022; 15:ma15062310. [PMID: 35329763 PMCID: PMC8948826 DOI: 10.3390/ma15062310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
The morphology and intermolecular interaction are two of the most important factors in the design of highly efficient dye adsorbent in the industry. Millimeter-sized, bead-type, bio-based lignin/chitosan (Lig/CS) adsorbent was designed for the removal of Congo red (CR), based on the electrostatic attraction, π-π stacking, and hydrogen bonding, which were synthesized through the emulsification of the chitosan/lignin mixture followed by chemical cross-linking. The effects of the lignin/chitosan mass ratio, initial pH, temperature, concentration, and contact time on the adsorption were thoroughly investigated. The highest adsorption capacity (173 mg/g) was obtained for the 20 wt% Lig/CS beads, with a removal rate of 86.5%. To investigate the adsorption mechanism and recyclability, an evaluation of the kinetic model and an adsorption/desorption experiment were conducted. The adsorption of CR on Lig/CS beads followed the type 1 pseudo-second-order model, and the removal rate for CR was still above 90% at five cycles.
Collapse
|
12
|
Han X, Chen T, Zhao Y, Gao J, Sang Y, Xiong H, Chen Z. Relationship between the Microstructure and Performance of Graphene/Polyethylene Composites Investigated by Positron Annihilation Lifetime Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2990. [PMID: 34835754 PMCID: PMC8619168 DOI: 10.3390/nano11112990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The quantitative characterization of microstructure is most desirable for the establishment of structure-property relationships in polymer nanocomposites. In this work, the effects of graphene on the microstructure, mechanical, electrical, and thermal properties of the obtained graphene/polyethylene (PE) composites were investigated. In order to reveal the structure-performance relationship of graphene/PE composites, especially for the effects of the relative free volume fraction (fr) and interfacial interaction intensity (β), positron annihilation lifetime spectroscopy (PALS) was employed for its quantitative description. The relative free volume fraction fr gives a good explanation of the variation for surface resistivity, melting temperature, and thermal stability, and the variation of tensile strength and thermal conductivity agree well with the results of interfacial interaction intensity β. The results showed that fr and β have a significant effect on the properties of the obtained graphene/PE composites, and the effect on the properties was revealed.
Collapse
Affiliation(s)
| | | | | | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (T.C.); (Y.Z.); (Y.S.); (H.X.)
| | | | | | - Zhiyuan Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (T.C.); (Y.Z.); (Y.S.); (H.X.)
| |
Collapse
|
13
|
Han X, Kong H, Chen T, Gao J, Zhao Y, Sang Y, Hu G. Effect of π-π Stacking Interfacial Interaction on the Properties of Graphene/Poly(styrene- b-isoprene- b-styrene) Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2158. [PMID: 34578475 PMCID: PMC8468380 DOI: 10.3390/nano11092158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Interfacial interaction is one of the most important factors in the construction of high-performance graphene-based elastomer composites. In this paper, graphene/poly (styrene-b-isoprene-b-styrene) (SIS) composites were prepared with solution mixing followed by an evaporation-induced self-assembly process. Various techniques such as scanning electron microscopy, UV-vis absorption spectra, tensile testing, Shore A hardness, surface resistance, thermal conductivity, and thermogravimetric analysis were conducted to characterize the microstructure and properties of the obtained composites. The results showed that the π-π stacking interfacial interaction between phenyl groups of SIS and graphene play an important role in the properties' improvement, and the effect of interfacial interaction on the properties was revealed.
Collapse
Affiliation(s)
| | | | | | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (H.K.); (T.C.); (Y.Z.); (Y.S.)
| | | | | | - Guowen Hu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; (X.H.); (H.K.); (T.C.); (Y.Z.); (Y.S.)
| |
Collapse
|
14
|
Mohmad G, Sarkar S, Biswas A, Roy K, Dey RS. Polymer‐Assisted Electrophoretic Synthesis of N‐Doped Graphene‐Polypyrrole Demonstrating Oxygen Reduction with Excellent Methanol Crossover Impact and Durability. Chemistry 2020; 26:12664-12673. [DOI: 10.1002/chem.202002526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Ghulam Mohmad
- Institute of Nano Science and Technology Sector 64, Mohali 160062 Punjab India
| | - Subhajit Sarkar
- Institute of Nano Science and Technology Sector 64, Mohali 160062 Punjab India
| | - Ashmita Biswas
- Institute of Nano Science and Technology Sector 64, Mohali 160062 Punjab India
| | - Kingshuk Roy
- Research Institute for Sustainable Energy (RISE) TCG Centres for Research and Education in Science and Technology (TCG CREST), Sector V Salt Lake Kolkata 700091 India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology Sector 64, Mohali 160062 Punjab India
| |
Collapse
|
15
|
Han X, Gao J, Chen Z, Tang X, Zhao Y, Chen T. Correlation between microstructure and properties of graphene oxide/waterborne polyurethane composites investigated by positron annihilation spectroscopy. RSC Adv 2020; 10:32436-32442. [PMID: 35516512 PMCID: PMC9056613 DOI: 10.1039/d0ra05872f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
A quantitative description of microstructure is highly desirable for the precise construction of high performance graphene based polymer composites. In this paper, the effects of doping graphene oxide (GO) on the microstructure, thermal and mechanical properties of the obtained graphene oxide/waterborne polyurethane (GO/WPU) composites were systematically investigated. In order to give a deep insight into the microstructure of GO/WPU composites, especially for the relative free volume fraction (fr) and interfacial interaction intensity (β), positron annihilation lifetime spectroscopy (PALS) was employed for its quantitative characterization. With the increase of GO content, the fr decreased first and then increased, the lowest value was observed for the composites containing 0.5 wt% GO. This can be ascribed to the change in the dispersed state of GO and interfacial interactions, which agree well with the results of SEM. The correlation between microstructure and properties was established with the PALS results, the values of fr and β give a good explanation of the variation in glass transition temperature and tensile strength, respectively. Qualitative and quantitative descriptions of interfacial interactions for graphene oxide/waterborne polyurethane composites.![]()
Collapse
Affiliation(s)
- Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Zhiyuan Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Xiuqin Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials
- Hubei Collaboration Innovative Center for Nonpower Nuclear Technology
- School of Nuclear Technology and Chemistry & Biology
- Hubei University of Science and Technology
- Xianning 437100
| |
Collapse
|