1
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
2
|
Ebrahimi M, Fatyeyeva K, Kujawski W. Different Approaches for the Preparation of Composite Ionic Liquid-Based Membranes for Proton Exchange Membrane Fuel Cell Applications-Recent Advancements. MEMBRANES 2023; 13:593. [PMID: 37367797 DOI: 10.3390/membranes13060593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The use of ionic liquid-based membranes as polymer electrolyte membranes for fuel cell applications increases significantly due to the major features of ionic liquids (i.e., high thermal stability and ion conductivity, non-volatility, and non-flammability). In general, there are three major methods to introduce ionic liquids into the polymer membrane, such as incorporating ionic liquid into a polymer solution, impregnating the polymer with ionic liquid, and cross-linking. The incorporation of ionic liquids into a polymer solution is the most common method, owing to easy operation of process and quick membrane formation. However, the prepared composite membranes suffer from a reduction in mechanical stability and ionic liquid leakage. While mechanical stability may be enhanced by the membrane's impregnation with ionic liquid, ionic liquid leaching is still the main drawback of this method. The presence of covalent bonds between ionic liquids and polymer chains during the cross-linking reaction can decrease the ionic liquid release. Cross-linked membranes reveal more stable proton conductivity, although a decrease in ionic mobility can be noticed. In the present work, the main approaches for ionic liquid introduction into the polymer film are presented in detail, and the recently obtained results (2019-2023) are discussed in correlation with the composite membrane structure. In addition, some promising new methods (i.e., layer-by-layer self-assembly, vacuum-assisted flocculation, spin coating, and freeze drying) are described.
Collapse
Affiliation(s)
- Mohammad Ebrahimi
- Polymères Biopolymères Surfaces (PBS), INSA Rouen Normandie, University Rouen Normandie, UMR 6270 CNRS, 76000 Rouen, France
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Kateryna Fatyeyeva
- Polymères Biopolymères Surfaces (PBS), INSA Rouen Normandie, University Rouen Normandie, UMR 6270 CNRS, 76000 Rouen, France
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
3
|
Wang H, Wang Y, Li C, Zhao Q, Cong Y. Introduction of Surface Modifiers on the Pt-Based Electrocatalysts to Promote the Oxygen Reduction Reaction Process. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091544. [PMID: 37177089 PMCID: PMC10180714 DOI: 10.3390/nano13091544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The design of Pt-based electrocatalysts with high efficiency towards acid oxygen reduction reactions is the priority to promote the development and application of proton exchange membrane fuel cells. Considering that the Pt atoms on the surfaces of the electrocatalysts face the problems of interference of non-active species (such as OHad, OOHad, CO, etc.), high resistance of mass transfer at the liquid-solid interfaces, and easy corrosion when working in harsh acid. Researchers have modified the surfaces' local environment of the electrocatalysts by introducing surface modifiers such as silicon or carbon layers, amine molecules, and ionic liquids on the surfaces of electrocatalysts, which show significant performance improvement. In this review, we summarized the research progress of surface modified Pt-based electrocatalysts, focusing on the surface modification strategies and their mechanisms. In addition, the development prospects of surface modification strategies of Pt-based electrocatalysts and the limitations of current research are pointed out.
Collapse
Affiliation(s)
- Haibin Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yi Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Chunlei Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Qiuping Zhao
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuanyuan Cong
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
4
|
Stagel K, Szpecht A, Zielinski D, Smiglak M, Schnürch M, Bica-Schröder K. Halide-Free Continuous Synthesis of Hydrophobic Ionic Liquids. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:11215-11222. [PMID: 36061098 PMCID: PMC9428890 DOI: 10.1021/acssuschemeng.2c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Herein, we present a novel approach for the halide-free, continuous-flow preparation of hydrophobic ionic liquids (ILs) relying on the bis(trifluoromethanesulfonyl)imide (bistriflimide, NTf2 -) anion. The simple yet fast two-step synthetic route, which involves the formation of different alkyl bistriflimides (R4NTf2), followed by the quaternization with an amine nucleophile, led to the desired ILs in high yields and excellent purities without any byproduct formation. The variable alkyl chain (R4) length and the broad range of the applicable nucleophiles (R1R2R3N) offer considerable flexibility to the synthetic protocol. The quaternization can be performed under solvent-free conditions; moreover, the homogeneous nature of these reactions allows the application of modern continuous-flow technologies. Given these advantages, the methodology can afford not just a fast and efficient alternative for the conventional synthesis of such compounds with reduced waste water production but their negligible halide content might provide a significantly broader application range of the IL products, especially for the field of materials science.
Collapse
Affiliation(s)
- Kristof Stagel
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Andrea Szpecht
- Poznan
Science and Technology Park, Adam Mickiewicz
University Foundation, St. Rubiez 46, Poznan 61-612, Poland
| | - Dawid Zielinski
- Poznan
Science and Technology Park, Adam Mickiewicz
University Foundation, St. Rubiez 46, Poznan 61-612, Poland
- Faculty
of Chemistry, Adam Mickiewicz University
in Poznan, St. Uniwersytetu
Poznanskiego 8, Poznan 61-614, Poland
| | - Marcin Smiglak
- Poznan
Science and Technology Park, Adam Mickiewicz
University Foundation, St. Rubiez 46, Poznan 61-612, Poland
| | - Michael Schnürch
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Katharina Bica-Schröder
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Vienna 1060, Austria
| |
Collapse
|
5
|
Khoo KS, Chia WY, Wang K, Chang CK, Leong HY, Maaris MNB, Show PL. Development of proton-exchange membrane fuel cell with ionic liquid technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148705. [PMID: 34328982 DOI: 10.1016/j.scitotenv.2021.148705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Fuel cells (FCs) are a chemical fuel device which can directly convert chemical energy into electrical energy, also known as electrochemical generator. Proton exchange membrane fuel cells (PEMFCs) are one of the most appealing FC systems that have been broadly developed in recent years. Due to the poor conductivity of electrolyte membrane used in traditional PEMFC, its operation at higher temperature is greatly limited. The incorporation of ionic liquids (ILs) which is widely regarded as a greener alternative compared to traditional solvents in the proton exchange membrane electrolyte shows great potential in high temperature PEMFCs (HT-PEMFCs). This review provides insights in the latest progress of utilizing ILs as an electrochemical electrolyte in PEMFCs. Besides, electrolyte membranes that are constructed by ILs combined with polybenzimidazole (PBI) have many benefits such as better thermal stability, improved mechanical properties, and higher proton conductivity. The current review aims to investigate the newest development and existing issues of ILs research in electrolyte and material selection, system fabrication method, synthesis of ILs, and experimental techniques. The evaluation of life cycle analysis, commercialization, and greenness of ILs are also discussed. Hence, this review provides insights to material scientists and develops interest of wider community, promoting the use of ILs to meet energy challenges.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kexin Wang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chih-Kai Chang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, No. 135, Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan
| | - Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Muhammad Nasrulhazim Bin Maaris
- Department of Mechanical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2104-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Qi F, Zeng Z, Wen Q, Huang Z. Enhanced organics degradation by three-dimensional (3D) electrochemical activation of persulfate using sulfur-doped carbon particle electrode: The role of thiophene sulfur functional group and specific capacitance. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125810. [PMID: 33882388 DOI: 10.1016/j.jhazmat.2021.125810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
For further enhancing the electrochemical oxidation performance, sulfur-doped carbon particle electrode was employed in the three-dimensional (3D) electro-assisted activation of persulfate process (ACS/PS/EC). Herein, an in situ S-doped activated carbon (ACS) was prepared and applied as the particle electrode as well as catalyst in ACS/PS/EC system. Several carbon particle electrodes with different annealing temperature were prepared and characterized via EA, BET, XPS and Raman spectra. Cyclic voltammetry (CV) was perform to obtain the specific capacitance and investigate the interfacial electron transfer of ACS particle. The results of comparative experiments showed significant synergy between electric and catalytic activations of PS. Especially, the as-prepared sample treated at 850 °C (ACS-850) exhibited an outstanding catalytic performance, and the phenol degradation rate was greatly improved by nearly 100% with the application of electric field. By comparing of several carbon particle electrodes with different functional groups and specific capacitances, it is revealed that thiophene sulfur functional group is the mainly active site for both electric and catalytic activation of PS, and the specific capacitance acts as assistant factor. Quenching experiments proved that the 3D electro-assisted activation of PS proceeded through both radical and non-radical pathway. Possible mechanism for ACS/PS/EC electrochemical process was proposed.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zequan Zeng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| | - Qin Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Deng J, Zhou Z, Huang C. Factors affecting the catalytic activity of Pd-based electrocatalysts in the electrooxidation of glycerol: element doping and functional groups on the support. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Growing collaborations between Chinese and UK young scholars on chemical science and technology. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
|