1
|
Santibáñez M, Núñez-Robainas A, Barreiro E, Expósito A, Agüero J, García-Rivero JL, Abascal B, Amado CA, Ruiz-Cubillán JJ, Fernández-Sobaler C, García-Unzueta MT, Cifrián JM, Fernandez-Olmo I. Characterization of Systemic Oxidative Stress in Asthmatic Adults Compared to Healthy Controls and Its Association with the Oxidative Potential of Particulate Matter Collected Using Personal Samplers. Antioxidants (Basel) 2025; 14:385. [PMID: 40298638 PMCID: PMC12024361 DOI: 10.3390/antiox14040385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Inflammatory cell activation in asthma may lead to reactive oxygen species (ROS) overproduction with an imbalance between oxidant levels and antioxidant capacity, called oxidative stress (OS). Since particulate matter (PM) airborne exposure may also contribute to ROS generation, it is unclear whether PM contributes more to OS than inflammatory cell activation. In our ASTHMA-FENOP study, which included 44 asthma patients and 37 matched controls, we aimed to characterize OS using five serum markers: total ROS content, protein carbonyl content, oxidized low-density lipoprotein (OxLDL), 8-hydroxydeoxyguanosine, and glutathione. Volunteers wore personal samplers for 24 h, collecting fine and coarse PM fractions separately, and the oxidative potential (OP) was determined using two methods. We observed differences between asthmatic and non-asthmatic volunteers in some OS markers, such as OxLDL, with an adjusted mean difference of 50,059.8 ng/mL (p < 0.001). However, we did not find an association between higher PM-OP and increased systemic OS. This suggests that at our PM-OP exposure levels, OS generated by the inflammatory cells themselves is more relevant than that generated by airborne PM. This supports the idea that asthma is a heterogeneous disease at the molecular level, mediated by inflammatory cell activation, and that OS may have potential clinical implications.
Collapse
Affiliation(s)
- Miguel Santibáñez
- Global Health Research Group, Departamento Enfermería, Faculty of Nursing, Universidad de Cantabria-IDIVAL, Avda. Valdecilla, s/n, 39008 Santander, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain; (A.N.-R.); (E.B.)
| | - Adriana Núñez-Robainas
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain; (A.N.-R.); (E.B.)
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Esther Barreiro
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain; (A.N.-R.); (E.B.)
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer, IMIM-Hospital del Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Andrea Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain; (A.E.); (I.F.-O.)
| | - Juan Agüero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Juan Luis García-Rivero
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Beatriz Abascal
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Carlos Antonio Amado
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Juan José Ruiz-Cubillán
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Carmen Fernández-Sobaler
- Division of Biochemistry, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (C.F.-S.); (M.T.G.-U.)
| | - María Teresa García-Unzueta
- Division of Biochemistry, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (C.F.-S.); (M.T.G.-U.)
| | - José Manuel Cifrián
- Division of Pneumology, Hospital Universitario Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (J.A.); (J.L.G.-R.); (B.A.); (C.A.A.); (J.J.R.-C.); (J.M.C.)
| | - Ignacio Fernandez-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain; (A.E.); (I.F.-O.)
| |
Collapse
|
2
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Maciejczyk M. The antioxidant barrier, oxidative/nitrosative stress, and protein glycation in allergy: from basic research to clinical practice. Front Immunol 2024; 15:1440313. [PMID: 39703514 PMCID: PMC11655330 DOI: 10.3389/fimmu.2024.1440313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Recent studies indicate that oxidative/nitrosative stress is involved in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, and urticaria. The article aimed to review the latest literature on disruptions in redox homeostasis and protein glycation in allergy patients. It has been shown that enzymatic and non-enzymatic antioxidant systems are impaired in allergic conditions, which increases cell susceptibility to oxidative damage. Reactive oxygen/nitrogen species exacerbate the severity of asthma symptoms by activating inflammatory mediators that cause airway smooth muscle contraction, promote mucus hypersecretion, increase the permeability of lung capillaries, and damage cell membranes. Redox biomarkers could have considerable diagnostic potential in allergy patients. There is no compelling evidence to indicate that antioxidants reduce allergy symptoms' severity or slow disease progression.
Collapse
Affiliation(s)
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Carroll KN. Impact of Climate Change on Dietary Nutritional Quality and Implications for Asthma and Allergy. Immunol Allergy Clin North Am 2024; 44:85-96. [PMID: 37973262 PMCID: PMC11233177 DOI: 10.1016/j.iac.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Asthma and allergic disorders are common in childhood with genetic and environmental determinants of disease that include prenatal nutritional exposures such as long-chain polyunsaturated fatty acids and antioxidants. Global climate change is implicated in asthma and allergic disorder morbidity with potential mechanisms including perturbations of ecosystems. There is support that environmental and climatic changes such as increasing global temperate and carbon dioxide levels affect aquatic and agricultural ecosystems with subsequent alterations in long-chain polyunsaturated fatty acid availability and nutrient quality and antioxidant capacity of certain crops, respectively. This article discusses asthma epidemiology and the influence of global climate change.
Collapse
Affiliation(s)
- Kecia N Carroll
- Division of General Pediatrics, Departments of Pediatrics and Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1198, New York, NY 10029, USA.
| |
Collapse
|
4
|
Wang K, Wang L, Zhao G, Liu Y, Wang F, Song H, Sun Y, Zhou Z, Lu X, Hu H, Cui H. Mechanistic study of salidroside on ovalbumin-induced asthmatic model mice based on untargeted metabolomics analysis. Food Funct 2023; 14:413-426. [PMID: 36515134 DOI: 10.1039/d2fo02225g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salidroside (SAL) is a natural component derived from Rhodiola rosea and is well known for its wide range of biological activities such as its anti-inflammatory and anti-oxidative properties. However, its effects and mechanisms of action related to asthma have not been well explored yet. Recent studies have found that changes in host metabolism are closely related to the progression of asthma. Many natural components can ameliorate asthma by affecting host metabolism. The use of untargeted metabolomics can allow for a better understanding of the metabolic regulatory mechanisms of herbs on asthma. This study aimed to demonstrate the anti-asthmatic effects and metabolic regulatory mechanisms of SAL. In this study, the therapeutic effects of SAL on asthmatic mice were tested at first. Secondly, the effects of SAL on the airway inflammatory reaction, oxidative stress, and airway remodeling were investigated. Finally, untargeted metabolomics analysis was used to explore the influence of SAL on lung metabolites. The results showed that SAL had a significant therapeutic effect on asthmatic model mice. Moreover, SAL treatment lowered interleukin (IL)-4, IL-5, and IL-13 levels but elevated interferon gamma (IFN-γ) and IL-10 levels in bronchoalveolar lavage fluid (BALF). Additionally, it also increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and decreased methane dicarboxylic aldehyde (MDA) levels in the lungs. Besides, SAL-treated mice showed decreased expression of smooth muscle actin (α-SMA), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), and transforming growth factor-beta 1 (TGF-β1) in the lung. Untargeted metabolomics analysis showed 31 metabolites in the lungs that were influenced by SAL. These metabolites were related to pyrimidine metabolism, steroid hormone biosynthesis, and tricarboxylic acid (TCA) cycle. In conclusion, SAL treatment can reduce the inflammatory response, oxidative stress, and airway remodeling in asthmatic model mice. The mechanism of SAL in the treatment of asthma may be related to the regulation of pyrimidine metabolism, steroid hormone biosynthesis, and the TCA cycle. Further studies can be carried out using targeted metabolomics and in vitro models to deeply elucidate the anti-inflammatory and anti-oxidative mechanisms of SAL on asthma based on regulating metabolism.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Li Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Guojing Zhao
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Yong Liu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Fengchan Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Huan Song
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Yin Sun
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Zhaoshan Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Xuechao Lu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Haibo Hu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, China.
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Shandong, China.
| |
Collapse
|
5
|
Xiao S, Zhou Y, Wang Q, Yang D. Ketamine Attenuates Airway Inflammation via Inducing Inflammatory Cells Apoptosis and Activating Nrf2 Pathway in a Mixed-Granulocytic Murine Asthma Model. Drug Des Devel Ther 2022; 16:4411-4428. [PMID: 36597444 PMCID: PMC9805722 DOI: 10.2147/dddt.s391010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose The use of ketamine, an anesthetic, as a treatment for asthma has been investigated in numerous studies. However, how ketamine affects asthma is unclear. The present study examined the effects of ketamine on a murine model of mixed-granulocytic asthma, and the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods The murine model of mixed-granulocytic asthma was established using ovalbumin (OVA) for sensitization and the combination of OVA and lipopolysaccharides (LPS) for challenge. The main characteristics of asthma, oxidative stress biomarkers, and the expression of the Nrf2 pathway were examined. ML385 was administered to verify the role of the Nrf2 pathway. Results Mice in the OVA +LPS group developed asthmatic characteristics, including airway hyperresponsiveness, mixed-granulocytic airway inflammation, mucus overproduction, as well as increased levels of oxidative stress and impaired apoptosis of inflammatory cells. Among the three concentrations, ketamine at 75mg/kg effectively attenuated these asthmatic symptoms, activated the Nrf2 pathway, decreased oxidative stress, and induced apoptosis of eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) with a reducing level of myeloid cell leukemia 1(Mcl-1). ML385 (an Nrf2 inhibitor) eliminated the protective effects of ketamine on the mixed-granulocytic asthma model. Conclusion The study concluded that ketamine reduced oxidative stress and attenuated asthmatic symptoms (neutrophilic airway inflammation) by activating the Nrf2-Keap1 pathway, with 75 mg/kg ketamine showing the best results. Ketamine administration also increased neutrophil and eosinophil apoptosis in BALF, which may contribute to the resolution of inflammation. The use of ketamine as a treatment for asthma may therefore be beneficial.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China,Correspondence: Dong Yang, Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People’s Republic of China, Tel +86-13661267522, Email
| |
Collapse
|
6
|
Ma L, Sun D, Xiu G, Lazarus P, Vachani A, Penning TM, Whitehead AS, Muscat JE. Quantification of Plasma 8-Isoprostane by High-Performance Liquid Chromatography with Tandem Mass Spectrometry in a Case-Control Study of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12488. [PMID: 36231826 PMCID: PMC9566031 DOI: 10.3390/ijerph191912488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
AIM 8-iso-prostaglandin F2α is a biomarker of lipid peroxidation, and one of the most commonly used measures of oxidative stress. It is an established biomarker of lung cancer risk. It is commonly measured by enzyme-linked immunosorbent assay. Given its importance, we developed a stable isotope dilution UPLC-tandem mass spectrometric method for the rapid determination of 8-isoprostane in blood. METHODS We tested the discriminatory capability of the method in 49 lung cancer patients, 55 benign lung nodule patients detected by chest X-ray, and 41 patients with chronic obstructive pulmonary disease (COPD) or asthma. RESULTS Significant differences were found in mean 8-isoprostane levels between the three groups (p = 0.027), and post-hoc tests found higher levels in the lung cancer patients than in patients with benign nodules (p = 0.032) and COPD/asthma (p = 0.014). The receiving operating characteristic area under the curve (AUC) was 0.69 for differentiating the lung cancer group from the benign nodule group, and 0.7 for differentiating from the COPD/asthma group. CONCLUSIONS The UPLC-MS/MS-based method is an efficient analytical tool for measuring 8-isoprostane plasma concentrations. The results suggest exploring its utility as a marker for early lung cancer screening.
Collapse
Affiliation(s)
- Lin Ma
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facility, The Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Anil Vachani
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander S. Whitehead
- Department of Pharmacology, Center for Pharmacogenetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua E. Muscat
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Hosoki K, Chakraborty A, Hazra TK, Sur S. Protocols to Measure Oxidative Stress and DNA Damage in Asthma. Methods Mol Biol 2022; 2506:315-332. [PMID: 35771481 DOI: 10.1007/978-1-0716-2364-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is associated with oxidative stress and oxidative damage of biomolecules, including DNA. Here, we describe the protocols to quantify reactive oxygen species (ROS) and oxidative stress markers in a mouse model of allergic airway inflammation. We also provide detailed methods to measure DNA damage by long-run real-time PCR for DNA-damage quantification (LORD-Q) assay and gene-specific DNA damage analyses by long amplicon (LA)-qPCR. Additionally, we describe methods to quantify oxidized DNA base lesions in lung genomic DNA by mass spectrometry, and to measure enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1). Using these methods, the levels of oxidative stress and DNA damage in allergic inflammation and asthma can be elucidated.
Collapse
Affiliation(s)
- Koa Hosoki
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Tapas K Hazra
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Sanjiv Sur
- Department of Medicine, Immunology Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
8
|
Biochemical and molecular effects of a commercial diuretic with herbal extract on experimentally induced urolithiasis in chickens. Vet Res Commun 2021; 46:419-430. [PMID: 34846629 DOI: 10.1007/s11259-021-09866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023]
Abstract
This study evaluated the diuretic, antioxidant, anti-inflammatory, and immunological effects of a commercial diuretic (CD) (composed of ammonium chloride, potassium citrate, sodium chloride, ascorbic acid, biotin, halfa bar extract, and hexamine) on chickens with induced urolithiasis. A total of 100 one-day-old white Hy-Line chicks were fed a basal diet containing 20% crude protein (CP) and 1% Ca until they reached 48 days of age. Then, the birds were divided into five groups (G1-G5). G1 was fed a basal diet and kept as a negative control, G2 was fed a high protein (HP) diet containing 25% crude protein, G3 was fed high calcium (HC) diet containing 5% Ca, G4 was fed HP diet supplemented with CD, and G5 was fed HC diet supplemented with CD. The CD was supplemented with drinking water (at a dose of 0.5 ml/ liter) for 1 week. The experiment was held for 78 days. Clinical signs, postmortem lesions, and mortality rates were observed. Biochemical analytes, redox status biomarkers, and expression of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) were measured. Tissue samples were taken for histopathological examination. No signs of CD toxicity were observed during the toxicity test prior to the experiment. Compared to all groups, birds in G2 and G3 showed impaired renal function and alterations in biochemical, redox status, lipid peroxidation, post-mortem, and histopathological lesions along with upregulation of IL-6 and IFN-γ in the kidney and spleen. In conclusion, commercial diuretic supplementation for one week improves renal function, redox status, immune and anti-inflammatory responses in chickens with induced urolithiasis.
Collapse
|
9
|
Current Insights into Atopic March. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8111067. [PMID: 34828780 PMCID: PMC8620020 DOI: 10.3390/children8111067] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
The incidence of allergic diseases is increasing, and research on their epidemiology, pathophysiology, and the prevention of onset is urgently needed. The onset of allergic disease begins in infancy with atopic dermatitis and food allergy and develops into allergic asthma and allergic rhinitis in childhood; the process is defined as “atopic march”. Atopic march is caused by multiple immunological pathways, including allergen exposure, environmental pollutants, skin barrier dysfunction, type 2 inflammation, and oxidative stress, which promote the progression of atopic march. Using recent evidence, herein, we explain the involvement of allergic inflammatory conditions and oxidative stress in the process of atopic march, its epidemiology, and methods for prevention of onset.
Collapse
|
10
|
Duman B, Borekci S, Akdeniz N, Gazioglu SB, Deniz G, Gemicioglu B. Inhaled corticosteroids' effects on biomarkers in exhaled breath condensate and blood in patients newly diagnosed with asthma who smoke. J Asthma 2021; 59:1613-1620. [PMID: 34376110 DOI: 10.1080/02770903.2021.1962341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Exposure to cigarette smoke complicates the treatment and management of asthma through a variety of inflammatory effects. This study aimed to investigate the differences between newly diagnosed cases of asthma in smokers and nonsmokers in terms of localized and systemic biomarkers following treatment with inhaled corticosteroids (ICS) or ICS in combination with a long-acting β2 agonist (LABA). METHODS Specimens of exhaled breath condensate (EBC) from newly diagnosed patients with asthma were used to quantify inflammation in the airways, while blood samples were used to assess systemic inflammation. In both samples, the levels of IL-6, LTB4, LTD4, and 8-isoprostane were measured and these were repeated after 3 months of treatment with ICS or ICS + LABA. RESULTS Of the 20 patients, 10 (50%) were nonsmokers with asthma (NSA) and 10 (50%) smokers with asthma (SA). There was no statistically significant difference in the blood or EBC levels of IL-6, LTB4, LTD4, or 8-isoprostane between the groups prior to treatment. Only the decrease in 8-isoprostane level in the EBC samples was found to be significantly greater in the NSA group after treatment (for smokers, the change was 2.91 ± 23.22, while for nonsmokers it was -22.72 ± 33.12, p = 0.022). Post-treatment asthma control was significantly better in the NSA group (p = 0.033). CONCLUSION Monitoring the alterations in 8-isoprostane levels in EBC in patients with asthma who smoke may be helpful in deciding on therapeutic management and switching treatments. Asthma control was better in nonsmokers than in smokers.
Collapse
Affiliation(s)
- Berna Duman
- Bezmiâlem Vakıf University School of Medicine, Istanbul, Turkey
| | - Sermin Borekci
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sema Bilgic Gazioglu
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Bilun Gemicioglu
- Department of Pulmonary Diseases, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
11
|
El Sebaei MG, Arafat N, El-Shafei RA, El-Adl MA, Farag A, Aziza AE, Eladl AH. Biochemical and molecular investigation of oxidative stress associated with urolithiasis induced by increased dietary calcium or protein in chickens. J Anim Physiol Anim Nutr (Berl) 2020; 105:129-139. [PMID: 32790029 DOI: 10.1111/jpn.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 01/10/2023]
Abstract
This study was carried out to evaluate the effects of induced urolithiasis by high dietary calcium (Ca) or protein levels on biochemical analyte levels, redox status, selected inflammatory cytokines and histopathology in chickens. A total of 90 one-day-old white Hy-Line chicks were fed basal control diets containing 20% crude protein (CP) and 1% Ca until they reached 44 days of age. After that, the birds were divided into three groups (30 birds per group). All management factors (light, temperature, ventilation, stock density and diet) were identical among the three groups throughout the study except for the dietary Ca and protein percentages. Group I was fed a control diet containing 20% CP and 1% Ca, group II was fed a high-Ca diet containing 5% Ca, and group III was fed a high-protein diet containing 25% CP. Our findings clearly demonstrated that dietary imbalance (caused by high-Ca or high-CP levels) per se in chickens was physiologically harmful, as it was accompanied by post-mortem lesions; biochemical, redox status and histopathological alterations; and upregulation of inflammatory cytokines (interleukin (IL)-1β and IL-6). In particular, the birds fed the high-Ca diet clearly exhibited the most obvious alterations in most of the endpoints. In conclusion, this study constitutes the first extensive investigation of the effects of high-Ca or high-protein diets induced urolithiasis on growth performance, redox status, inflammatory cytokine levels and pathological characterization in chickens.
Collapse
Affiliation(s)
- Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia.,Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amany Farag
- Department of Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abeer E Aziza
- Department of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Kleniewska P, Pawliczak R. The influence of apocynin, lipoic acid and probiotics on antioxidant enzyme levels in the pulmonary tissues of obese asthmatic mice. Life Sci 2019; 234:116780. [PMID: 31430453 DOI: 10.1016/j.lfs.2019.116780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Bronchial asthma and obesity are common health problems. Obesity is already responsible for 300,000 deaths per year. AIMS The aim of the present study was to assess whether apocynin, alpha lipoic acid and probiotic administration in combination with low-fat diet supplementation influences the levels of antioxidant enzymes in the pulmonary tissues of obese asthmatic mice. MAIN METHODS The study was performed on male C57/BL6 mice divided into 10 groups: (I) control; (II) asthma; (III) obesity; (IV) asthma + obesity; (V) asthma + obesity + apocynin p.o. 15 mg/kg/day for 12 weeks; (VI) asthma + obesity + low-fat diet for 12 weeks; (VII) asthma + obesity + low-fat diet for 12 weeks with apocynin p.o. 15 mg/kg/day; (VIII) asthma + obesity + low-fat diet with probiotics for 12 weeks; (IX) asthma + obesity + low-fat diet for 12 weeks with lipoic acid p.o. 100 mg/kg/day for 12 weeks; (X) asthma + obesity + standard diet with probiotics for 12 weeks. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activity were examined. The administration of apocynin alone and apocynin in combination with a low-fat diet resulted in a significant increase in SOD values (respectively p < 0.001; p = 0.010). Application of probiotics resulted in a decrease in CAT activity (p = 0.037) and an increase in GPx activity (p < 0.001) compared to obese asthmatic mice. The administration of lipoic acid resulted in an increase in GR activity (p = 0.024 vs. control). KEY FINDINGS Supplementation containing apocynin, lipoic acid and probiotics has a positive influence on the antioxidant capacity of the pulmonary tissues of obese asthmatic mice. SIGNIFICANCE These results may contribute to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, ul. Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
13
|
Huang P, Wei S, Huang W, Wu P, Chen S, Tao A, Wang H, Liang Z, Chen R, Yan J, Zhang Q. Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model. Int Immunopharmacol 2019; 74:105646. [PMID: 31200337 DOI: 10.1016/j.intimp.2019.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maintaining an airway clear of bacteria, foreign particles and apoptotic cells by alveolar macrophages is very essential for lung homeostasis. In asthma, the phagocytic capacity of alveolar macrophages is significantly reduced, which is thought to be associated with increased oxidative stress. Hydrogen (H2) has been shown to exert potent antioxidant and anti-inflammatory effects, yet its effects on phagocytosis of alveolar macrophages are unknown. This study is aimed to evaluate the beneficial effects of hydrogen gas inhalation on alveolar macrophage phagocytosis in an ovalbumin (OVA)-induced murine asthma model. METHODS Female C57BL/6 mice were intraperitoneally sensitized with OVA before they were subject to airway challenge with aerosolized OVA. Hydrogen gas was delivered to the mice through inhalation twice a day (2 h once) for 7 consecutive days. Phagocytic function of alveolar macrophages isolated from bronchoalveolar lavage fluid was assessed by fluorescence-labeled Escherichia coli as well as flow cytometry. RESULTS Alveolar macrophages isolated from OVA-induced asthmatic mice showed decreased phagocytic capacity to Escherichia coli when compared with those of control mice. Defective phagocytosis in asthmatic mice was reversed by hydrogen gas inhalation. Hydrogen gas inhalation significantly alleviated OVA-induced airway hyperresponsiveness, inflammation and goblet cell hyperplasia, diminished TH2 response and decreased IL-4 as well as IgE levels, reduced malondialdehyde (MDA) production and increased superoxide dismutase (SOD) activity. Concomitantly, hydrogen gas inhalation inhibited NF-κB activation and markedly activated Nrf2 pathway in OVA-induced asthmatic mice. CONCLUSIONS Our findings demonstrated that hydrogen gas inhalation enhanced alveolar macrophage phagocytosis in OVA-induced asthmatic mice, which may be associated with the antioxidant effects of hydrogen gas and the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Peikai Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Respiratory Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Shushan Wei
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihua Huang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Penghui Wu
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuyu Chen
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Hongyu Wang
- Firestone Institute for Respiratory Health, The Research Institute of St. Joe's Hamilton, St. Joseph's Healthcare; Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhenyu Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Yan
- The Second Affiliated Hospital of Guangzhou Medical University, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| | - Qingling Zhang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Tobias TAM, Wood LG, Rastogi D. Carotenoids, fatty acids and disease burden in obese minority adolescents with asthma. Clin Exp Allergy 2019; 49:838-846. [PMID: 30908741 DOI: 10.1111/cea.13391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Paediatric obesity-related asthma causes high disease burden, is associated with metabolic abnormalities, has few therapeutic options, and disproportionately affects urban minority children. Although poor diet quality is linked to asthma, the association of nutritional status with disease burden among children with obesity-related asthma is not well understood. OBJECTIVE To quantify nutritional status, defined as concentrations of serum carotenoids and n-3 fatty acids, and its association with pulmonary function and metabolic markers among obese asthmatic children. METHODS We quantified serum carotenoids and fatty acids in a study cohort of 158 urban minority adolescents including 39 obese asthmatics, 39 healthy weight asthmatics, 38 obese controls and 42 healthy weight controls and compared between the groups. We correlated carotenoid and fatty acid levels with pulmonary function indices and with insulin resistance and dyslipidemia. RESULTS Mean total carotenoids were lowest in obese asthmatic children (0.41 μg/mL), lower than healthy weight asthmatics (0.52 μg/mL, P < 0.05) and healthy weight controls (0.60 μg/mL, P < 0.001). n-6/n-3 polyunsaturated fatty acid (PUFA) ratio also differed between the groups (P < 0.05). Total carotenoids positively correlated with per cent-predicted FEV1 and inversely correlated with insulin resistance among obese asthmatics only. n-6/n-3 PUFA ratio inversely correlated with per cent-predicted FEV1 in obese asthmatics. CONCLUSIONS & CLINICAL RELEVANCE Our findings suggest that carotenoids, which are lowest in obese asthmatic children, may have protective effects on metabolic health and pulmonary function among obese asthmatic children. Similarly, n-3 PUFA appear to be protective for pulmonary function.
Collapse
Affiliation(s)
- Toni A M Tobias
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, New South Wales, Australia
| | - Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Frahat A, Mansour Y, Eldib A, Alsed D. Diagnostic value of 8-isoprostane and transforming growth factor-β in bronchial asthma patients. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2018. [DOI: 10.4103/ejb.ejb_18_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Abuelezz SA. Nebivolol attenuates oxidative stress and inflammation in a guinea pig model of ovalbumin-induced asthma: a possible mechanism for its favorable respiratory effects. Can J Physiol Pharmacol 2018; 96:258-265. [PMID: 29319332 DOI: 10.1139/cjpp-2017-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An experimental model of ovalbumin (OVA) induced asthma was used to assess the effects of nebivolol, the third-generation selective β1-adrenergic receptor blocker, on airway reactivity, lung inflammation, and oxidative stress markers. The asthma induction protocol was done by OVA sensitization and challenge. Guinea pigs were classified into control, asthmatic, or asthmatic receiving nebivolol either 7.5 or 15 mg·kg-1·day-1 orally. At the end of the study respiratory, the anti-inflammatory and antioxidative effects of nebivolol were assessed. The asthmatic group exhibited a significant increase in early and late airway resistance, airway hyperreactivity to histamine, total and absolute leucocytic count, tumor necrosis factor-α, and interleukin-6 in bronchoalveolar lavage fluid and lung lipid peroxidation and a significant decrease in superoxide dismutase and glutathione compared to the control group. Additionally, there was a significant decrease in lung endothelial nitric oxide synthase (eNOS) and a significant increase in inducible nitric oxide synthase (iNOS) mRNA expression compared to the control group. The high dose of nebivolol counteracted the increased airway resistance induced by OVA, whereas it had no effect on airway hyperresponsiveness. Moreover, nebivolol exhibited significant anti-inflammatory and antioxidant effects and restored the altered levels of eNOS and iNOS compared to the asthmatic group. Collectively, these results suggest a beneficial effect of nebivolol in asthma.
Collapse
Affiliation(s)
- Sally A Abuelezz
- Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt.,Pharmacology Department, Faculty of Medicine, Ain-Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
17
|
Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother 2017; 94:100-108. [PMID: 28756367 DOI: 10.1016/j.biopha.2017.07.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species are produced during oxygen reduction and are characterized by high reactivity. They participate in many important physiological processes, but if produced in high concentrations they lead to oxidative stress development and disturb pro-oxidative/anti-oxidative balance towards the oxidation reaction - leading to damage of lipids, proteins, carbohydrates or nucleic acids. Asthma is a chronic inflammatory disease of the airways of various pathogenesis and clinical symptoms, prevalence in recent years has increased significantly. Recently published literature point out the involvement of reactive oxygen species in the pathogenesis of asthma. Changes in the protein and lipid oxidation lead, among others, to pathological changes in the respiratory epithelial cells, an increase in vascular permeability, mucus overproduction, smooth muscle contraction or airway hyperresponsiveness (AHR). The aim of this study is to present the current state of knowledge on the influence of oxidative stress parameters on asthma development.
Collapse
Affiliation(s)
- Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz, 7/9 Zeligowskiego St, bldg 2 Rm 122, 90-752 Lodz, Poland.
| |
Collapse
|
18
|
Stigmasterol Modulates Allergic Airway Inflammation in Guinea Pig Model of Ovalbumin-Induced Asthma. Mediators Inflamm 2017; 2017:2953930. [PMID: 28555089 PMCID: PMC5438858 DOI: 10.1155/2017/2953930] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
We explored the potential benefits of stigmasterol in the treatment of asthma, an airway disorder characterized by immune pathophysiology and with an ever-increasing worldwide prevalence. We assessed the modulatory effect of the intraperitoneal administration of stigmasterol on experimentally induced airway inflammation in guinea pigs. The effect of stigmasterol on inflammatory cell proliferation, oxidative stress, lung histopathology, and remodeling was investigated. The results showed significant suppressive effects on ovalbumin-induced airway inflammatory damage. Stigmasterol at 10–100 mg/kg reduced proliferation of eosinophils, lymphocytes, and monocytes while reducing peribronchiolar, perivascular, and alveolar infiltration of inflammatory cells. Histopathology revealed stigmasterol maintained lung architecture and reversed collagen deposition, an index of lung remodeling. Overexpression of serum vascular cell adhesion molecule-1 (VCAM-1) and ovalbumin-specific immunoglobulin E (OVA sIgE) elicited by ovalbumin sensitization and challenge was significantly controlled with stigmasterol. Taken together, stigmasterol possessed significant antiasthmatic properties and had suppressive effects on key features of allergen-induced asthma.
Collapse
|
19
|
Basu S. The enigma ofin vivooxidative stress assessment: isoprostanes as an emerging target. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [PMCID: PMC2607004 DOI: 10.1080/17482970701411642] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of MedicineUppsala UniversityUppsalaSweden
| |
Collapse
|
20
|
Sodhi K, Bracero L, Feyh A, Nichols A, Srikanthan K, Latif T, Preston D, Shapiro JI, Elitsur Y. Role of Serum Biomarkers in Early Detection of Non-Alcoholic Steatohepatitis and Fibrosis in West Virginian Children. ACTA ACUST UNITED AC 2016; 7. [PMID: 27182456 PMCID: PMC4866601 DOI: 10.4172/2155-9899.1000393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Obesity, an epidemic among West Virginia children, as well as insulin resistance (IR), is well-established contributors to nonalcoholic steatohepatitis (NASH). Progression of NASH can lead to hepatic fibrosis and cirrhosis, making early detection imperative. The standard for diagnosing NASH is histologically via liver biopsy, which is highly invasive and generally contraindicated in children. By studying serum biomarkers associated with NASH, we aim to identify high risk children who can benefit from a less invasive, alternative approach to the early detection of NASH. Methods Seventy one children were prospectively recruited and divided into 3 groups: normal weight without IR (control), obese without IR, and obese with IR. Serum samples were drawn for each patient and biomarker levels were assessed via ELISA kits. Results Obese without IR and obese with IR patients had significantly elevated levels of lipid metabolism and accumulation markers (FGF-21, NEFA, FATP5, ApoB), oxidative stress markers (dysfunctional HDL, 8-Isoprostane), inflammatory markers(dysfunctional HDL, CK-18) and apoptosis markers (CK-18) compared to control patients (p<0.02). Bilirubin (an antioxidant) was significantly decreased in the obese without IR and obese with IR patients compared to control (p<0.02). Conclusion This study showed a correlation between obesity, IR, and biomarkers associated with NASH in pediatrics patients from West Virginia, with obese with IR patients showing the strongest correlation. These findings support the clinical application of these serum biomarkers as a less invasive method for early detection of NASH and hepatic fibrosis.
Collapse
Affiliation(s)
- Komal Sodhi
- Department of Surgery and Pharmacology, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Lucas Bracero
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Andrew Feyh
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Alexandra Nichols
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Krithika Srikanthan
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Tariq Latif
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Deborah Preston
- Department of Pediatrics, Division of Gastroenterology, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Joseph I Shapiro
- Department of Surgery and Pharmacology, Joan C. Edwards School of Medicine, Marshall University, USA
| | - Yoram Elitsur
- Department of Pediatrics, Division of Gastroenterology, Joan C. Edwards School of Medicine, Marshall University, USA
| |
Collapse
|
21
|
Wu Y, Zhang JF, Xu T, Xu L, Qiao J, Liu F, Shan H, Jiang X. Identification of therapeutic targets for childhood severe asthmatics with DNA microarray. Allergol Immunopathol (Madr) 2016; 44:76-82. [PMID: 25979195 DOI: 10.1016/j.aller.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/10/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND In this study, we aimed to discover potential gene targets for treating childhood asthmatics. METHODS With the microarray data downloaded from Gene Expression Omnibus (GEO) database, we explored the common differentially expressed genes (DEGs) in children with severe asthma and mild asthma (SA vs. MA) or healthy controls (SA vs. HC). Then we performed hierarchical clustering, function and pathway enrichment analysis for the common DEGs. RESULTS A total of 81 genes were identified to be differentially expressed in SA vs. MA and SA vs. HC group. Hierarchical clustering of the 81 DEGs could crudely separate the SA, MA and healthy individuals. The overrepresented GO terms of the common DEGs were related with lipid biosynthetic process (21.74%), pigment biosynthetic process (13.04%) and nucleoside monophosphate metabolic process (13.04%). Only one pathway was significantly enriched, which was the antigen processing and presentation pathway involved with CD4 and RFX gene. CONCLUSIONS The antigen processing and presentation pathway and lipid biosynthetic process may play roles in the pathogenesis of severe asthma. CD4 and RFX provide a therapeutic possibility for childhood asthma.
Collapse
|
22
|
El-Naa MM, El-Refaei MF, Nasif WA, Abduljawad SH, El-Brairy AI, El-Readi MZ. In-vivo antioxidant and anti-inflammatory activity of rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists in animal model of bronchial asthma. ACTA ACUST UNITED AC 2015; 67:1421-30. [PMID: 26099551 DOI: 10.1111/jphp.12445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/12/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Peroxisome proliferator activated receptor-gamma (PPAR-γ) has been shown to play an important role in the control of immunological and inflammatory responses. This study aims at investigating the potential role of rosiglitazone, a strong PPAR-γ agonist in a murine model of bronchial asthma. METHODS Adult male guinea pigs were administered ovalbumin 100 mg/kg subcutaneous (SC) and 100 mg/kg intraperitoneal (IP). Treatment with rosiglitazone [5 mg/kg/day, per oral (PO)] was assessed for 21 days. On day 21, the animals were challenged with the same dose of ovalbumin. The forced expiratory volume in 1 s (FEV1 ) to forced vital capacity (FVC), FEV1 /FVC, was measured using a spirometer to diagnosis lung obstruction. Serum levels of interleukin-5 (IL-5) and immunoglobulin E (IgE) were assessed. The activity of superoxide dismutase (SOD) and catalase and the level of reduced glutathione (GSH) were determined in lung tissue homogenates. KEY FINDINGS Our results demonstrated that treatment with rosiglitazone resulted in a statistically significant improvement in lung function and histopathological features. Significant decrease in the serum levels of IL-5 and IgE were observed. The activity of SOD and catalase as well as the GSH level were significantly increased in the lung tissues of treated animals compared with untreated asthmatic animals. Serum IgE concentrations and IL-5 levels were directly correlated to each other and inversely correlated to the SOD, GSH and catalase levels in the all studied guinea pigs. CONCLUSIONS Our results provide evidence that the PPAR-γ agonist rosiglitazone may have potential in the development of therapies for bronchial asthma.
Collapse
Affiliation(s)
- Mona M El-Naa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6 October City, Egypt
| | - Mohamed F El-Refaei
- Molecular Biology Department, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt
| | - Wesam A Nasif
- Molecular Biology Department, Institute of Genetic Engineering and Biotechnology, Sadat City University, Sadat City, Egypt.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Suha H Abduljawad
- Department of Food Sciences, Faculty of Family Science, Taibah University, Al Madinah Al-Munawarah, Saudi Arabia
| | - Amany I El-Brairy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6 October City, Egypt
| | - Mahmoud Z El-Readi
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.,Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
23
|
Larkin EK, Gao YT, Gebretsadik T, Hartman TJ, Wu P, Wen W, Yang G, Bai C, Jin M, Roberts LJ, Gross M, Shu XO, Hartert TV. New risk factors for adult-onset incident asthma. A nested case-control study of host antioxidant defense. Am J Respir Crit Care Med 2015; 191:45-53. [PMID: 25408961 DOI: 10.1164/rccm.201405-0948oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Host antioxidant defense, consisting of enzymatic antioxidant activity and nonenzymatic antioxidant micronutrients, is implicated in asthma pathogenesis. Studies of antioxidant defense and adult incident asthma have either used measures of antioxidants estimated from questionnaires or not considered enzymatic aspects of host defense. OBJECTIVES We conducted the first study designed and powered to investigate the association of antioxidant defenses on adult incident asthma. METHODS In a nested case-control study, we followed Shanghai women (aged 40-70 years) without prevalent asthma at baseline, over 8 years. Subjects with incident asthma were ascertained prospectively by gold standard testing of symptomatic women and matched to two asymptomatic control subjects. MEASUREMENTS AND MAIN RESULTS Baseline urinary F2-isoprostanes, plasma concentrations of antioxidant micronutrients (tocopherols, xanthines, carotenes, and lycopene), and antioxidant enzyme activity (platelet-activating factor acetylhydrolase [PAF-AH] and superoxide dismutase) were measured from samples collected before disease onset. Among 65,372 women, 150 (0.24%) developed asthma. F2-isoprostane levels before asthma onset were not different between cases and control subjects. Doubling of α-tocopherol concentrations and PAF-AH activity was associated with 50 and 37% decreased risk of incident asthma (α-tocopherol: adjusted odds ratio = 0.52; 95% confidence interval, 0.32-0.84; PAF-AH: adjusted odds ratio = 0.63; 95% confidence interval, 0.42-0.93). CONCLUSIONS In this prospective study, α-tocopherol, within normal reference ranges, and PAF-AH enzymatic activity were associated with decreased asthma development. These modifiable risk factors may be an effective strategy to test for primary asthma prevention.
Collapse
Affiliation(s)
- Emma K Larkin
- 1 Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sharick J, Vazquez-Medina J, Ortiz R, Crocker D. Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Funct Ecol 2015; 29:367-376. [PMID: 25983364 PMCID: PMC4429057 DOI: 10.1111/1365-2435.12330] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The trade-off between current reproductive effort and survival is a key concept of life history theory. A variety of studies support the existence of this trade-off but the underlying physiological mechanisms are not well-understood. Oxidative stress has been proposed as a potential mechanism underlying the observed inverse relationship between reproductive investment and lifespan. Prolonged fasting is associated with oxidative stress including increases in the production of reactive oxygen species, oxidative damage and inflammation.Northern elephant seals (NES) undergo prolonged fasts while maintaining high metabolic rates during breeding. We investigated NES of both sexes to assess oxidative stress associated with extended breeding fasts. We measured changes in the plasma activity or concentrations of markers for oxidative stress in 30 adult male and 33 adult female northern elephant seals across their 1-3 month breeding fasts. Markers assessed included a pro-oxidant enzyme, several antioxidant enzymes, markers for oxidative damage to lipids, proteins and DNA, and markers for systemic inflammation.Plasma xanthine oxidase (XO), a pro-oxidant enzyme that increases production of oxidative radicals, and several protective antioxidant enzymes increased over breeding in both sexes. Males showed increased oxidative damage to lipids and DNA and increased systemic inflammation, while oxidative damage to proteins declined across breeding. In contrast, females showed no oxidative damage to lipids or DNA or changes in inflammation, but showed increases in oxidative damage to proteins. XO activity, antioxidant enzymes, oxidative damage markers, and inflammatory markers were strongly correlated in males but these relationships were weaker or non-existent in females.NES provide evidence for oxidative stress as a physiological cost of reproduction in a capital breeding mammal. Both sexes strongly up-regulated antioxidant defenses during breeding. Despite this response, and in contrast to similar duration non-breeding fasts in previous studies on conspecifics, there was evidence of oxidative damage to tissues. These data demonstrate the utility of using plasma markers to examine oxidative stress but also suggest the necessity of measuring a broad suite of plasma markers to assess systemic oxidative stress.
Collapse
Affiliation(s)
- J.T. Sharick
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928
| | - J.P. Vazquez-Medina
- School of Natural Sciences, University of California, 5200 N. Lake Road, Merced, CA 95343
| | - R.M. Ortiz
- School of Natural Sciences, University of California, 5200 N. Lake Road, Merced, CA 95343
| | - D.E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928
| |
Collapse
|
25
|
Bibi H, Reany O, Waisman D, Keinan E. Prophylactic treatment of asthma by an ozone scavenger in a mouse model. Bioorg Med Chem Lett 2014; 25:342-6. [PMID: 25499435 DOI: 10.1016/j.bmcl.2014.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
Our hypothesis that inflammation in asthma involves production of ozone by white blood cells and that ozone could be an inflammatory mediator suggests that scavengers of reactive oxygen species (ROS), for example, electron-rich olefins, could serve for prophylactic treatment of asthma. Olefins could provide chemical protection against either exogenous or endogenous ozone and other ROS. BALB/c mice pretreated by inhalation of d-limonene before an ovalbumin challenge exhibited significant attenuation of the allergic asthma symptoms. Diminution of the inflammatory process was evident by reduced levels of aldehydes, reduced counts of neutrophils in the BAL fluid and by histological tests. A surprising systemic effect was observed by decreased levels of aldehydes in the spleen, suggesting that the examination of tissues and organs that are remote from the inflammation foci could provide valuable information on the distribution of the oxidative stress and may serve as guide for targeted treatment.
Collapse
Affiliation(s)
- Haim Bibi
- Department of Pediatrics, Barzilai Medical Center, Hahistadrout St. 2, Ashkelon 78278, Israel; Faculty of Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Reany
- Department of Natural Sciences, The Open University of Israel, 1 University Road, PO Box 808, Ra'anana 43537, Israel
| | - Dan Waisman
- Department of Neonatology, Carmel Medical Center, Michal St. 7, Haifa 3436212, Israel; Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ehud Keinan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
26
|
Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM. Airway and systemic oxidant-antioxidant dysregulation in asthma: A possible scenario of oxidants spill over from lung into blood. Pulm Pharmacol Ther 2014; 29:31-40. [DOI: 10.1016/j.pupt.2014.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/10/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
|
27
|
Association Colloids Formed by Multiple Surface Active Minor Components and Their Effect on Lipid Oxidation in Bulk Oil. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2541-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Reply: To PMID 24369803. J Allergy Clin Immunol 2014; 133:1499. [PMID: 24679847 DOI: 10.1016/j.jaci.2014.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 11/21/2022]
|
29
|
Kwon HS, Kim TB, Lee YS, Jeong SH, Bae YJ, Moon KA, Bang BR, Moon HB, Cho YS. Clusterin expression level correlates with increased oxidative stress in asthmatics. Ann Allergy Asthma Immunol 2014; 112:217-21. [PMID: 24428970 DOI: 10.1016/j.anai.2013.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Oxidative stress is thought to play a role in the pathogenesis of asthma. Clusterin is a sensitive cellular biosensor of oxidative stress and has antioxidant properties. The function and expression of clusterin in patients with asthma have not been fully investigated. OBJECTIVE To investigate whether the expression of clusterin in patients with asthma is regulated by increased oxidative burden and whether clusterin expression could be used to assess the response to inhaled corticosteroids. METHODS Clusterin levels in serum, induced sputum, and peripheral blood mononuclear cells of patients with asthma were measured by enzyme-linked immunosorbent assay and western blotting and compared with pulmonary function and levels of expression of hyperoxidized peroxiredoxins. Serum concentrations of clusterin in treatment-naive patients were compared before and after inhaled corticosteroid use. RESULTS Serum clusterin concentration was significantly elevated in patients with severe asthma and was inversely correlated with pulmonary function. The expression of hyperoxidized peroxiredoxins was greatly increased in peripheral blood mononuclear cells of patients with asthma and was strongly correlated with clusterin expression. Serum clusterin concentrations in treatment-naive patients with asthma were decreased significantly after initial treatment with inhaled corticosteroids. CONCLUSION Clusterin may be a biomarker of asthma severity and the burden of oxidative stress in patients with asthma. Moreover, clusterin may be useful for the prompt assessment of airway inflammation.
Collapse
Affiliation(s)
- Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Su Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Hwan Jeong
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun-Jeong Bae
- Asan Medical Center, Health Screening and Promotion Center, Seoul, Republic of Korea
| | - Keun-Ai Moon
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Bo-Ram Bang
- Asan Institute of Life Science, Seoul, Republic of Korea
| | - Hee-Bom Moon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Hosoki K, Gandhe R, Boldogh I, Sur S. Reactive Oxygen Species (ROS) and Allergic Responses. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:3239-3266. [DOI: 10.1007/978-3-642-30018-9_145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Sevin CM, Newcomb DC, Toki S, Han W, Sherrill TP, Boswell MG, Zhu Z, Collins RD, Boyd KL, Goleniewska K, Huckabee MM, Blackwell TS, Peebles RS. Deficiency of gp91phox inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 2013; 49:396-402. [PMID: 23590311 DOI: 10.1165/rcmb.2012-0442oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a multienzyme complex, is the major source for production of reactive oxygen species (ROS). ROS are increased in allergic diseases, such as asthma, but the role of ROS in disease pathogenesis remains uncertain. We hypothesized that mice unable to generate ROS via the NADPH oxidase pathway would have decreased allergic airway inflammation. To test this hypothesis, we studied gp91phox(-/-) mice in a model of allergic airway inflammation after sensitization and challenge with ovalbumin. Serum, bronchoalveolar lavage fluid, and lungs were then examined for evidence of allergic inflammation. We found that mice lacking a functional NADPH oxidase complex had significantly decreased ROS production and allergic airway inflammation, compared with wild-type (WT) control animals. To determine the mechanism by which allergic inflammation was inhibited by gp91phox deficiency, we cultured bone marrow-derived dendritic cells from WT and gp91phox(-/-) mice and activated them with LPS. IL-12 expression was significantly increased in the gp91phox(-/-) bone marrow-derived dendritic cells, suggesting that the cytokine profile produced in the absence of gp91phox enhanced the conditions leading to T helper (Th) type 1 differentiation, while inhibiting Th2 polarization. Splenocytes from sensitized gp91phox(-/-) animals produced significantly less IL-13 in response to ovalbumin challenge in vitro compared with splenocytes from sensitized WT mice, suggesting that NADPH oxidase promotes allergic sensitization. In contrast, inflammatory cytokines produced by T cells cultured from WT and gp91phox(-/-) mice under Th0, Th1, Th2, and Th17 conditions were not significantly different. This study demonstrates the importance of NADPH oxidase activity and ROS production in a murine model of asthma.
Collapse
Affiliation(s)
- Carla M Sevin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232-2650, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sustained elevation of systemic oxidative stress and inflammation in exacerbation and remission of asthma. ISRN ALLERGY 2013; 2013:561831. [PMID: 24073339 PMCID: PMC3773380 DOI: 10.1155/2013/561831] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/01/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of asthma. We aimed at investigating the biomarkers of oxidative stress, inflammation, and tissue damage in patients with asthma in acute exacerbation and remission. We recruited 18 asthmatics admitted to hospital with acute exacerbation and 18 healthy nonsmoking controls matched for age. We evaluated plasma levels of 8-isoprostane, C-reactive protein (CRP) and total matrix metalloproteinase- (MMP-) 9 by ELISA, and MMP-9 activity by zymographic analysis. Plasma levels of 8-isoprostane and CRP were significantly elevated in acute exacerbation and decreased in remission but remained significantly higher compared to healthy controls. The activities of pro-MMP-9 were also significantly higher in acute exacerbation and decreased in remission but remained significantly higher compared to healthy controls in parallel to plasma levels of total MMP-9. These data suggest that overproduction of MMP-9 along with highly elevated levels of oxidative stress and inflammation is implicated in asthma exacerbation and that measurements of these biomarkers can be a valid index in its management.
Collapse
|
33
|
Improving asthma during pregnancy with dietary antioxidants: the current evidence. Nutrients 2013; 5:3212-34. [PMID: 23948757 PMCID: PMC3775250 DOI: 10.3390/nu5083212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 12/16/2022] Open
Abstract
The complication of asthma during pregnancy is associated with a number of poor outcomes for the mother and fetus. This may be partially driven by increased oxidative stress induced by the combination of asthma and pregnancy. Asthma is a chronic inflammatory disease of the airways associated with systemic inflammation and oxidative stress, which contributes to worsening asthma symptoms. Pregnancy alone also intensifies oxidative stress through the systemic generation of excess reactive oxidative species (ROS). Antioxidants combat the damaging effects of ROS; yet antioxidant defenses are reduced in asthma. Diet and nutrition have been postulated as potential factors to combat the damaging effects of asthma. In particular, dietary antioxidants may play a role in alleviating the heightened oxidative stress in asthma. Although there are some observational and interventional studies that have shown protective effects of antioxidants in asthma, assessment of antioxidants in pregnancy are limited and there are no antioxidant intervention studies in asthmatic pregnancies on asthma outcomes. The aims of this paper are to (i) review the relationships between oxidative stress and dietary antioxidants in adults with asthma and asthma during pregnancy, and (ii) provide the rationale for which dietary management strategies, specifically increased dietary antioxidants, might positively impact maternal asthma outcomes. Improving asthma control through a holistic antioxidant dietary approach might be valuable in reducing asthma exacerbations and improving asthma management during pregnancy, subsequently impacting perinatal health.
Collapse
|
34
|
Misso NLA, Thompson PJ. Oxidative stress and antioxidant deficiencies in asthma: potential modification by diet. Redox Rep 2013; 10:247-55. [PMID: 16354413 DOI: 10.1179/135100005x70233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The lungs of asthmatic patients are exposed to oxidative stress due to the generation of reactive oxygen and nitrogen species as a consequence of chronic airway inflammation. Increased concentrations of NO*, H2O2 and 8-isoprostane have been measured in exhaled breath and induced sputum of asthmatic patients. O2*-, NO*, and halides interact to form highly reactive species such as peroxynitrite and HOBr, which in turn cause nitration and bromination of protein tyrosine residues. Oxidative stress may also reduce glutathione levels and cause inactivation of antioxidant enzymes such as superoxide dismutase, with a consequent increase in apoptosis, shedding of airway epithelial cells and airway remodelling. The oxidant/antioxidant equilibrium in asthmatic patients may be further perturbed by low dietary intakes of the antioxidant vitamins C and E, selenium and flavonoids, with a consequent lowering of the concentrations of these and other non-dietary antioxidants such as bilirubin and albumin in plasma and airway epithelial lining fluid. Although supplementation with vitamins C and E appears to offer protection against the adverse effects of ozone, recent randomised, placebo-controlled trials of vitamin C or E supplements for patients with mild asthma have not shown significant benefits over standard therapy. However, genetic variation in glutathione S-transferase may influence the susceptibility of asthmatic individuals to oxidative stress and the extent to which they are likely to benefit from antioxidant supplementation. Long-term prospective trials are required to determine whether modification of dietary intake will benefit asthma patients and reduce the socio-economic burden of asthma in the community.
Collapse
Affiliation(s)
- Neil L A Misso
- Asthma & Allergy Research Institute (Inc) and Centre for Asthma, Allergy & Respiratory Research, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
35
|
Dimerization of TCTP and its clinical implications for allergy. Biochimie 2013; 95:659-66. [DOI: 10.1016/j.biochi.2012.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 01/12/2023]
|
36
|
Abstract
CONTEXT: Asthma is a chronic airway disorder which is associated to the inflammatory cells. Inflammatory and immune cells generate more reactive oxygen species in patients suffering from asthma which leads to tissue injury. AIMS: To investigate the role of oxidant-antioxidant imbalance in disease progression of asthmatic patients. SETTINGS AND DESIGN: In this study, 130 asthmatic patients and 70 healthy controls were documented. METHODS: For this malondialdehyde level, total protein carbonyls, sulfhydryls, activity of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), total blood glutathione, and total antioxidant capacity (FRAP) were measured. STATISTICAL ANALYSIS USED: Analysis of the data was done using unpaired student t test and one-way ANOVA analysis. P < 0.05 was considered significant. RESULTS: The present work showed that the systemic levels of MDA (4.19 ± 0.10 nmol/ml, P < 0.001) and protein carbonyls (1.13 ± 0.02 nmol/mg, P < 0.001) were found to be remarkably higher in asthmatic patients while protein sulfhydryls (0.55 ± 0.01 mmol/l, P < 0.05) decreased as compared to controls (2.84 ± 0.12 nmol/ml, 0.79 ± 0.02 nmol/mg and 0.60 ± 0.02 mmol/l, respectively). We also observed decrease in activities of SOD (2047 ± 50.34 U/g Hb, P < 0.05), catalase (4374 ± 67.98 U/g Hb, P < 0.01), and GPx (40.97 ± 1.05 U/g Hb, P < 0.01) in erythrocytes compared to control (2217 ± 60.11 U/g Hb, 4746 ± 89.94 U/g Hb, and 48.37 ± 2.47 U/g Hb, respectively). FRAP level (750.90 ± 21.22 μmol/l, P < 0.05) in plasma was decreased, whereas total blood glutathione increased (0.94 ± 0.02 mmol/l, P < 0.05) as seen in control (840.40 ± 28.39 μmol/l and 0.84 ± 0.04 mmol/l). CONCLUSIONS: This work supports and describes the hypothesis that an imbalance between oxidant-antioxidant is associated to the oxidative stress which plays a significant role in severity of the disease.
Collapse
Affiliation(s)
- Asrar Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India ; Department of T.B. and Respiratory Diseases, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | | | | |
Collapse
|
37
|
Lee T, Kwon HS, Bang BR, Lee YS, Park MY, Moon KA, Kim TB, Lee KY, Moon HB, Cho YS. Grape seed proanthocyanidin extract attenuates allergic inflammation in murine models of asthma. J Clin Immunol 2012; 32:1292-304. [PMID: 22836658 DOI: 10.1007/s10875-012-9742-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Antioxidants have been suggested to alleviate the pathophysiological features of asthma, and grape seed proanthocyanidin extract (GSPE) has been reported to have powerful antioxidant activity. PURPOSE This study was performed to determine whether GSPE has a therapeutic effect on allergic airway inflammation in both acute and chronic murine model of asthma. METHODS Acute asthma model was generated by intraperitoneal sensitization of ovalbumin (OVA) with alum followed by aerosolized OVA challenges, whereas chronic asthma model was induced by repeated intranasal challenges of OVA with fungal protease twice a week for 8 weeks. GSPE was administered by either intraperitoneal injection or oral gavage before OVA challenges. Airway hyperresponsiveness (AHR) was measured, and airway inflammation was evaluated by bronchoalveolar lavage (BAL) fluid analysis and histopathological examination of lung tissue. Lung tissue levels of various cytokines, chemokines, and growth factors were analyzed by quantitative polymerase chain reaction and ELISA. Glutathione assay was done to measure oxidative burden in lung tissue. RESULTS Compared to untreated asthmatic mice, mice treated with GSPE showed significantly reduced AHR, decreased inflammatory cells in the BAL fluid, reduced lung inflammation, and decreased IL-4, IL-5, IL-13, and eotaxin-1 expression in both acute and chronic asthma models. Moreover, airway subepithelial fibrosis was reduced in the lung tissue of GSPE-treated chronic asthmatic mice compared to untreated asthmatic mice. Reduced to oxidized glutathione (GSH/GSSG) ratio was increased after GSPE treatment in acute asthmatic lung tissue. CONCLUSION GSPE effectively suppressed inflammation in both acute and chronic mouse models of asthma, suggesting a potential role of GSPE as a therapeutic agent for asthma.
Collapse
Affiliation(s)
- Taehoon Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
39
|
Abstract
Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state is critical for cell viability, activation, proliferation, and organ function. Aerobic organisms have integrated antioxidant systems, which include enzymatic and nonenzymatic antioxidants that are usually effective in blocking harmful effects of ROS. However, in pathological conditions, the antioxidant systems can be overwhelmed. Oxidative stress contributes to many pathological conditions and diseases, including cancer, neurological disorders, atherosclerosis, hypertension, ischemia/perfusion, diabetes, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. In this review, we summarize the cellular oxidant and antioxidant systems and discuss the cellular effects and mechanisms of the oxidative stress.
Collapse
|
40
|
Isoprostanes and asthma. Biochim Biophys Acta Gen Subj 2011; 1810:1091-5. [PMID: 21596100 DOI: 10.1016/j.bbagen.2011.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/06/2011] [Accepted: 04/28/2011] [Indexed: 12/12/2022]
Abstract
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F₂-isoprostane production while under conditions with deficient antioxidant capacity, D₂- and E₂-isoprostanes are formed. F₂-isoprostanes (F₂-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F₂-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F₂-isoP functions as a marker of oxidative stress in asthma, and that F₂-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.
Collapse
|
41
|
Fabian E, Pölöskey P, Kósa L, Elmadfa I, Réthy LA. Activities of antioxidant enzymes in relation to oxidative and nitrosative challenges in childhood asthma. J Asthma 2011; 48:351-7. [PMID: 21401389 DOI: 10.3109/02770903.2011.560319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND This study aimed to investigate the relationship between antioxidant enzyme activities, extent of airway inflammation, and systemic oxidative stress in children suffering from atopic asthma. METHODS A total of 35 asthmatic (AG) and 21 healthy children (CG) participated in this study. The volume of fractionated exhaled NO (Fe(no)) was measured with the NIOX test system. The activities of the erythrocyte antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the total antioxidant capacity (TAC) were determined photometrically. Plasma interleukin (IL)-6 was measured using ELISA; malondialdehyde (MDA) levels were analyzed using HPLC. RESULTS Compared to healthy controls, asthmatic children exhaled a significantly (p < .001) higher mean volume of Fe(no), had significantly reduced plasma concentrations of TAC (p = .006), and significantly enhanced levels of MDA (p < .001) and IL-6 (p = .012). SOD (p = .027), CAT (p < .001), and GSH-Px (p = .005) were significantly less active in the asthma group and significantly negatively associated with Fe(no) (SOD/Fe(no): p = .017; CAT/Fe(no): p = .008; GSH-Px/Fe(no): p = .001); the oxidative stress marker MDA showed such correlations in both investigated groups (SOD/MDA: AG: p = .001, CG: p = .381; CAT/MDA: AG: p = .003, CG: p = .020; GSH-Px/MDA: AG: p = .006, CG: p = .011). Furthermore, there was a significant (p< .01) positive correlation between MDA/Fe(no) and MDA/IL-6 observed in both groups. CONCLUSIONS These results indicate that inflammation of the bronchial tree, reflected by increased NO formation in the airways and enhanced systemic oxidative stress, is related to an alteration of antioxidant enzyme activities in childhood asthma. Modulating the activity of antioxidant enzymes may therefore have beneficial effects on pulmonary and systemic antioxidant defense mechanisms and could reduce airway inflammation and oxidative stress in asthmatics.
Collapse
Affiliation(s)
- Elisabeth Fabian
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE To evaluate the safety and feasibility of exhaled breath condensate (EBC) collection in children recovering from status asthmaticus (SA) in a pediatric intensive care unit (PICU); and to investigate whether 8-isoprostane (8-Iso) could be detected in the EBC of these children and to compare its concentration with that in the EBC collected from healthy children. DESIGN Prospective study. SETTING Multidisciplinary PICU in a teaching hospital. PATIENTS Sixteen consecutive patients (7-18 yrs of age) with SA and 16 age- and sex-matched controls. INTERVENTIONS The Wood clinical asthma score and the pulmonary index were used to assess the clinical severity of patients with SA upon admission to the PICU. EBC samples were collected within 24 hrs of admission to the PICU and were analyzed for the concentration of 8-Iso. MEASUREMENTS AND MAIN RESULTS Data are presented as mean ± sd values. There were no differences in age (12 ± 3.3 yrs vs.12 ± 2 yrs, p > .05) or sex (n = 10 males and n = 6 females in each group), between SA patients and controls. All patients with SA and the controls completed the EBC collection without complications. There was no statistically significant difference in the pulmonary index (3.2 ± 2.7 vs. 3.1 ± 2.8, p 0.9) post collection of EBC compared with the baseline values. There was a statistically significant correlation between Wood score and pulmonary index at the time of admission to the PICU in children with SA (r = .7, p < .01). The concentration of 8-Iso was significantly higher in the EBC of children with SA compared with controls (14.3 ± 1.8 pg/mL vs. 5.2 ± 0.7 pg/mL, p < .001). The correlation between the concentration 8-Iso and either the pulmonary index or Wood score at the time admission to the PICU was not statistically significant. CONCLUSIONS EBC collection is well tolerated by children aged 7-18 yrs who are recovering from SA in a PICU. 8-Iso is elevated in the EBC from children with SA and may provide insight into the biochemical changes of oxidative stress in children in this clinical setting.
Collapse
|
43
|
Wood LG, Wark PAB, Garg ML. Antioxidant and anti-inflammatory effects of resveratrol in airway disease. Antioxid Redox Signal 2010; 13:1535-48. [PMID: 20214495 DOI: 10.1089/ars.2009.3064] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are a significant and increasing global health problem. These diseases are characterized by airway inflammation, which develops in response to various stimuli. In asthma, inflammation is driven by exposure to a variety of triggers, including allergens and viruses, which activate components of both the innate and acquired immune responses. In COPD, exposure to cigarette smoke is the primary stimulus of airway inflammation. Activation of airway inflammatory cells leads to the release of excessive quantities of reactive oxygen species (ROS), resulting in oxidative stress. Antioxidants provide protection against the damaging effects of oxidative stress and thus may be useful in the management of inflammatory airways disease. Resveratrol, a polyphenol that demonstrates both antioxidative and anti-inflammatory functions, has been shown to improve outcomes in a variety of diseases, in particular, in cancer. We review the evidence for a protective role of resveratrol in respiratory disease. Mechanisms of resveratrol action that may be relevant to respiratory disease are described. We conclude that resveratrol has potential as a therapeutic agent in respiratory disease, which should be further investigated.
Collapse
Affiliation(s)
- Lisa G Wood
- Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia.
| | | | | |
Collapse
|
44
|
Urushidate S, Matsuzaka M, Okubo N, Iwasaki H, Hasebe T, Tsuya R, Iwane K, Inoue R, Yamai K, Danjo K, Takahashi I, Umeda T, Ando S, Itai K, Nakaji S. Association between concentration of trace elements in serum and bronchial asthma among Japanese general population. J Trace Elem Med Biol 2010; 24:236-42. [PMID: 20832272 DOI: 10.1016/j.jtemb.2010.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS A number of previous studies had revealed the association between trace elements in serum and bronchial asthma. However, only a few researches had focused on serum concentration of trace elements in a general population. In this study, an association between trace elements in serum and bronchial asthma was investigated in a general population. METHODS Subjects were 1025 volunteers (385 males and 640 females between ages 19 and 82 years old) who had participated in the Iwaki Health Promotion Project 2005. Bronchial asthma was diagnosed based on the European Community Respiratory Health Survey II according to the self-questionnaires on health conditions of subjects. The serum concentrations of certain trace elements (manganese, copper, zinc, selenium and iron) were measured and compared. Also, an association between serum trace elements level and neutrophil-related functions (oxidative burst activity, phagocytic activity, serum opsonic activity) were determined. RESULTS In males, no significant differences were seen in any serum trace elements concentrations. In females, serum zinc level was significantly higher in bronchial asthma group than in control. A positive correlation was seen between serum concentration of zinc and serum opsonic activity in both genders. CONCLUSIONS In female asthmatics, increase of oxidative stress was suggested to be caused by superoxide dismutase pathway (elimination system of reactive oxygen species) rather than serum opsonic activity (production system of reactive oxygen species from neutrophils) pathway, as the zinc concentration in bronchial asthma group was higher than that in control.
Collapse
Affiliation(s)
- Satoshi Urushidate
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deshpande GC, Simmer K, Mori T, Croft K. Parenteral lipid emulsions based on olive oil compared with soybean oil in preterm (<28 weeks' gestation) neonates: a randomised controlled trial. J Pediatr Gastroenterol Nutr 2009; 49:619-25. [PMID: 19644398 DOI: 10.1097/mpg.0b013e31819ca1b8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND : New olive oil-based (OL) lipid emulsions (olive:soy oil = 4:1) have lower polyunsaturated fatty acid (PUFA) (20% vs 60%) and higher vitamin E content (an antioxidant) compared with traditional soybean oil (SO) emulsions. OBJECTIVE : Compare efficacy and safety of OL with SO emulsions in preterm neonates (<28 weeks) at high risk for oxidative stress. PATIENTS AND METHODS : Preterm neonates (gestation 23-<28 weeks) were randomised to receive OL or SO emulsion for 5 days using a standard protocol in a tertiary perinatal centre (King Edward Memorial Hospital for Women, Perth, Western Australia). Investigators and outcome assessors were masked to allocation. Plasma F2-isoprostanes (lipid peroxidation marker), plasma, and red blood cell fatty acids were measured before and after the study. Safety was monitored by liver function tests. RESULTS : Forty-four of 50 participants (OL-23, SO-21) completed the study. Both emulsions were well tolerated with no significant adverse events. F2-isoprostane levels were comparable at baseline and study end. Oleic and linoleic acid levels were significantly high on day 6 in OL and SO groups, respectively. Long-chain PUFA levels were similar between groups despite the lower PUFA content of OL. The olive oil-based group had significantly higher levels of C18:4n-3, suggesting Delta6-desaturase enzyme inhibition in the SO group. CONCLUSIONS : Olive oil-based emulsion was safe and well tolerated by preterm neonates. Similar long-chain PUFA levels were achieved in the OL group despite significantly lower amount of PUFA content; however, there was no difference in lipid peroxidation (F2-isoprostane levels). Large trials are needed to confirm these benefits.
Collapse
Affiliation(s)
- Girish C Deshpande
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, Perth, Australia.
| | | | | | | |
Collapse
|
46
|
Xie J, Zhang Q, Zhong N, Lai K. BAL fluid 8-isoprostane concentrations in eosinophilic bronchitis and asthma. J Asthma 2009; 46:712-5. [PMID: 19728211 DOI: 10.1080/02770900903067879] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress has an important role in the pathophysiology of asthma. But oxidative stress of airway has not been assessed in patients with nonasthmatic eosinophilic bronchitis (EB). 8-epi-prostaglandin F2alpha (8-isoprostane) is a biomarker of oxidative stress. OBJECTIVES We sought to determine whether oxidative stress (measured by 8-isoprostane) occurs in EB and whether 8-isoprostane is associated with airway function in EB and asthma. METHODS We measured 8-isoprostane concentrations in the bronchoalveolar lavage (BAL) fluid from 11 subjects with EB, 10 subjects with asthma, and 9 healthy control subjects. 8-isoprostane was measured by enzyme immunoassays. RESULTS We found that BAL fluid 8-isoprostane concentrations were raised both in EB and asthma. The median concentrations of 8-isoprostane in BAL fluid were significantly higher in subjects with asthma (12.78 pg/mL) when compared with EB (8.34 pg/mL) and healthy control subjects (5.07 pg/mL). CONCLUSIONS Our study shows that oxidative stress is increased significantly in asthmatic subjects and the degree of oxidative stress in EB subjects is milder than that in asthma, as reflected by 8-isoprostane concentrations in the BAL fluid. The difference in airway function observed in subjects with EB and asthma could be associated with different elevation in 8-isoprostane concentration in the airways.
Collapse
Affiliation(s)
- Jiaxing Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Medical College, The First Affiliated Hospital, Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
47
|
Sood A, Qualls C, Arynchyn A, Beckett WS, Gross MD, Steffes MW, Smith LJ, Holvoet P, Thyagarajan B, Jacobs DR. Obesity-asthma association: is it explained by systemic oxidant stress? Chest 2009; 136:1055-1062. [PMID: 19592473 DOI: 10.1378/chest.09-0493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND The mechanism for the obesity-asthma association is unknown. This study evaluated the hypothesis that systemic oxidant stress explains this association. METHODS This cross-sectional study used year-20 follow-up evaluation data of 2,865 eligible participants in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort. Current asthma was self-reported. Oxidant stress primarily was assessed by plasma F2-isoprostane concentrations. Obesity measures included categories of BMI and dual-energy x-ray absorptiometry-assessed fat mass index (FMI) and lean mass index (LMI). Logistic and linear regressions were used for analyses. RESULTS Asthma was associated with higher plasma F2-isoprostane concentrations (p = 0.049); however, this association was not significant when adjusted for either gender or BMI. The BMI-asthma association was seen only among women (p = 0.03; gender-specific interaction, p = 0.01), and this association was not explained by plasma F2-isoprostane levels. Similarly, both FMI and LMI were positively associated with asthma in women (p = 0.20 and 0.01, respectively). These associations also were not explained by plasma F2-isoprostane levels. Similar results were obtained when plasma levels of oxidized low-density lipoprotein were used instead of F2-isoprostane levels to study the BMI-asthma association at the year-15 evaluation. CONCLUSIONS Systemic oxidant stress, primarily assessed by plasma F2-isoprostane concentrations, was not independently associated with asthma and, therefore, may not explain the obesity-asthma association in women. The asthma-oxidant stress association is confounded by gender and obesity. This study is limited by the inability to measure airway oxidant stress. It is possible that another (as yet undetermined) measure of systemic oxidant stress may be more relevant in asthma.
Collapse
Affiliation(s)
- Akshay Sood
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM.
| | - Clifford Qualls
- Clinical Translational Sciences Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Alexander Arynchyn
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Myron D Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Michael W Steffes
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Lewis J Smith
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Paul Holvoet
- Department of Experimental Surgery and Anesthesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - David R Jacobs
- Division of Epidemiology, University of Minnesota, Minneapolis, MN; Institute for Nutrition Research, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Barden AE, Mori TA, Dunstan JA, Taylor AL, Thornton CA, Croft KD, Beilin LJ, Prescott SL. Fish Oil Supplementation in Pregnancy Lowers F2-isoprostanes in Neonates at High Risk of Atopy. Free Radic Res 2009; 38:233-9. [PMID: 15129731 DOI: 10.1080/10715760310001656722] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anti-inflammatory properties of n-3 polyunsaturated fatty acids (n-3 PUFA) have suggested a potential role of these nutrients in dietary modification for prevention of allergic disease in early life. As oxidative stress is known to modify antigen presenting cell (APC) signalling and resulting immune responses, we examined the effects of maternal n-3 PUFA supplementation in pregnancy on markers of oxidative stress and APC function in neonates at high risk of allergy. Eighty-three pregnant atopic women were randomised to receive 4 g daily of either fish oil (n = 40) or olive oil (n = 43) capsules in a controlled trial from 20 weeks gestation until delivery. Plasma (cord blood) and urinary F2-isoprostanes were measured as markers of lipid peroxidation. Cord erythrocyte fatty acids and markers of APC function (HLA-DR expression and cytokine responses) were measured and related to levels of plasma F2-isoprostanes. Maternal fish oil supplementation lowered plasma (p < 0.0001) and urinary (p = 0.06) F2-isoprostanes. HLA-DR expression on APC was not different between the groups. In multiple regression analysis, 28.8% of the variance in plasma F2-isoprostanes was explained by positive relationships with erythrocyte arachidonic acid (AA) and monocyte HLA-DR expression and a negative relationship with erythrocyte eicosapentaenoic acid (EPA). This study shows that maternal supplementation with fish oil can attenuate neonatal lipid peroxidation. Clinical follow-up of these infants will help to determine if there are sustained effects on postnatal oxidative stress and expression of allergic disease.
Collapse
Affiliation(s)
- Anne E Barden
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, PO Box X2213, Perth, WA, 6847, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
García-Larsen V, Chinn S, Rodrigo R, Amigo H, Bustos P, Rona RJ. Relationship between oxidative stress-related biomarkers and antioxidant status with asthma and atopy in young adults: a population-based study. Clin Exp Allergy 2009; 39:379-86. [PMID: 19187326 DOI: 10.1111/j.1365-2222.2008.03163.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIM Enhanced oxidative stress has been described in adults who suffer from symptoms of asthma and poor lung function. This study assessed the relation between markers of oxidative stress and antioxidant status and lung function, symptoms of asthma, atopy and bronchial hyperresponsiveness (BHR) in young adults. METHODS A sub-sample of 589 individuals aged 22-28 years, selected from a total of 1232 included in a survey assessing early and current risk factors for chronic diseases, participated in the study. Participants were from an agricultural area of Chile, responded to a Spanish version of the European Community Respiratory Health Survey questionnaire, were skin tested to eight allergens, and challenged with methacholine to assess BHR. Five hundred and eighty-five individuals had measures of plasma biomarkers ferric reducing ability of plasma, uric acid, protein carbonyls and 564 had 8-iso-prostaglandin F(2alpha) (8-iso-PGF(2alpha)) assessed. RESULTS All participants had detectable plasma 8-iso-PGF(2alpha) and carbonyl levels. There was no indication for an association between markers of antioxidant status or oxidative stress with any of the outcomes studied. CONCLUSION The levels of oxidative stress-related biomarkers and antioxidant status in plasma may not be related to asthma in the general population in the absence of more severe symptoms or exacerbations.
Collapse
Affiliation(s)
- V García-Larsen
- Respiratory Epidemiology & Public Health Group, National Heart & Lung Institute, Imperial College London, Manresa Road, London, U.K.
| | | | | | | | | | | |
Collapse
|
50
|
Nadeem A, Masood A, Siddiqui N. Oxidant--antioxidant imbalance in asthma: scientific evidence, epidemiological data and possible therapeutic options. Ther Adv Respir Dis 2009; 2:215-35. [PMID: 19124374 DOI: 10.1177/1753465808094971] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Prevalence of asthma has increased considerably in recent decades throughout the world especially in developed countries. Airway inflammation is thought to be prime cause for repeated episodes of airway obstruction in asthmatics. Several studies have shown that reactive oxygen species (ROS) play a key role in initiation as well as amplification of inflammation in asthmatic airways. Excessive ROS production in asthma leads to alteration in key enzymatic as well as nonenzymatic antioxidants such as glutathione, vitamins C and E, beta-carotene, uric acid, thioredoxin, superoxide dismutases, catalase, and glutathione peroxidases leading to oxidant-antioxidant imbalance in airways. Oxidant-antioxidant imbalance leads to pathophysiological effects associated with asthma such as vascular permeability, mucus hypersecretion, smooth muscle contraction, and epithelial shedding. Epidemiological data also support the scientific evidence of oxidant-antioxidant imbalance in asthmatics. Therefore, the supplementation of antioxidants to boost the endogenous antioxidants or scavenge excessive ROS production could be utilized to dampen/prevent the inflammatory response in asthma by restoring oxidant-antioxidant balance. This review summarizes the scientific and epidemiological evidence linking asthma with oxidant-antioxidant imbalance and possible antioxidant strategies that can be used therapeutically for better management of asthma.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Physiology and Pharmacology, Health Sciences Center North West Virginia University Morgantown WV 26506, USA.
| | | | | |
Collapse
|