1
|
Striesow J, Nasri Z, von Woedtke T, Bekeschus S, Wende K. Epilipidomics reveals lipid fatty acid and headgroup modification in gas plasma-oxidized biomembranes. Redox Biol 2024; 77:103343. [PMID: 39366067 PMCID: PMC11483335 DOI: 10.1016/j.redox.2024.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Lipids, possessing unsaturated fatty acid chains and polar regions with nucleophilic heteroatoms, represent suitable oxidation targets for autologous and heterologous reactive species. Lipid peroxidation products (LPPs) are highly heterogeneous, including hydroperoxides, alkenals, chlorination, or glycation. Accordingly, delineation of lipid targets, species type, resulting products, and oxidation level remains challenging. To this end, liposomal biomimetic models incorporating a phosphatidylcholine, -ethanolamine, and a sphingomyelin were used to deconvolute effects on a single lipid scale to predict potential modification product outcomes. To introduce oxidative modifications, gas plasma technology, a powerful pro-oxidant tool to promote LPP formation by forming highly abundant reactive species in the gas and liquid phases, was employed to liposomes. The plasma parameters (gas type/combination) were modified to modulate the resulting species-profile and LPP formation by enriching specific reactive species types over others. HR-LC-MS (Münzel and et al., 2017) [2] was employed for LPP identification. Moreover, the heavy oxygen isotope 18O was used to trace O2-incorporation into LPPs, providing first information on the plasma-mediated lipid peroxidation mechanism. We found that combination of lipid class and gas composition predetermined the type of attack: admixture of O2 to the plasma and the presence of nitrogen atoms with free electrons in the molecule lead to chlorination of the amide bond and headgroup. Here, atomic oxygen driven formation of hypochlorite is the major reactive species. In contrast, POPC yields mainly to LPPs with oxidation of the oleic acid tail, especially truncations, epoxidation, and hydroperoxide formation. Here, singlet oxygen is assumingly the major driver. 18O labelling revealed that gas phase derived reactive species are dominantly incorporated into the LPPs, supporting previous findings on gas-liquid interface chemistry. In summary, we here provided the first insights into gas plasma-mediated lipid peroxidation, which, employed in more complex cell and tissue models, may support identifying mechanisms of actions in plasma medicine.
Collapse
Affiliation(s)
- Johanna Striesow
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Zahra Nasri
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), a member of the Leibniz Health Technologies Research Alliance, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
3
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
4
|
Vasilyev V, Sokolov A, Kostevich V, Elizarova A, Gorbunov N, Panasenko O. Binding of lactoferrin to the surface of low-density lipoproteins modified by myeloperoxidase prevents intracellular cholesterol accumulation by human blood monocytes. Biochem Cell Biol 2021; 99:109-116. [DOI: 10.1139/bcb-2020-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myeloperoxidase (MPO) is a unique heme-containing peroxidase that can catalyze the formation of hypochlorous acid (HOCl). The strong interaction of MPO with low-density lipoproteins (LDL) promotes proatherogenic modification of LDL by HOCl. The MPO-modified LDL (Mox-LDL) accumulate in macrophages, resulting in the formation of foam cells, which is the pathognomonic symptom of atherosclerosis. A promising approach to prophylaxis and atherosclerosis therapy is searching for remedies that prevent the modification or accumulation of LDL in macrophages. Lactoferrin (LF) has several application points in obesity pathogenesis. We aimed to study LF binding to Mox-LDL and their accumulation in monocytes transformed into macrophages. Using surface plasmon resonance and ELISA techniques, we observed no LF interaction with intact LDL, whereas Mox-LDL strongly interacted with LF. The affinity of Mox-LDL to LF increased with the degree of oxidative modification of LDL. Moreover, an excess of MPO did not prevent interaction of Mox-LDL with LF. LF inhibits accumulation of cholesterol in macrophages exposed to Mox-LDL. The results obtained reinforce the notion of LF potency as a remedy against atherosclerosis.
Collapse
Affiliation(s)
- V.B. Vasilyev
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - A.V. Sokolov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - V.A. Kostevich
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - A.Yu. Elizarova
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
| | - N.P. Gorbunov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - O.M. Panasenko
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
5
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
6
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
7
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
8
|
Niki E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic Biol Med 2018; 120:425-440. [PMID: 29625172 DOI: 10.1016/j.freeradbiomed.2018.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
The unregulated oxidative modification of lipids, proteins, and nucleic acids induced by multiple oxidants has been implicated in the pathogenesis of many diseases. Antioxidants with diverse functions exert their roles either directly or indirectly in the physiological defense network to inhibit such deleterious oxidative modification of biological molecules and resulting damage. The efficacy of antioxidants depends on the nature of oxidants. Therefore, it is important to identify the oxidants which are responsible for modification of biological molecules. Some oxidation products produced selectively by specific oxidant enable to identify the responsible oxidants, while other products are produced by several oxidants similarly. In this review article, several oxidant-specific products produced selectively by peroxyl radicals, peroxynitrite, hypochlorous acid, lipoxygenase, and singlet oxygen were summarized and their potential role as biomarker is discussed. It is shown that the levels of specific oxidation products including hydroxylinoleate isomers, nitrated and chlorinated products, and oxysterols produced by the above-mentioned oxidants are elevated in the human atherosclerotic lesions, suggesting that all these oxidants may contribute to the development of atherosclerosis. Further, it was shown that the reactivities of physiological antioxidants toward the above-mentioned oxidants vary extensively, suggesting that multiple antioxidants effective against these different oxidants are required, since no single antioxidant alone can cope with these multiple oxidants.
Collapse
Affiliation(s)
- Etsuo Niki
- National Institute of Advanced Industrial Science & Technology, Takamatsu 761-0395, Japan.
| |
Collapse
|
9
|
Kispert SE, Marentette J, Campian EC, Isbell TS, Kuenzel H, McHowat J. Cigarette smoke-induced urothelial cell damage: potential role of platelet-activating factor. Physiol Rep 2017; 5:5/5/e13177. [PMID: 28270596 PMCID: PMC5350181 DOI: 10.14814/phy2.13177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 11/24/2022] Open
Abstract
Cigarette smoking is an environmental risk factor associated with a variety of pathologies including cardiovascular disease, inflammation, and cancer development. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic inflammatory bladder disease with multiple etiological contributors and risk factors associated with its development, including cigarette smoking. Previously, we determined that cigarette smoking was associated with bladder wall accumulation of platelet activating factor (PAF), a potent inflammatory mediator that facilitates transendothelial cell migration of inflammatory cells from the circulation. PAF has been shown to reduce expression of tight junctional proteins which could ultimately lead to increased urothelial cell permeability. In this study, we observed that cigarette smoke extract (CSE) treatment of human urothelial cells increases PAF production and PAF receptor expression and reduces wound healing ability. After exposure to cigarette smoke for 6 months, wild-type C57BL/6 mice displayed urothelial thinning and destruction which was not detected in iPLA2β-/- (enzyme responsible for PAF production) animals. We also detected increased urinary PAF concentration in IC/BPS patients when compared to controls, with an even greater increase in urinary PAF concentration in smokers with IC/BPS These data indicate that cigarette smoking is associated with urothelial cell damage that may be a result of increased PAF-PAF receptor interaction. Inhibition of iPLA2β activity or blocking of the PAF-PAF receptor interaction could serve as a potential therapeutic target for managing cigarette smoke-induced bladder damage.
Collapse
Affiliation(s)
- Shannon E Kispert
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - John Marentette
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - E Cristian Campian
- Department of Obstetrics, Gynecology & Women's Health, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - T Scott Isbell
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Hannah Kuenzel
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
10
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
11
|
Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep 2016; 22:51-73. [PMID: 27884085 PMCID: PMC6837458 DOI: 10.1080/13510002.2016.1256119] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is the main pathophysiological process underlying coronary artery disease (CAD). Acute complications of atherosclerosis, such as myocardial infarction, are caused by the rupture of vulnerable atherosclerotic plaques, which are characterized by thin, highly inflamed, and collagen-poor fibrous caps. Several lines of evidence mechanistically link the heme peroxidase myeloperoxidase (MPO), inflammation as well as acute and chronic manifestations of atherosclerosis. MPO and MPO-derived oxidants have been shown to contribute to the formation of foam cells, endothelial dysfunction and apoptosis, the activation of latent matrix metalloproteinases, and the expression of tissue factor that can promote the development of vulnerable plaque. As such, detection, quantification and imaging of MPO mass and activity have become useful in cardiac risk stratification, both for disease assessment and in the identification of patients at risk of plaque rupture. This review summarizes the current knowledge about the role of MPO in CAD with a focus on its possible roles in plaque rupture and recent advances to quantify and image MPO in plasma and atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathaniel Teng
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia
| | - Ghassan J Maghzal
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Jihan Talib
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Imran Rashid
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia
| | - Antony K Lau
- b Department of Cardiology , Prince of Wales Hospital , Randwick , New South Wales , Australia.,c Faculty of Medicine , University of New South Wales , Sydney , New South Wales , Australia
| | - Roland Stocker
- a Vascular Biology Division , Victor Chang Cardiac Research Institute , Darlinghurst , New South Wales , Australia.,d School of Medical Sciences , University of New South Wales , Sydney , New South Wales , Australia
| |
Collapse
|
12
|
Niki E. Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct 2016; 7:2156-68. [PMID: 27090496 DOI: 10.1039/c6fo00275g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unregulated oxidation of biological molecules induced by multiple oxidants has been implicated in the pathogenesis of various diseases. Consequently, the effects of antioxidants contained in foods, beverages and supplements on the maintenance of health and prevention of diseases have attracted much attention of the public as well as scientists. However, recent human studies have shown inconsistent results and failed to demonstrate the beneficial effects of antioxidants. The mechanisms and dynamics of antioxidant action and assessment of antioxidant capacity have been the subject of extensive studies and arguments. In the present article, the antioxidant capacity has been reviewed focusing on two main issues: the capacity of antioxidants to scavenge multiple reactive oxidants and to inhibit plasma lipid oxidation induced by different biological oxidants. It is emphasized that the capacity of antioxidants to scavenge reactive oxidants does not always correlate linearly with the capacity to inhibit lipid oxidation and that it is necessary to specify the oxidant to assess the efficacy of antioxidants, since multiple oxidants contribute to oxidative damage in vivo and the effects of antioxidants depend on the nature of oxidants. A convenient and rapid method using a microplate reader is discussed for assessing the antioxidant capacity against plasma lipid oxidation induced by multiple oxidants including peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen.
Collapse
Affiliation(s)
- Etsuo Niki
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
13
|
Differential effects of chlorinated and oxidized phospholipids in vascular tissue: implications for neointima formation. Clin Sci (Lond) 2015; 128:579-92. [PMID: 25524654 DOI: 10.1042/cs20140578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The presence of inflammatory cells and MPO (myeloperoxidase) in the arterial wall after vascular injury could increase neointima formation by modification of phospholipids. The present study investigates how these phospholipids, in particular oxidized and chlorinated species, are altered within injured vessels and how they affect VSMC (vascular smooth muscle cell) remodelling processes. Vascular injury was induced in C57BL/6 mice and high fat-fed ApoE-/- (apolipoprotein E) mice by wire denudation and ligation of the left carotid artery (LCA). Neointimal and medial composition was assessed using immunohistochemistry and ESI-MS. Primary rabbit aortic SMCs (smooth muscle cells) were utilized to examine the effects of modified lipids on VSMC proliferation, viability and migration at a cellular level. Neointimal area, measured as intima-to-media ratio, was significantly larger in wire-injured ApoE-/- mice (3.62±0.49 compared with 0.83±0.25 in C57BL/6 mice, n=3) and there was increased oxidized low-density lipoprotein (oxLDL) infiltration and elevated plasma MPO levels. Relative increases in lysophosphatidylcholines and unsaturated phosphatidylcholines (PCs) were also observed in wire-injured ApoE-/- carotid arteries. Chlorinated lipids had no effect on VSMC proliferation, viability or migration whereas chronic incubation with oxidized phospholipids stimulated proliferation in the presence of fetal calf serum [154.8±14.2% of viable cells at 1 μM PGPC (1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine) compared with control, n=6]. In conclusion, ApoE-/- mice with an inflammatory phenotype develop more neointima in wire-injured arteries and accumulation of oxidized lipids in the vessel wall may propagate this effect.
Collapse
|
14
|
Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. BIOCHEMISTRY (MOSCOW) 2014; 78:1466-89. [PMID: 24490735 DOI: 10.1134/s0006297913130075] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Collapse
Affiliation(s)
- O M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | | | | |
Collapse
|
15
|
Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. Pharmacol Ther 2014; 143:12-23. [DOI: 10.1016/j.pharmthera.2014.02.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 01/07/2023]
|
16
|
HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells. Arch Biochem Biophys 2014; 548:1-10. [DOI: 10.1016/j.abb.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/21/2022]
|
17
|
Sokolov AV, Kostevich VA, Runova OL, Gorudko IV, Vasilyev VB, Cherenkevich SN, Panasenko OM. Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids 2014; 180:72-80. [PMID: 24631066 DOI: 10.1016/j.chemphyslip.2014.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/31/2014] [Accepted: 02/24/2014] [Indexed: 01/28/2023]
Abstract
One of the factors promoting oxidative/halogenating modification of low-density lipoproteins (LDL) is myeloperoxidase (MPO). We have shown previously that MPO binds to the LDL surfaces. The LDL-MPO complex is uncoupled in the presence of peptide EQIQDDCTGDED that corresponds to a fragment of apoB-100 (445-456). In this paper we studied how this peptide, as well as inhibitors and modulators of halogenating activity of MPO such as ceruloplasmin (CP), 4-aminobenzoic acid hydrazide (ABAH) and thiocyanate (SCN(-)) affect the accumulation of cholesterol and its esters in monocytes/macrophages after incubation with LDL subjected to different kinds of MPO-dependent oxidative/halogenating modification. In the presence of H2O2 and halides MPO causes stronger proatherogenic modification of LDL than exogenous reactive halogen species (HOCl and HOBr). Both monocytes, which differentiate into macrophages, and neutrophils secrete MPO in response to the presence of damaged LDL. The peptide EQIQDDCTGDED preventing interaction between MPO and LDL reduces the uptake of modified LDL and MPO by monocytes/macrophages and thus precludes the accumulation of intracellular cholesterol. Our results indicate that binding to MPO is important for LDL to become modified and acquire proatherogenic properties. The peptide EQIQDDCTGDED, CP, ABAH, and SCN(-) can play the role of anti-atherogenic factors reducing the deleterious effect of catalytically active MPO on LDL and accumulation of cholesterol in macrophages.
Collapse
Affiliation(s)
- Alexej V Sokolov
- Institute of Experimental Medicine of the N-W Branch of the Russian Academy of Medical Sciences, Saint-Petersburg, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Valeria A Kostevich
- Institute of Experimental Medicine of the N-W Branch of the Russian Academy of Medical Sciences, Saint-Petersburg, Russia; Research Institute of Physico-Chemical Medicine, Moscow, Russia
| | - Olga L Runova
- Institute of Experimental Medicine of the N-W Branch of the Russian Academy of Medical Sciences, Saint-Petersburg, Russia
| | | | - Vadim B Vasilyev
- Institute of Experimental Medicine of the N-W Branch of the Russian Academy of Medical Sciences, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | |
Collapse
|
18
|
Gorudko IV, Grigorieva DV, Shamova EV, Kostevich VA, Sokolov AV, Mikhalchik EV, Cherenkevich SN, Arnhold J, Panasenko OM. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic Biol Med 2014; 68:326-34. [PMID: 24384524 DOI: 10.1016/j.freeradbiomed.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators.
Collapse
Affiliation(s)
- Irina V Gorudko
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus.
| | - Daria V Grigorieva
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus
| | - Ekaterina V Shamova
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus
| | - Valeria A Kostevich
- Institute of Experimental Medicine, Saint-Petersburg 197376, Russia; Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg 197376, Russia; Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia; State University of Saint Petersburg, Saint Petersburg 199000, Russia
| | | | | | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany
| | - Oleg M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia
| |
Collapse
|
19
|
Kettle AJ, Albrett AM, Chapman AL, Dickerhof N, Forbes LV, Khalilova I, Turner R. Measuring chlorine bleach in biology and medicine. Biochim Biophys Acta Gen Subj 2013; 1840:781-93. [PMID: 23872351 DOI: 10.1016/j.bbagen.2013.07.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chlorine bleach, or hypochlorous acid, is the most reactive two-electron oxidant produced in appreciable amounts in our bodies. Neutrophils are the main source of hypochlorous acid. These champions of the innate immune system use it to fight infection but also direct it against host tissue in inflammatory diseases. Neutrophils contain a rich supply of the enzyme myeloperoxidase. It uses hydrogen peroxide to convert chloride to hypochlorous acid. SCOPE OF REVIEW We give a critical appraisal of the best methods to measure production of hypochlorous acid by purified peroxidases and isolated neutrophils. Robust ways of detecting it inside neutrophil phagosomes where bacteria are killed are also discussed. Special attention is focused on reaction-based fluorescent probes but their visual charm is tempered by stressing their current limitations. Finally, the strengths and weaknesses of biomarker assays that capture the footprints of chlorine in various pathologies are evaluated. MAJOR CONCLUSIONS Detection of hypochlorous acid by purified peroxidases and isolated neutrophils is best achieved by measuring accumulation of taurine chloramine. Formation of hypochlorous acid inside neutrophil phagosomes can be tracked using mass spectrometric analysis of 3-chlorotyrosine and methionine sulfoxide in bacterial proteins, or detection of chlorinated fluorescein on ingestible particles. Reaction-based fluorescent probes can also be used to monitor hypochlorous acid during phagocytosis. Specific biomarkers of its formation during inflammation include 3-chlorotyrosine, chlorinated products of plasmalogens, and glutathione sulfonamide. GENERAL SIGNIFICANCE These methods should bring new insights into how chlorine bleach is produced by peroxidases, reacts within phagosomes to kill bacteria, and contributes to inflammation. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
OBJECTIVE To evaluate the generation of halogenated fatty acids in the areas of fat necrosis during acute pancreatitis and to evaluate the effects of these molecules on the ensuing inflammatory process. BACKGROUND Lipid mediators derived from adipose tissue have been implicated in the progression of acute pancreatitis, although their precise role remains unknown. METHODS Acute pancreatitis was induced in rats by intraductal infusion of 3.5% sodium taurocholate. Fatty acid chlorohydrins (FA-Cl) were measured in adipose tissue, ascitic fluid, and plasma by mass spectrometry. Chlorohydrins were also instilled in the rats' peritoneal cavity, and their effects on peritoneal macrophages activation and in systemic inflammation were evaluated. Finally, they have also been measured in plasma from human patients with acute pancreatitis. RESULTS Induced acute pancreatitis results in a substantial release not only of free fatty acids but also of the chlorohydrins of both oleic and linoleic acids from adipose tissue. In plasma, only the chlorohydrin of oleic acid was detected. Administration of 250-μM lipid chlorohydrins, which is the concentration found in ascitic fluid, induces the expression of TNFα and interleukin-1β in peritoneal macrophages and increases the systemic inflammatory response in pancreatitis. Finally, increased concentrations of oleic acid chlorohydrin have been found in plasma of human patients with pancreatitis. CONCLUSIONS During acute pancreatitis, adipose tissue release FA-Cl, which exacerbate the systemic inflammatory response.
Collapse
|
21
|
Wacker BK, Albert CJ, Ford BA, Ford DA. Strategies for the analysis of chlorinated lipids in biological systems. Free Radic Biol Med 2013; 59:92-9. [PMID: 22713364 PMCID: PMC3636505 DOI: 10.1016/j.freeradbiomed.2012.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 12/01/2022]
Abstract
Myeloperoxidase-derived HOCl reacts with the vinyl ether bond of plasmalogens yielding α-chlorofatty aldehydes. These chlorinated aldehydes can be purified using thin-layer chromatography, which is essential for subsequent analysis of extracts from some tissues such as myocardium. The α-chlorofatty aldehyde 2-chlorohexadecanal (2-ClHDA) is quantified after conversion to its pentafluorobenzyl oxime derivative using gas chromatography-mass spectrometry and negative-ion chemical ionization detection. 2-ClHDA accumulates in activated human neutrophils and monocytes, as well as in atherosclerotic lesions and infarcted myocardium. Metabolites of 2-ClHDA have also been identified, including the oxidation product, 2-chlorohexadecanoic acid (2-ClHA), and the reduction product, 2-chlorohexadecanol. 2-ClHA can be quantified using LC-MS with selected reaction monitoring (SRM) detection. 2-ClHA can be ω-oxidized by hepatocytes and subsequently β-oxidized from the ω-end, leading to the production of the dicarboxylic acid, 2-chloroadipic acid. This dicarboxylic acid is excreted in the urine and can also be quantified using LC-MS methods with SRM detection. Quantitative analyses of these novel chlorinated lipids are essential to identify the role of these lipids in leukocyte-mediated injury and disease.
Collapse
|
22
|
Korotaeva A, Samoilova E, Pavlunina T, Panasenko OM. Halogenated phospholipids regulate secretory phospholipase A2 group IIA activity. Chem Phys Lipids 2013; 167-168:51-6. [PMID: 23438648 DOI: 10.1016/j.chemphyslip.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/14/2013] [Accepted: 02/12/2013] [Indexed: 11/28/2022]
Abstract
Secretory phospholipase A2 group IIA (sPLA2-IIA) is an active participant of inflammation. The enzyme destroys bacterial cell wall and induces production of biologically active lipid mediators. It is involved in various pathological processes and high serum content and activity of sPLA2-IIA are associated with adverse cardiovascular events. Study of sPLA2-IIA regulation is of great physiological and clinical importance and is necessary for better understanding of mechanisms underlying inflammation. Another major participant of inflammatory response is the enzyme myeloperoxidase (MPO) which is secreted by neutrophils in the focus of inflammation and catalyzes formation of HOCl and HOBr. Both halogenated (chloro- and bromohydrins) and oxidized lipids are formed due to interaction between HOCl and HOBr with unsaturated bonds of phospholipid acyl chains. Previously we showed that oxidized phospholipids stimulate sPLA2-IIA activity. In this study we examined the effects of chloro- and bromohydrins of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on sPLA2-IIA activity. In contrast to POPC, chloro- and bromohydrins of POPC (POPC-Cl and POPC-Br, respectively) were not hydrolyzed by sPLA2-IIA. In addition, phospholipids which are sPLA2-IIA substrates, were not cleaved by the enzyme in the presence of POPC-Cl and POPC-Br. Halogenohydrins of POPC prevented the activity of both purified and serum sPLA2-IIA. Blocking effects of POPC-Cl and POPC-Br were abolished by increased concentrations of phospholipid-substrate. These results suggest that halogenated phospholipids formed in MPO-dependent reactions can be considered as a new class of biologically active compounds potentially capable of regulating sPLA2-IIA activity in the areas of inflammation and producing the effects opposite to those of oxidized phospholipids. Control over sPLA2-IIA can be useful in the therapy of diseases involving systemic inflammation.
Collapse
|
23
|
Lee YK, Lee DH, Kim JK, Park MJ, Yan JJ, Song DK, Vaziri ND, Noh JW. Lysophosphatidylcholine, oxidized low-density lipoprotein and cardiovascular disease in Korean hemodialysis patients: analysis at 5 years of follow-up. J Korean Med Sci 2013; 28:268-73. [PMID: 23400766 PMCID: PMC3565139 DOI: 10.3346/jkms.2013.28.2.268] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/16/2012] [Indexed: 11/21/2022] Open
Abstract
Although oxidized low-density lipoprotein (LDL) and lysophosphatidylcholine (LPC) have been proposed as important mediators of the atherosclerosis, the long-term contribution to the risk of cardiovascular disease (CVD) in hemodialysis patients has not been evaluated. This study investigated the relation between oxidized LDL and LPC levels with long term risk of CVD. Plasma oxidized LDL and LPC levels were determined in 69 Korean hemodialysis patients as a prospective observational study for 5 yr. During the observation period, 18 cardiovascular events (26.1%) occurred including 6 deaths among the hemodialysis patients. The low LPC level group (≤ 254 µM/L, median value) had much more increased risk of CVD compared to the high LPC level group (> 254 µM/L) (P = 0.01). However, serum levels of oxidized LDL were not significantly different between groups with and without CVD. In adjusted Cox analysis, previous CVD, (hazard ratio [HR], 5.68; 95% confidence interval [CI], 1.94-16.63, P = 0.002) and low LPC level (HR, 3.45; 95% CI, 1.04-11.42, P = 0.04) were significant independent risk factors for development of CVD. It is suggested that low LPC, but not oxidized LDL, is associated with increased risk of CVD among a group of Korean hemodialysis patients.
Collapse
Affiliation(s)
- Young-Ki Lee
- Department of Internal Medicine, Hallym Kidney Research Institute, Hallym University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Department of Internal Medicine, Hallym Kidney Research Institute, Hallym University College of Medicine, Seoul, Korea
| | - Jin Kyung Kim
- Department of Internal Medicine, Hallym Kidney Research Institute, Hallym University College of Medicine, Seoul, Korea
| | - Min-Jeong Park
- Department of Laboratory Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Ji-Jing Yan
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong-Keun Song
- Department of Pharmacology, Hallym University College of Medicine, Chuncheon, Korea
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Jung-Woo Noh
- Department of Internal Medicine, Hallym Kidney Research Institute, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Abstract
Ischaemic heart disease accounts for nearly half of the global cardiovascular disease burden. Aetiologies relating to heart disease are complex, but dyslipidaemia, oxidative stress and inflammation are cardinal features. Despite preventative measures and advancements in treatment regimens with lipid-lowering agents, the high prevalence of heart disease and the residual risk of recurrent events continue to be a significant burden to the health sector and to the affected individuals and their families. The development of improved risk models for the early detection and prevention of cardiovascular events in addition to new therapeutic strategies to address this residual risk are required if we are to continue to make inroads into this most prevalent of diseases. Metabolomics and lipidomics are modern disciplines that characterize the metabolite and lipid complement respectively, of a given system. Their application to ischaemic heart disease has demonstrated utilities in population profiling, identification of multivariate biomarkers and in monitoring of therapeutic response, as well as in basic mechanistic studies. Although advances in magnetic resonance and mass spectrometry technologies have given rise to the fields of metabolomics and lipidomics, the plethora of data generated presents challenges requiring specific statistical and bioinformatics applications, together with appropriate study designs. Nonetheless, the predictive and re-classification capacity of individuals with various degrees of risk by the plasma lipidome has recently been demonstrated. In the present review, we summarize evidence derived exclusively by metabolomic and lipidomic studies in the context of ischaemic heart disease. We consider the potential role of plasma lipid profiling in assessing heart disease risk and therapeutic responses, and explore the potential mechanisms. Finally, we highlight where metabolomic studies together with complementary -omic disciplines may make further inroads into the understanding, detection and treatment of ischaemic heart disease.
Collapse
|
25
|
Greig FH, Kennedy S, Spickett CM. Physiological effects of oxidized phospholipids and their cellular signaling mechanisms in inflammation. Free Radic Biol Med 2012; 52:266-80. [PMID: 22080084 DOI: 10.1016/j.freeradbiomed.2011.10.481] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
26
|
Spickett CM, Reis A, Pitt AR. Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC-MS using a QQLIT instrument. Free Radic Biol Med 2011; 51:2133-49. [PMID: 21983435 DOI: 10.1016/j.freeradbiomed.2011.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022]
Abstract
Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.
Collapse
Affiliation(s)
- Corinne M Spickett
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | |
Collapse
|
27
|
Niki E. Do free radicals play causal role in atherosclerosis? Low density lipoprotein oxidation and vitamin E revisited. J Clin Biochem Nutr 2010; 48:3-7. [PMID: 21297905 PMCID: PMC3022060 DOI: 10.3164/jcbn.11-007fr] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022] Open
Abstract
Lipid peroxidation induced by free radicals has been implicated in the pathogenesis of various diseases. Numerous in vitro and animal studies show that oxidative modification of low density lipoprotein (LDL) is an important initial event of atherosclerosis. Vitamin E and other antioxidants inhibit low density lipoprotein oxidation efficiently in vitro, however, human clinical trials with vitamin E have not yielded positive results. The mixed results for vitamin E effect may be ascribed primarily to the two factors. Firstly low density lipoprotein oxidation proceeds by multiple pathways mediated not only by free radicals but also by other non-radical oxidants and vitamin E is effective only against free radical mediated oxidation. Secondly, in contrast to animal experiments, vitamin E is given at the latter stage where oxidation is no more important. Free radicals must play causal role in pathogenesis of atherosclerosis and vitamin E should be effective if given at right time to right subjects.
Collapse
Affiliation(s)
- Etsuo Niki
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
28
|
Ford DA. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia. CLINICAL LIPIDOLOGY 2010; 5:835-852. [PMID: 21339854 PMCID: PMC3041592 DOI: 10.2217/clp.10.68] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets.
Collapse
Affiliation(s)
- David A Ford
- Department of Biochemistry & Molecular Biology, Center for Cardiovascular Research, Saint Louis University School of Medicine, Room 325, Doisy Research Center, 1100 South Grand Blvd, St Louis, MO 63104, USA, Tel.: +1 314 977 9264, Fax: +1 314 977 9205
| |
Collapse
|
29
|
Gorudko IV, Vakhrusheva TV, Mukhortova AV, Cherenkevich SN, Timoshenko AV, Sergienko VI, Panasenko OM. The priming effect of halogenated phospholipids on the functional responses of human neutrophils. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Robaszkiewicz A, Greig FH, Pitt AR, Spickett CM, Bartosz G, Soszyński M. Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chem Phys Lipids 2010; 163:639-47. [PMID: 20513376 DOI: 10.1016/j.chemphyslip.2010.05.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 12/14/2022]
Abstract
Hypochlorite generated in vivo under pathological conditions is a known oxidant and chlorinating agent, able to react with proteins and lipids, which affects the stability of biological membranes. Reaction with unsaturated fatty acyl chains in glycerophospholipids such as phosphatidylcholine results in the formation of chlorohydrins. The aim of this study was to determine the effects of chlorohydrins formed by the reaction of hypochlorite with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonylphosphatidylcholine on biophysical properties of bilayers and their effects on human erythrocytes. Using electrospray mass spectrometry we observed complete conversion of the lipids into chlorohydrins, which resulted in a decrease in the rotational correlation time and an increase in the order parameter of liposomes. Unilamellar chlorohydrin liposomes had a lower permeation coefficient for calcein than liposomes made of parent lipids. Flow cytometry demonstrated fast incorporation of uni and multilamellar chlorohydrin liposomes labeled with NBD-phosphatidylethanolamine into erythrocytes. This effect was accompanied by changes in erythrocyte shape (echinocyte formation) and aggregation. Similar but less pronounced effects were noticed for parent lipids only after longer incubation. Chlorohydrins showed also a stronger hemolytic action, proportional to the lipid:erythrocyte ratio. These results are important for understanding the effects of HOCl on mammalian cells, such as might occur in inflammatory pathology.
Collapse
|
31
|
Uchida Y, Uchida Y, Kameda N. Visualization of lipid components in human coronary plaques using color fluorescence angioscopy. Circ J 2010; 74:2181-6. [PMID: 20736502 DOI: 10.1253/circj.cj-10-0451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND If oxidized low-density lipoprotein (oxLDL), LDL, lysophosphatidylcholine (LPC) and apolipoprotein B (apoB) can be visualized simultaneously, their roles in the initiation, progression and destabilization of atherosclerotic plaques can be objectively evaluated. METHODS AND RESULTS (1) The fluorescence characteristic of each atherogenic substance was investigated by microscopy using a band-pass filter (470 nm) and a band-absorption filter (520 nm) with homidium bromide (Ho) and trypan blue (TB) as indicators. (2) 50 excised human coronary plaques were classified by their autofluorescence into green, greenish-yellow and yellow, and the localization of oxLDL, LDL, LPC and apoB were investigated by color fluorescence angioscopy (CFA). The plaque colors were white, yellow and glistening yellow by conventional angioscopy. (1) OxLDL and LDL exhibited golden fluorescence, whereas LPC and apoB exhibited red fluorescence. (2) By CFA, 16 of 19 greenish-yellow and 1 of 8 yellow plaques exhibited red and golden fluorescence in a mosaic pattern, indicating co-deposition of oxLDL/LDL and LPC/apoB; 3 greenish-yellow and 7 yellow plaques exhibited red fluorescence, indicating solitary deposition of apoB; 23 green plaques infrequently exhibited these fluorescence colors. CONCLUSIONS OxLDL/LDL and LPC/apoB were successfully visualized as co-deposited in greenish-yellow autofluorescence plaques, but only LPC/apoB in yellow autofluorescence plaques.
Collapse
Affiliation(s)
- Yasumi Uchida
- Japan Foundation for Cardiovascular Research, Funabashi, Chiba, Japan.
| | | | | |
Collapse
|
32
|
Uchida Y, Uchida Y, Kawai S, Kanamaru R, Kameda N. Imaging of Lysophosphatidylcholine in Human Coronary Plaques by Color Fluorescence Angioscopy. Int Heart J 2010; 51:129-33. [DOI: 10.1536/ihj.51.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yasumi Uchida
- Japan Foundation for Cardiovascular Research
- Cardiology, Jikei University School of Medicine
- Cardiovascular Center, Toho University Medical Center Sakura Hospital
- Cardiology, Chiba-kensei Hospital
| | - Yasuto Uchida
- Cardiology, Toho University Medical Center Ohmori Hospital
| | - Seiji Kawai
- Cardiovascular Surgery and Pathology, Chiba-kensei Hospital
| | | | - Noriaki Kameda
- Pathology, Toho University Medical Center Sakura Hospital
| |
Collapse
|
33
|
Albert CJ, Anbukumar DS, Messner MC, Ford DA. Chromatographic methods for the analyses of 2-halofatty aldehydes and chlorohydrin molecular species of lysophosphatidylcholine. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2768-77. [PMID: 19091635 PMCID: PMC2723174 DOI: 10.1016/j.jchromb.2008.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/12/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
Abstract
Plasmalogens are targeted by hypohalous acids resulting in the production of 2-chlorofatty aldehydes, 2-bromofatty aldehydes and chlorohydrin species of lysophosphatidylcholine. These novel lipids may have important roles in the pathophysiological sequelae of cardiovascular diseases as well as serve as biomarkers of cardiovascular disease. Accordingly, the discovery of these new lipid species have required the development of techniques for their purification and quantification. Thin layer chromatography, high performance liquid chromatography (LC) and gas chromatography (GC) of these lipids and their derivatives have provided a battery of tools for their analyses. These lipids have been quantified using flame ionization detection (FID) and mass spectrometry (MS).
Collapse
Affiliation(s)
- Carolyn J Albert
- Edward A Doisy Research Center, Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, 1100 South Grand Bouelvard, St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|