1
|
Wang Y, Sanyal AJ, Hylemon P, Ren S. Discovery of a novel regulator, 3β-sulfate-5-cholestenoic acid, of lipid metabolism and inflammation. Am J Physiol Endocrinol Metab 2025; 328:E543-E554. [PMID: 40047198 DOI: 10.1152/ajpendo.00426.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/04/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Mitochondrial oxysterols, cholestenoic acid (CA), 25-hydroxycholesterol (25HC), and 27-hydroxycholesterol (27HC), are potent regulators involved in many important biological events. This study aimed to investigate the metabolic pathways of these oxysterols and their roles between hepatocytes and macrophages. LC-MS/MS analysis showed a novel regulatory molecule, 3β-sulfate-5-cholestenoic acid (3SCA), following the addition of CA in media culturing hepatocytes. Further study showed that 3SCA could also be derived from 27HC. In comparison, 25HC was converted to 25HC3S, which mostly remained in the cells and nuclei. The functional study showed that 3SCA significantly downregulated the expression of genes involved in lipid metabolism in hepatocytes and suppressed gene expression of proinflammatory cytokines induced by lipopolysaccharide in human macrophages. Based on the results, we conclude that 3SCA acts as a secretory regulator for the regulation of lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings shed light on understanding the unique metabolic pathways of these oxysterols and their possible roles in liver tissues.NEW & NOTEWORTHY This study identifies a novel oxysterol metabolite, 3β-sulfate-5-cholestenoic acid (3SCA), secreted by hepatocytes, which regulates lipid metabolism and inflammatory responses in hepatocytes and macrophages. These findings reveal previously unknown metabolic pathways of mitochondrial oxysterols and their roles in the progression and recovery of metabolic dysfunction-associated steatotic liver disease (MASLD), offering novel insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Center, Richmond, Virginia, United States
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Center, Richmond, Virginia, United States
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, Virginia, United States
| | - Phillip Hylemon
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Center, Richmond, Virginia, United States
- Department of Microbiology, Virginia Commonwealth University/McGuire VA Medical Center, Richmond, Virginia, United States
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, Virginia, United States
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire VA Medical Center, Richmond, Virginia, United States
| |
Collapse
|
2
|
Wang K, Zhou Z, Huang L, Kan Q, Wang Z, Wu W, Yao C. PINK1 dominated mitochondria associated genes signature predicts abdominal aortic aneurysm with metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166919. [PMID: 38251428 DOI: 10.1016/j.bbadis.2023.166919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Abdominal aortic aneurysm (AAA) is typically asymptomatic but a devastating cardiovascular disorder, with overall mortality exceeding 80 % once it ruptures. Some patients with AAA may also have comorbid metabolic syndrome (MS), suggesting a potential common underlying pathogenesis. Mitochondrial dysfunction has been reported as a key factor contributing to the deterioration of both AAA and MS. However, the intricate interplay between metabolism and mitochondrial function, both contributing to the development of AAA, has not been thoroughly explored. In this study, we identified candidate genes related to mitochondrial function in AAA and MS. Subsequently, we developed a nomoscore model comprising hub genes (PINK1, ACSL1, CYP27A1, and SLC25A11), identified through the application of two machine learning algorithms, to predict AAA. We observed a marked disparity in immune infiltration profiles between high- and low-nomoscore groups. Furthermore, we confirmed a significant upregulation of the expression of the four hub genes in AAA tissues. Among these, ACSL1 showed relatively higher expression in LPS-treated RAW264.7 cell lines, while CYP27A1 exhibited a notable decrease. Moreover, SLC25A11 displayed a significant upregulation in AngII-treated VSMCs. Conversely, the expression level of PINK1 declined in LPS-stimulated RAW264.7 cell lines but significantly increased in AngII-treated VSMCs. In vivo experiments revealed that the activation of PINK1-mediated mitophagy inhibited the development of AAA in mice. In this current study, we have innovatively identified four mitochondrial function-related genes through integrated bioinformatic analysis. This discovery sheds light on the regulatory mechanisms and unveils promising therapeutic targets for the comorbidity of AAA and MS.
Collapse
Affiliation(s)
- Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qinghui Kan
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhecun Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Weibin Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 2022; 19:384-408. [PMID: 34876704 PMCID: PMC8891297 DOI: 10.1038/s41423-021-00791-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular metabolism orchestrates the intricate use of tissue fuels for catabolism and anabolism to generate cellular energy and structural components. The emerging field of immunometabolism highlights the importance of cellular metabolism for the maintenance and activities of immune cells. Macrophages are embryo- or adult bone marrow-derived leukocytes that are key for healthy tissue homeostasis but can also contribute to pathologies such as metabolic syndrome, atherosclerosis, fibrosis or cancer. Macrophage metabolism has largely been studied in vitro. However, different organs contain diverse macrophage populations that specialize in distinct and often tissue-specific functions. This context specificity creates diverging metabolic challenges for tissue macrophage populations to fulfill their homeostatic roles in their particular microenvironment and conditions their response in pathological conditions. Here, we outline current knowledge on the metabolic requirements and adaptations of macrophages located in tissues during homeostasis and selected diseases.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| | - Gillian Dunphy
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Molecular Dysfunctions of Mitochondria-Associated Endoplasmic Reticulum Contacts in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2424509. [PMID: 34336087 PMCID: PMC8321742 DOI: 10.1155/2021/2424509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/11/2021] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease that results in the formation of lipid-rich and immune cell-rich plaques in the arterial wall, which has high morbidity and mortality in the world. The mechanism of atherosclerosis is still unclear now. Potential hypotheses involved in atherosclerosis are chronic inflammation theory, lipid percolation theory, mononuclear-macrophage theory, endothelial cell (EC) injury theory, and smooth muscle cell (SMC) mutation theory. Changes of phospholipids, glucose, critical proteins, etc. on mitochondria-associated endoplasmic reticulum membrane (MAM) can cause the progress of atherosclerosis. This review describes the structural and functional interaction between mitochondria and endoplasmic reticulum (ER) and explains the role of critical molecules in the structure of MAM during atherosclerosis.
Collapse
|
5
|
Kakiyama G, Marques D, Takei H, Nittono H, Erickson S, Fuchs M, Rodriguez-Agudo D, Gil G, Hylemon PB, Zhou H, Bajaj JS, Pandak WM. Mitochondrial oxysterol biosynthetic pathway gives evidence for CYP7B1 as controller of regulatory oxysterols. J Steroid Biochem Mol Biol 2019; 189:36-47. [PMID: 30710743 DOI: 10.1016/j.jsbmb.2019.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
The aim of this paper was to more completely study the mitochondrial CYP27A1 initiated acidic pathway of cholesterol metabolism. The mitochondrial CYP27A1 initiated pathway of cholesterol metabolism (acidic pathway) is known to synthesize two well-described vital regulators of cholesterol/lipid homeostasis, (25R)-26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). Both 26HC and 25HC have been shown to be subsequently 7α-hydroxylated by Cyp7b1; reducing their regulatory abilities and furthering their metabolism to chenodeoxycholic acid (CDCA). Cholesterol delivery into the inner mitochondria membrane, where CYP27A1 is located, is considered the pathway's only rate-limiting step. To further explore the pathway, we increased cholesterol transport into mitochondrial CYP27A1 by selectively increased expression of the gene encoding the steroidogenic acute transport protein (StarD1). StarD1 overexpression led to an unanticipated marked down-regulation of oxysterol 7α-hydroxylase (Cyp7b1), a marked increase in 26HC, and the formation of a third vital regulatory oxysterol, 24(S)-hydroxycholesterol (24HC), in B6/129 mice livers. To explore the further metabolism of 24HC, as well as, 25HC and 26HC, characterizations of oxysterols and bile acids using three murine models (StarD1 overexpression, Cyp7b1-/-, Cyp27a1-/-) and human Hep G2 cells were conducted. This report describes the discovery of a new mitochondrial-initiated pathway of oxysterol/bile acid biosynthesis. Just as importantly, it provides evidence for CYP7B1 as a key regulator of three vital intracellular regulatory oxysterol levels.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States.
| | - Dalila Marques
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Sandra Erickson
- School of Medicine, University of California, San Francisco, United States
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Gregorio Gil
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University, United States
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - Jasmohan S Bajaj
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University, United States; Department of Veterans Affairs, Richmond, VA, United States
| |
Collapse
|
6
|
Caridis AM, Lightbody RJ, Tarlton JMR, Dolan S, Graham A. Genetic obesity increases pancreatic expression of mitochondrial proteins which regulate cholesterol efflux in BRIN-BD11 insulinoma cells. Biosci Rep 2019; 39:BSR20181155. [PMID: 30819824 PMCID: PMC6430727 DOI: 10.1042/bsr20181155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pancreatic β-cells are sensitive to fluctuations in cholesterol content, which can damage the insulin secretion pathway, contributing to the aetiology of type 2 diabetes mellitus. Cholesterol efflux to (apo)lipoproteins, via ATP-binding cassette (ABC) transporter A1 (ABCA1), can prevent intracellular cholesterol accumulation; in some peripheral cells, ABCA1-dependent efflux is enhanced by promotion of cholesterol trafficking to, and generation of Liver X receptor (LXR) ligands by, mitochondrial sterol 27-hydroxylase (Cyp27A1 (cytochrome P450 27 A1/sterol 27-hydroxylase)) and its redox partners, adrenodoxin (ADX) and ADX reductase (ADXR). Despite this, the roles of mitochondrial cholesterol trafficking (steroidogenic acute regulatory protein [StAR] and 18-kDa translocator protein [TSPO]) and metabolising proteins in insulin-secreting cells remain wholly uncharacterised. Here, we demonstrate an increase in pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, but not ADX or StAR, in obese (fa/fa) rodents compared with lean (Fa/?) controls. Overexpression of Cyp27A1 alone in BRIN-BD11 cells increased INS2 expression, without affecting lipid metabolism; however, after exposure to low-density lipoprotein (LDL), cholesterol efflux to (apo)lipoprotein acceptors was enhanced in Cyp27A1-overexpressing cells. Co-transfection of Cyp27A1, ADX and ADXR, at a ratio approximating that in pancreatic tissue, stimulated cholesterol efflux to apolipoprotein A-I (apoA-I) in both basal and cholesterol-loaded cells; insulin release was stimulated equally by all acceptors in cholesterol-loaded cells. Thus, genetic obesity increases pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, while modulation of Cyp27A1 and its redox partners promotes cholesterol efflux from insulin-secreting cells to acceptor (apo)lipoproteins; this response may help guard against loss of insulin secretion caused by accumulation of excess intracellular cholesterol.
Collapse
Affiliation(s)
- Anna-Maria Caridis
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Richard J Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jamie M R Tarlton
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
7
|
Melatonin Modulation of Sirtuin-1 Attenuates Liver Injury in a Hypercholesterolemic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516009 PMCID: PMC5817311 DOI: 10.1155/2018/7968452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia increases and exacerbates stress signals leading also to liver damage (LD) and failure. Sirtuin1 (SIRT1) is involved in lifespan extension and it plays an essential role in hepatic lipid metabolism. However, its involvement in liver hypercholesterolemic damage is not yet completely defined. This in vivo study evaluated the role of SIRT1 in the hypercholesterolemic-related LD and, then, investigated how oral supplementation of melatonin, pleiotropic indoleamine, may be protective. Control mice and apolipoprotein E-deficient mice (ApoE−/−) of 6 and 15 weeks of age were treated or not treated with melatonin at the dose of 10 mg/kg/day for 9 weeks. In this study, we evaluated serum biochemical markers, liver SIRT1 expression, and oxidative stress markers. We observed that hypercholesterolemia increased significantly serum cholesterol and triglycerides, reduced significantly liver SIRT1, and, in turn, induced hepatic oxidative stress in untreated ApoE−/− mice with respect to control mice. Interestingly, melatonin treatment improved serum biochemical markers and hepatic morphological impairment and inhibited oxidative stress through its antioxidant properties and also by SIRT1 upregulation. In summary, melatonin oral supplementation may represent a new protective approach to block hypercholesterolemic liver alterations involving also a SIRT1-dependent mechanism.
Collapse
|
8
|
Qiu Y, Sui X, Cao S, Li X, Ning Y, Wang S, Yin L, Zhi X. Steroidogenic Acute Regulatory Protein (StAR) Overexpression Reduces Inflammation and Insulin Resistance in Obese Mice. J Cell Biochem 2017; 118:3932-3942. [DOI: 10.1002/jcb.26046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Qiu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Xianxian Sui
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Shengxuan Cao
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
| | - Yanxia Ning
- Department of Internal Medicine School of Medicine, Virginia Commonwealth University Richmond Virginia
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Lianhua Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Fudan University Shanghai China
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| | - Xiuling Zhi
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences Fudan University Shanghai China
| |
Collapse
|
9
|
Qiu Y, Sui X, Zhan Y, Xu C, Li X, Ning Y, Zhi X, Yin L. Steroidogenic acute regulatory protein (StAR) overexpression attenuates HFD-induced hepatic steatosis and insulin resistance. Biochim Biophys Acta Mol Basis Dis 2017; 1863:978-990. [PMID: 28153708 DOI: 10.1016/j.bbadis.2017.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology. Intracellular lipid accumulation is the first step in the development and progression of NAFLD. Steroidogenic acute regulatory protein (StAR) plays an important role in the synthesis of bile acid and intracellular lipid homeostasis and cholesterol metabolism. We hypothesize that StAR is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. The hypothesis was identified using free fatty acid (FFA)-overloaded NAFLD in vitro model and high-fat diet (HFD)-induced NAFLD mouse model transfected by recombinant adenovirus encoding StAR (StAR). StAR expression was also examined in pathology samples of patients with fatty liver by immunohistochemical staining. We found that the expression level of StAR was reduced in the livers obtained from fatty liver patients and NAFLD mice. Additionally, StAR overexpression decreased the levels of hepatic lipids and maintained the hepatic glucose homeostasis due to the activation of farnesoid x receptor (FXR). StAR overexpression attenuated the impairment of insulin signaling in fatty liver. This protective role of StAR was owing to a reduction of intracellular diacylglycerol levels and the phosphorylation of PKCε. Furthermore, FXR inactivation reversed the observed beneficial effects of StAR. The present study revealed that StAR overexpression can reduce hepatic lipid accumulation, regulate glucose metabolism and attenuate insulin resistance through a mechanism involving the activation of FXR. Our study suggests that StAR may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yanyan Qiu
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xianxian Sui
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongkun Zhan
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaobo Li
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanxia Ning
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Laboratory of Medical Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Lianhua Yin
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
11
|
Ruiz-Laguna J, Vélez JM, Pueyo C, Abril N. Global gene expression profiling using heterologous DNA microarrays to analyze alterations in the transcriptome of Mus spretus mice living in a heavily polluted environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5853-5867. [PMID: 26590064 DOI: 10.1007/s11356-015-5824-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Microarray platforms are a good approach for assessing biological responses to pollution as they enable the simultaneous analyses of changes in the expression of thousands of genes. As an omic and non-targeted methodology, this technique is open to unforeseen responses under particular environmental conditions. In this study, we successfully apply a commercial oligonucleotide microarray containing Mus musculus whole-genome probes to compare and assess the biological effects of living in a heavily polluted settlement, the Domingo Rubio stream (DRS), at the Huelva Estuary (SW Spain), on inhabitant free-living Mus spretus mice. Our microarray results show that mice living in DRS suffer dramatic changes in gene and protein expression compared with reference specimens. DRS mice showed alteration in the oxidative status of hepatocytes, with activation of both the innate and the acquired immune responses and the induction of chronic inflammation, accompanied by metabolic alterations that imply the accumulation of lipids in the liver (hepatic steatosis). The identified deregulated genes may be useful as biomarkers of environmental pollution.
Collapse
Affiliation(s)
- Julia Ruiz-Laguna
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - José M Vélez
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3-UCO), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071, Córdoba, Spain.
| |
Collapse
|
12
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
13
|
Graham A, Allen AM. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses. World J Cardiol 2015; 7:277-286. [PMID: 26015858 PMCID: PMC4438467 DOI: 10.4330/wjc.v7.i5.277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis. Macrophage generation of oxysterol activators of liver X receptors (LXRs), via sterol 27-hydroxylase, is regulated by the rate of flux of cholesterol to the inner mitochondrial membrane, via a complex of cholesterol trafficking proteins. Oxysterols are key signalling molecules, regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production, key features influencing the impact of these cells within atherosclerotic lesions. The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate, but may include steroidogenic acute regulatory protein and translocator protein. There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters (ABCA1, ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages. Thus, molecules which can sustain or improve mitochondrial structure, the function of the electron transport chain, or increase the activity of components of the protein complex involved in cholesterol transfer, may therefore have utility in limiting or regressing atheroma development, reducing the incidence of coronary heart disease and myocardial infarction.
Collapse
|
14
|
Taylor JMW, Allen AM, Graham A. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. Clin Sci (Lond) 2014; 127:603-13. [PMID: 24814875 DOI: 10.1042/cs20140047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to establish mitochondrial cholesterol trafficking 18 kDa translocator protein (TSPO) as a potential therapeutic target, capable of increasing macrophage cholesterol efflux to (apo)lipoprotein acceptors. Expression and activity of TSPO in human (THP-1) macrophages were manipulated genetically and by the use of selective TSPO ligands. Cellular responses were analysed by quantitative PCR (Q-PCR), immunoblotting and radiolabelling, including [3H]cholesterol efflux to (apo)lipoprotein A-I (apoA-I), high-density lipoprotein (HDL) and human serum. Induction of macrophage cholesterol deposition by acetylated low-density lipoprotein (AcLDL) increased expression of TSPO mRNA and protein, reflecting findings in human carotid atherosclerosis. Transient overexpression of TSPO enhanced efflux (E%) of [3H]cholesterol to apoA-I, HDL and human serum compared with empty vector (EV) controls, whereas gene knockdown of TSPO achieved the converse. Ligation of TSPO (using PK11195, FGIN-1-27 and flunitrazepam) triggered increases in [3H]cholesterol efflux, an effect that was amplified in TSPO-overexpressing macrophages. Overexpression of TSPO induced the expression of genes [PPARA (peroxisome-proliferator-activated receptor α), NR1H3 (nuclear receptor 1H3/liver X receptor α), ABCA1 (ATP-binding cassette A1), ABCG4 (ATP-binding cassette G4) and APOE (apolipoprotein E)] and proteins (ABCA1 and PPARα) involved in cholesterol efflux, reduced macrophage neutral lipid mass and lipogenesis and limited cholesterol esterification following exposure to AcLDL. Thus, targeting TSPO reduces macrophage lipid content and prevents macrophage foam cell formation, via enhanced cholesterol efflux to (apo)lipoprotein acceptors.
Collapse
Affiliation(s)
- Janice M W Taylor
- *Department of Life Sciences and the Diabetes Research Group, Institute for Applied Health Research, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, U.K
| | - Anne-Marie Allen
- *Department of Life Sciences and the Diabetes Research Group, Institute for Applied Health Research, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, U.K
| | - Annette Graham
- *Department of Life Sciences and the Diabetes Research Group, Institute for Applied Health Research, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, U.K
| |
Collapse
|
15
|
Ren S, Kim JK, Kakiyama G, Rodriguez-Agudo D, Pandak WM, Min HK, Ning Y. Identification of novel regulatory cholesterol metabolite, 5-cholesten, 3β,25-diol, disulfate. PLoS One 2014; 9:e103621. [PMID: 25072708 PMCID: PMC4114806 DOI: 10.1371/journal.pone.0103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/04/2014] [Indexed: 01/12/2023] Open
Abstract
Oxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Tandem mass spectrometry analysis identified the oxysterol as 5-cholesten-3β, 25-diol, disulfate (25HCDS), and confirmed the structure by comparing with a chemically synthesized compound. Administration of 25HCDS to human THP-1-derived macrophages or HepG2 cells significantly inhibited cholesterol synthesis and markedly decreased lipid levels in vivo in NAFLD mouse models. RT-PCR showed that 25HCDS significantly decreased SREBP-1/2 activities by suppressing expression of their responding genes, including ACC, FAS, and HMG-CoA reductase. Analysis of lipid profiles in the liver tissues showed that administration of 25HCDS significantly decreased cholesterol, free fatty acids, and triglycerides by 30, 25, and 20%, respectively. The results suggest that 25HCDS inhibits lipid biosynthesis via blocking SREBP signaling. We conclude that 25HCDS is a potent regulator of lipid metabolism and propose its biosynthetic pathway.
Collapse
Affiliation(s)
- Shunlin Ren
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| | - Jin Koung Kim
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Genta Kakiyama
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel Rodriguez-Agudo
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William M. Pandak
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Hae-Ki Min
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yanxia Ning
- Department of Medicine, Veterans Affairs McGuire Medical Center/Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
16
|
Ren S, Ning Y. Sulfation of 25-hydroxycholesterol regulates lipid metabolism, inflammatory responses, and cell proliferation. Am J Physiol Endocrinol Metab 2014; 306:E123-30. [PMID: 24302009 PMCID: PMC3920008 DOI: 10.1152/ajpendo.00552.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular lipid accumulation, inflammatory responses, and subsequent apoptosis are the major pathogenic events of metabolic disorders, including atherosclerosis and nonalcoholic fatty liver diseases. Recently, a novel regulatory oxysterol, 5-cholesten-3b, 25-diol 3-sulfate (25HC3S), has been identified, and hydroxysterol sulfotransferase 2B1b (SULT2B1b) has been elucidated as the key enzyme for its biosynthesis from 25-hydroxycholesterol (25HC) via oxysterol sulfation. The product 25HC3S and the substrate 25HC have been shown to coordinately regulate lipid metabolism, inflammatory responses, and cell proliferation in vitro and in vivo. 25HC3S decreases levels of the nuclear liver oxysterol receptor (LXR) and sterol regulatory element-binding proteins (SREBPs), inhibits SREBP processing, subsequently downregulates key enzymes in lipid biosynthesis, decreases intracellular lipid levels in hepatocytes and THP-1-derived macrophages, prevents apoptosis, and promotes cell proliferation in liver tissues. Furthermore, 25HC3S increases nuclear PPARγ and cytosolic IκBα and decreases nuclear NF-κB levels and proinflammatory cytokine expression and secretion when cells are challenged with LPS and TNFα. In contrast to 25HC3S, 25HC, a known LXR ligand, increases nuclear LXR and decreases nuclear PPARs and cytosol IκBα levels. In this review, we summarize our recent findings, including the discovery of the regulatory oxysterol sulfate, its biosynthetic pathway, and its functional mechanism. We also propose that oxysterol sulfation functions as a regulatory signaling pathway.
Collapse
Affiliation(s)
- Shunlin Ren
- Departments of Medicine, McGuire Veterans Affairs Medical Center/Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
17
|
p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene. Cell Death Differ 2013; 20:1415-24. [PMID: 23912709 DOI: 10.1038/cdd.2013.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 02/08/2023] Open
Abstract
p73, a member of the p53 tumor suppressor family, is involved in neurogenesis, sensory pathways, immunity, inflammation, and tumorigenesis. How p73 is able to participate in such a broad spectrum of different biological processes is still largely unknown. Here, we report a novel role of p73 in regulating lipid metabolism by direct transactivation of the promoter of autophagy-related protein 5 (ATG5), a gene whose product is required for autophagosome formation. Following nutrient deprivation, the livers of p73-deficient mice demonstrate a massive accumulation of lipid droplets, together with a low level of autophagy, suggesting that triglyceride hydrolysis into fatty acids is blocked owing to deficient autophagy (macrolipophagy). Compared with wild-type mice, mice functionally deficient in all the p73 isoforms exhibit decreased ATG5 expression and lower levels of autophagy in multiple organs. We further show that the TAp73α is the critical p73 isoform responsible for inducing ATG5 expression in a p53-independent manner and demonstrate that ATG5 gene transfer can correct autophagy and macrolipophagy defects in p73-deficient hepatocytes. These data strongly suggest that the p73-ATG5 axis represents a novel, key pathway for regulating lipid metabolism through autophagy. The identification of p73 as a major regulator of autophagy suggests that it may have an important role in preventing or delaying disease and aging by maintaining a homeostatic control.
Collapse
|
18
|
Abstract
Cholesterol trafficking from the outer to the cholesterol-poor inner mitochondrial membrane requires energized, polarized and actively respiring mitochondria, mediated by a highly regulated multimeric (140-200 kDa) protein complex comprising StAR (steroidogenic acute regulatory protein), mitochondrial TSPO (translocator protein), VDAC (voltage-dependent anion channel), ANT (adenine nucleotide transporter) and associated regulatory proteins. Mitochondrial cholesterol transport is rate-limiting in the CYP27A1 (sterol 27-hydroxylase)-dependent generation of oxysterol ligands for LXR (liver X receptor) transcription factors that regulate the expression of genes encoding proteins in the cholesterol efflux pathway, such as ABC transporters (ATP-binding cassette transporters) ABCA1 and ABCG1. These transporters transfer cholesterol and/or phospholipids across the plasma membrane to (apo)lipoprotein acceptors, generating nascent HDLs (high-density lipoproteins), which can safely transport excess cholesterol through the bloodstream to the liver for excretion in bile. Utilizing information from steroidogenic tissues, we propose that perturbations in mitochondrial function may reduce the efficiency of the cholesterol efflux pathway, favouring accumulation of cholesteryl ester 'foam cells' and allowing the toxic accumulation of free cholesterol at the interface between the endoplasmic reticulum and the mitochondrial membrane. In turn, this will trigger opening of the permeability transition pore, allowing unregulated production of oxysterols via CYP27A1, allowing the accumulation of esterified forms of this oxysterol within human atherosclerotic lesions. Defective cholesterol efflux also induces endoplasmic reticulum stress, proteasomal degradation of ABCA1 and Fas-dependent apoptosis, replicating findings in macrophages in advanced atherosclerotic lesions. Small molecules targeted to mitochondria, capable of sustaining mitochondrial function or improving cholesterol trafficking may aid cholesterol efflux from macrophage 'foam' cells, regressing and stabilizing the atherosclerotic plaque.
Collapse
|
19
|
Tian D, Qiu Y, Zhan Y, Li X, Zhi X, Wang X, Yin L, Ning Y. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability. Cardiovasc Diabetol 2012; 11:144. [PMID: 23170972 PMCID: PMC3537593 DOI: 10.1186/1475-2840-11-144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/16/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. METHODS StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. RESULTS We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the other hand, the role of StAR was inhibited when siRNA was introduced to reduce StAR expression. CONCLUSIONS Our results showed that StAR attenuated lipid synthesis and uptake as well as PA-induced inflammation and reduction in NO bioavailability in aortic endothelial cells. StAR can ameliorate endothelial dysfunction induced by PA via reducing the intracellular lipid levels.
Collapse
Affiliation(s)
- Dai Tian
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
21
|
Uddin MJ, Duy DN, Cinar MU, Tesfaye D, Tholen E, Juengst H, Looft C, Schellander K. Detection of quantitative trait loci affecting serum cholesterol, LDL, HDL, and triglyceride in pigs. BMC Genet 2011; 12:62. [PMID: 21752294 PMCID: PMC3146427 DOI: 10.1186/1471-2156-12-62] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background Serum lipids are associated with many serious cardiovascular diseases and obesity problems. Many quantitative trait loci (QTL) have been reported in the pig mostly for performance traits but very few for the serum lipid traits. In contrast, remarkable numbers of QTL are mapped for serum lipids in humans and mice. Therefore, the objective of this research was to investigate the chromosomal regions influencing the serum level of the total cholesterol (CT), triglyceride (TG), high density protein cholesterol (HDL) and low density protein cholesterol (LDL) in pigs. For this purpose, a total of 330 animals from a Duroc × Pietrain F2 resource population were phenotyped for serum lipids using ELISA and were genotyped by using 122 microsatellite markers covering all porcine autosomes for QTL study in QTL Express. Blood sampling was performed at approximately 175 days before slaughter of the pig. Results Most of the traits were correlated with each other and were influenced by average daily gain, slaughter date and age. A total of 18 QTL including three QTL with imprinting effect were identified on 11 different porcine autosomes. Most of the QTL reached to 5% chromosome-wide (CW) level significance including a QTL at 5% experiment-wide (GW) and a QTL at 1% GW level significance. Of these QTL four were identified for both the CT and LDL and two QTL were identified for both the TG and LDL. Moreover, three chromosomal regions were detected for the HDL/LDL ratio in this study. One QTL for HDL on SSC2 and two QTL for TG on SSC11 and 17 were detected with imprinting effect. The highly significant QTL (1% GW) was detected for LDL at 82 cM on SSC1, whereas significant QTL (5% GW) was identified for HDL/LDL on SSC1 at 87 cM. Chromosomal regions with pleiotropic effects were detected for correlated traits on SSC1, 7 and 12. Most of the QTL identified for serum lipid traits correspond with the previously reported QTL for similar traits in other mammals. Two novel QTL on SSC16 for HDL and HDL/LDL ratio and an imprinted QTL on SSS17 for TG were detected in the pig for the first time. Conclusion The newly identified QTL are potentially involved in lipid metabolism. The results of this work shed new light on the genetic background of serum lipid concentrations and these findings will be helpful to identify candidate genes in these QTL regions related to lipid metabolism and serum lipid concentrations in pigs.
Collapse
Affiliation(s)
- Muhammad Jasim Uddin
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Overexpression of STARD3 in human monocyte/macrophages induces an anti-atherogenic lipid phenotype. Clin Sci (Lond) 2010; 119:265-72. [PMID: 20491656 PMCID: PMC2891001 DOI: 10.1042/cs20100266] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dysregulated macrophage cholesterol homoeostasis lies at the heart of early and developing atheroma, and removal of excess cholesterol from macrophage foam cells, by efficient transport mechanisms, is central to stabilization and regression of atherosclerotic lesions. The present study demonstrates that transient overexpression of STARD3 {START [StAR (steroidogenic acute regulatory protein)-related lipid transfer] domain 3; also known as MLN64 (metastatic lymph node 64)}, an endosomal cholesterol transporter and member of the 'START' family of lipid trafficking proteins, induces significant increases in macrophage ABCA1 (ATP-binding cassette transporter A1) mRNA and protein, enhances [(3)H]cholesterol efflux to apo (apolipoprotein) AI, and reduces biosynthesis of cholesterol, cholesteryl ester, fatty acids, triacylglycerol and phospholipids from [(14)C]acetate, compared with controls. Notably, overexpression of STARD3 prevents increases in cholesterol esterification in response to acetylated LDL (low-density lipoprotein), blocking cholesteryl ester deposition. Thus enhanced endosomal trafficking via STARD3 induces an anti-atherogenic macrophage lipid phenotype, positing a potentially therapeutic strategy.
Collapse
|
23
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Becker C, Riedmaier I, Reiter M, Tichopad A, Pfaffl MW, Meyer HH. Effect of trenbolone acetate plus estradiol on transcriptional regulation of metabolism pathways in bovine liver. Horm Mol Biol Clin Investig 2010; 2:257-65. [DOI: 10.1515/hmbci.2010.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/26/2010] [Indexed: 11/15/2022]
Abstract
AbstractThe use of anabolic steroids is forbidden for food producing animals in the EU. Owing to the advantages of anabolics for production profitability, illegal application is appealing. Anabolics are known to influence gene expression of several tissues. We focused on the liver because of its important role in nutrient and hormone metabolism. The aim of the present study was to find differentially regulated metabolic pathways, which might be used as treatment biomarkers.A total of 18 Nguni heifers were allocated equally to a control group and a treatment group and were implanted with Revalor H. Expression of 34 target genes was measured using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR).Upregulation of androgen receptor and insulin-like growth factor 1 (IGF-1) and downregulation of IGF-2, insulin-like growth factor binding protein 2, steroid hormone binding globulin, insulin receptor α, insulin receptor β, tyrosine aminotransferase, 17β-hydroxy steroid dehydrogenase 2,3-hydroxy-methylglutaryl-coenzym-A-synthase, cathepsin B, hepatocyte growth factor, steroidogenic acute regulatory protein, apolipoprotein 2 and tumor necrosis factor α was demonstrated.Several biochemical pathways showed different regulations on mRNA level under the influence of trenbolone acetate plus estradiol. The inhibition of nutrient metabolism and protein breakdown seems to support growth processes. IGF-1 plays an important role in growth and development and thus the upregulation of IGF-1 could be responsible for the stimulation of growth in treated animals. The upregulation of IGF-1 could also be revealed as a possible risk factor for the generation of artherosclerotic plaques, which are known as long-term side effects following the use of anabolic steroids. Principal components analysis of RT-qPCR results showed that both groups arrange together and can be clearly separated. Therefore, these might be used as possible biomarkers in bovine liver.
Collapse
|
25
|
Hou L, Lu C, Huang Y, Chen S, Hua L, Qian R. Effect of hyperlipidemia on the expression of circadian genes in apolipoprotein E knock-out atherosclerotic mice. Lipids Health Dis 2009; 8:60. [PMID: 20040117 PMCID: PMC2807425 DOI: 10.1186/1476-511x-8-60] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
Background Circadian patterns of cardiovascular vulnerability were well characterized, with a peak incidence of acute myocardial infarction and stroke secondary to atherosclerosis in the morning, which showed the circadian clock may take part in the pathological process of atherosclerosis induced by hyperlipidemia. Hence, the effect of hyperlipidemia on the expression of circadian genes was investigated in atherosclerotic mouse model. Results In apoE-/-mice on regular chow or high-fat diet, an atherosclerotic mouse model induced by heperlipidemia, we found that the peak concentration of serum lipids was showed four or eight hours later in apoE-/- mice, compared to C57BL/6J mice. During the artificial light period, a reduce in circulating level of serum lipids corresponded with the observed increase of the expression levels of some the transcription factors involved in lipid metabolism, such as PPARα and RXRα. Meanwhile, the expression of circadian genes was changed following with amplitude reduced or the peak mRNA level delayed. Conclusions Our studies indicated that heperlipidemia altered both the rhythmicity and expression of circadian genes. Diet-induced circadian disruption may affect the process of atherosclerosis and some acute cardiovascular disease.
Collapse
Affiliation(s)
- Likun Hou
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| | | | | | | | | | | |
Collapse
|
26
|
Bai Q, Li X, Ning Y, Zhao F, Yin L. Mitochondrial cholesterol transporter, StAR, inhibits human THP-1 monocyte-derived macrophage apoptosis. Lipids 2009; 45:29-36. [PMID: 19946756 DOI: 10.1007/s11745-009-3375-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/10/2009] [Indexed: 01/12/2023]
Abstract
Steroidogenic acute regulatory protein (StAR) plays an important role in the maintenance of intracellular lipid homeostasis. Macrophages are the key cellular player in the pathophysiology of atherosclerosis. Imbalance of macrophage lipid homeostasis causes cellular apoptosis, which is the key process in the initiation of atherosclerosis. The present study has investigated the effects of StAR in the apoptotic process of human THP-1 derived macrophages induced by serum withdrawal or Ox-LDL. Overexpression of StAR significantly decreased the number of apoptotic macrophages by decreasing the expression of pro-apoptotic genes Caspase-3 and Bax mRNA and protein levels, as well as through increasing expression of anti-apoptotic gene Bcl-2 mRNA and protein levels in the absence and presence of Ox-LDL. The results indicate that StAR plays an important role in macrophage and foam cell apoptotic processing, which may provide a potential method for preventing atherosclerosis.
Collapse
Affiliation(s)
- Qianming Bai
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, P.O. Box 224, 138 Yixueyuan Road, 200032 Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|