1
|
Ma S, Xi G, Feng X, Yang Q, Peng Z, Qiu D, Hu Y, Zhao X, Cheng L, Duan S. Bio-synthesis of bacterial cellulose from ramie textile waste for high-efficiency Cu(II) adsorption. Sci Rep 2025; 15:18715. [PMID: 40437005 PMCID: PMC12120067 DOI: 10.1038/s41598-025-02310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
The current study aims at the high-value utilization of ramie textile waste and explores a bio-synthetic pathway to convert waste ramie fibers into bacterial cellulose (BC). Ramie fibers were treated with commercial cellulase (C2730) and the hydrolysate was used as a base medium (RFH) for BC synthesis by fermentation. The enzymatic hydrolysis parameters were optimized by response surface methodology, yielding an optimal temperature of 40 °C, 64 h, and an enzyme dosage of 5.7%. Under these optimized conditions, the resultant yield of reducing sugars was 31.24 ± 0.37 g/L. And then the Novacetimonas hansenii HX1 strain isolated from kombucha was used for fermentation production of BC. The study found that adding yeast extract into RFH can significantly increase BC production, and 7.2 g/L BC can be produced within 7 days. The physical and chemical properties of BC were then analyzed, including Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Thermogravimetric analysis (TGA), confirming its type Iα cellulose structure and good thermal stability. In particular, BC shows efficient adsorption capacity for Cu(II) ions in aqueous solution, with the highest adsorption efficiency reaching 95.62%. This research not only provides a new way to recycle textile waste, but also lays the foundation for the application of BC in the field of environmental remediation.
Collapse
Affiliation(s)
- Shihang Ma
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Guoguo Xi
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Xiangyuan Feng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Qi Yang
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zhenghong Peng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuqin Hu
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xin Zhao
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Lifeng Cheng
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Shengwen Duan
- Institute of Bast Fiber Crops/Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
2
|
Liu Z, Siddique F, Wei Y, Haque MA, Na L, Yang X, Lin CSK. Efficient Production of Bacterial Cellulose Using Komagataeibacter sucrofermentans on Sustainable Feedstocks. CHEMSUSCHEM 2025; 18:e202401578. [PMID: 39436763 DOI: 10.1002/cssc.202401578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The production of bacterial cellulose (BC) has indeed garnered global attention due to its versatile properties and applications. Despite potential benefits, the challenges like low productivity, high fermentation costs, and expensive culture media hinder its industrialization. Utilizing low-cost substrates, especially waste streams, can help address the challenges. In this study, waste feedstocks such as restaurant leftovers, oranges, and grapefruit from canteens and supermarkets were valorized for BC production by Komagataeibacter sucrofermentans. Orange juice is a fascinating substrate with a highest concentration of 20.6 g/L and productivity of 2.05 g/L/d. Using HS medium with supplementary ions, organic acids, ethanol, and various carbon sources is a strategic approach for enhancing BC production. The study reveals that the addition of organic acids or ethanol moderately increased BC production, while ions inhibit BC synthesis, highlighting the complex interplay between various cultivation medium components. Additionally, fermentation with K. sucrofermentans using single and mixed carbon sources was conducted to elucidate the potential metabolic mechanism of BC production. Through alkaline treatment and drying in a 30 °C incubator, we produced the highest quality BC with 92.09 % crystallinity. Overall, the study enhances BC production knowledge and provides green and sustainable strategies for fermentative BC production.
Collapse
Affiliation(s)
- Ziyao Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Faiza Siddique
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yan Wei
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, TX. 77843, USA
| | - Li Na
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
3
|
Rezaei M, Azin M, Zare D. Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques. Int J Biol Macromol 2025; 293:139934. [PMID: 39818388 DOI: 10.1016/j.ijbiomac.2025.139934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/22/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains. Using UV mutagenesis and Adaptive Laboratory Evolution (ALE), production efficiency increased over sixfold. Strains isolated from vinegar were screened and genetically tested, revealing a strain closely related (99.85 %) to Komagataeibacter sucrofermentans (NCBI code AJ007698). This strain, designated PP177480, achieved a productivity of 9.3 g/L, surpassing the standard strain's (K. xylinus PTCC 1734) yield of 1.31 g/L. Scanning electron microscopy (SEM) showed larger nanopore sizes in the cellulose structure of the selected strain. X-ray Diffraction (XRD) analysis confirmed that bacterial cellulose from both strains is similar to cellulose I, with crystallite sizes of 25 nm for the selected strain and 12.9 nm for the standard strain. Crystallinity percentages were 62.45 % for the selected strain and 72.52 % for the standard strain, and Fourier-transform infrared spectroscopy (FTIR) showed only a slight increase in the amorphous region of the selected strain.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran
| | - Mehrdad Azin
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.
| | - Davood Zare
- Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran
| |
Collapse
|
4
|
Fatima A, Ul-Islam M, Yasir S, Khan S, Manan S, Shehzad A, Ahmad MW, Al-Shannaq R, Islam SU, Abbas Y, Subhan F, Sabour AAA, Alshiekheid MA, Ullah MW. Ex situ fabrication and bioactivity characterization of Neem and Sage-infused bacterial cellulose membranes for sustainable antimicrobial applications. Int J Biol Macromol 2025; 287:138433. [PMID: 39647734 DOI: 10.1016/j.ijbiomac.2024.138433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
This study presents the ex situ development and characterization of bacterial cellulose (BC) membranes loaded with bioactive Sage and Neem extracts for enhanced antimicrobial applications. Utilizing discarded fruit waste as a cost-effective carbon source, BC production was optimized, yielding membranes with improved properties. Neem and Sage extracts, obtained via Soxhlet extraction, exhibited significant antibacterial activity against Escherichia coli and Staphylococcus aureus, with minimum inhibitory concentrations of 3.125 mg/mL and 25 mg/mL, respectively, for Neem extract, and 25 mg/mL and 50 mg/mL for Sage extract. These extracts (20 wt%) were successfully incorporated into BC membranes ex situ, resulting in BC-Neem (BC-N) and BC-Sage (BC-S) composites. Fourier-transform infrared spectroscopy (FTIR) confirmed the chemical interactions between the extracts and the BC matrix, revealing the introduction of new functional groups and enhancing the composite properties. Scanning electron microscopy (SEM) illustrated changes in morphology, indicating deeper penetration and attachment of the extracts within the BC structure. Quantitative analysis of water holding capacity demonstrated that BC-N and BC-S absorbed about 90 times water of their dry weight. Antibacterial assays through the colony-forming unit method showed that BC-N significantly inhibited S. aureus growth by 78 % and E. coli by 51 %, while BC-S exhibited a 48 % reduction against S. aureus. Agar disc-diffusion assay showed the formation of inhibition zones of 1.2 cm and 0.1 cm by BC-N against S. aureus and E. coli, respectively, in contrast to 0.2 cm and no inhibition by BC-S composite. These results highlight the potential of bioactive plant extract-loaded BC membranes as effective antimicrobial agents, offering a sustainable alternative to conventional materials in medical and food packaging applications.
Collapse
Affiliation(s)
- Atiya Fatima
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman.
| | - Sumayia Yasir
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Shaukat Khan
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Sehrish Manan
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Adeeb Shehzad
- Biodiversity Unit, Research Centre, Dhofar University, Salalah 211, Oman
| | - Md Wasi Ahmad
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Refat Al-Shannaq
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman
| | - Salman Ul Islam
- Department of Pharmacy, International Institute of Science, Arts and Technology, Gujranwala 52250, Pakistan
| | - Yawar Abbas
- Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
5
|
Da Silva Pereira EH, Nicevic M, Garcia EL, Moritz VF, Ozcelik ZE, Tas BA, Fournet MB. Development of Antimicrobial Blends of Bacteria Nanocellulose Derived from Plastic Waste and Polyhydroxybutyrate Enhanced with Essential Oils. Polymers (Basel) 2024; 16:3490. [PMID: 39771342 PMCID: PMC11728516 DOI: 10.3390/polym16243490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The escalating global concern regarding plastic waste accumulation and its detrimental environmental impact has driven the exploration of sustainable alternatives to conventional petroleum-based plastics. This study investigates the development of antimicrobial blends of bacterial nanocellulose (BNC) derived from plastic waste and polyhydroxyalkanoates (PHB), further enhanced with essential oils. The antimicrobial activity of the resulting BNC/PHB blends was tested in vitro against Escherichia coli, Staphylococcus aureus, and Candida albicans. The incorporation of essential oils, particularly cinnamon oil, significantly enhanced the antimicrobial properties of the BNC/PHB blends. The BNC with 5% PHB blend exhibited the highest antifungal inhibition against C. albicans at 90.25%. Additionally, blends with 2% and 10% PHB also showed antifungal activity, inhibiting 68% of C. albicans growth. These findings highlight the potential of incorporating essential oils into BNC/PHB blends to create effective antimicrobial materials. The study concludes that enhancing the antimicrobial properties of BNC/PHB significantly broadens its potential applications across various sectors, including wound dressings, nanofiltration masks, controlled-release fertilizers, and active packaging.
Collapse
Affiliation(s)
- Everton Henrique Da Silva Pereira
- PRISM, Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, Co., Dublin Rd, N37 HD68 Westmeath, Ireland; (M.N.); (E.L.G.); (V.F.M.); (Z.E.O.); (B.A.T.); (M.B.F.)
| | | | | | | | | | | | | |
Collapse
|
6
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
7
|
Henry S, Dhital S, Sumer H, Butardo V. Solid-State Fermentation of Cereal Waste Improves the Bioavailability and Yield of Bacterial Cellulose Production by a Novacetimonas sp. Isolate. Foods 2024; 13:3052. [PMID: 39410086 PMCID: PMC11475563 DOI: 10.3390/foods13193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Cereal wastes such as rice bran and cereal dust are valuable yet underutilised by-products of grain processing. This study aimed to bio-convert these wastes into bacterial cellulose (BC), an emerging sustainable and renewable biomaterial, via an inexpensive solid-state fermentation (SSF) pre-treatment using three mould isolates. Medium substitution by directly using untreated rice bran or cereal dust did not significantly increase the yield of bacterial cellulose produced by Novacetimonas sp. (NCBI accession number PP421219) compared to the standard Hestrin-Schramm (HS) medium. In contrast, rice bran fermented with Rhizopus oligosporus yielded the highest bacterial cellulose (1.55 ± 0.6 g/L dry weight) compared to the untreated control (0.45 ± 0.1 g/L dry weight), demonstrating an up to 22% increase in yield. Using the SSF process, the media production costs were reduced by up to 90% compared to the standard HS medium. Physicochemical characterisation using SEM, EDS, FTIR, XPS, XRD, and TGA was performed to gain insights into the internal structure, morphology, and chemical bonding of differently produced BC, which revealed comparable biopolymer properties between BC produced in standard and waste-based media. Hence, our findings demonstrate the effectiveness of fungal SSF for transforming abundant cereal waste into BC, providing a circular economy solution to reduce waste and convert it into by-products to enhance the sustainability of the cereal industry.
Collapse
Affiliation(s)
- Shriya Henry
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| | - Vito Butardo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia; (S.H.); (H.S.)
| |
Collapse
|
8
|
Núñez D, Oyarzún P, González S, Martínez I. Toward biomanufacturing of next-generation bacterial nanocellulose (BNC)-based materials with tailored properties: A review on genetic engineering approaches. Biotechnol Adv 2024; 74:108390. [PMID: 38823654 DOI: 10.1016/j.biotechadv.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Bacterial nanocellulose (BNC) is a biopolymer that is drawing significant attention for a wide range of applications thanks to its unique structure and excellent properties, such as high purity, mechanical strength, high water holding capacity and biocompatibility. Nevertheless, the biomanufacturing of BNC is hindered due to its low yield, the instability of microbial strains and cost limitations that prevent it from being mass-produced on a large scale. Various approaches have been developed to address these problems by genetically modifying strains and to produce BNC-based biomaterials with added value. These works are summarized and discussed in the present article, which include the overexpression and knockout of genes related and not related with the nanocellulose biosynthetic operon, the application of synthetic biology approaches and CRISPR/Cas techniques to modulate BNC biosynthesis. Further discussion is provided on functionalized BNC-based biomaterials with tailored properties that are incorporated in-vivo during its biosynthesis using genetically modified strains either in single or co-culture systems (in-vivo manufacturing). This novel strategy holds potential to open the road toward cost-effective production processes and to find novel applications in a variety of technology and industrial fields.
Collapse
Affiliation(s)
- Dariela Núñez
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Patricio Oyarzún
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Sebastián González
- Laboratorio de Biotecnología y Materiales Avanzados, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
| | - Irene Martínez
- Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago, Chile; Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Beauchef 851, Santiago, Chile.
| |
Collapse
|
9
|
Shahaban OPS, Khasherao BY, Shams R, Dar AH, Dash KK. Recent advancements in development and application of microbial cellulose in food and non-food systems. Food Sci Biotechnol 2024; 33:1529-1540. [PMID: 38623437 PMCID: PMC11016021 DOI: 10.1007/s10068-024-01524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 04/17/2024] Open
Abstract
Microbial cellulose is a fermented form of very pure cellulose with a fibrous structure. The media rich in glucose or other carbon sources are fermented by bacteria to produce microbial cellulose. The bacteria use the carbon to produce cellulose, which grows as a dense, gel-like mat on the surface of the medium. The product was then collected, cleaned, and reused in various ways. The properties of microbial cellulose, such as water holding capacity, gas permeability, and ability to form a flexible, transparent film make it intriguing for food applications. Non-digestible microbial cellulose has been shown to improve digestive health and may have further advantages. It is also very absorbent, making it a great option for use in wound dressings. The review discusses the generation of microbial cellulose and several potential applications of microbial cellulose in fields including pharmacy, biology, materials research, and the food industry.
Collapse
Affiliation(s)
- O. P. Shemil Shahaban
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Bhosale Yuvraj Khasherao
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology Kashmir, Awantipora, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology Malda, Maligram, West Bengal India
| |
Collapse
|
10
|
Fei S, Fu M, Kang J, Luo J, Wang Y, Jia J, Liu S, Li C. Enhancing bacterial cellulose production of Komagataeibacter nataicola through fermented coconut water by Saccharomyces cerevisiae: A metabonomics approach. Curr Res Food Sci 2024; 8:100761. [PMID: 38774267 PMCID: PMC11107218 DOI: 10.1016/j.crfs.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Nata de coco, an edible bacterial cellulose (BC) product, is a traditional dessert fermented in coconut water. Production of Nata de coco by Komagataeibacter nataicola is enhanced by pre-fermented coconut water, but its instability is a challenge. Here, BC production by K. nataicola Y19 was significantly improved by Saccharomyces cerevisiae 84-3 through shaping the metabolite profile of the coconut water. Different fermentation time with S. cerevisiae 84-3 resulted in distinct metabolite profiles and different promoting effect on BC yield. Compared to unfermented coconut water, coconut water fermented by S. cerevisiae 84-3 for 1d and 7d enhanced BC yield by 14.1-fold and 5.63-fold, respectively. Analysis between unfermented coconut water and 1d-fermented coconut water showed 129 significantly different metabolites, including organic acids, amino acids, nucleotides, and their derivatives. Prolonged fermentation for 7d changed levels of 155 metabolites belongs to organic acids, amino acids, nucleotides and their derivatives. Spearman correlation analysis further revealed that 17 metabolites were positively correlated with BC yield and 21 metabolites were negatively correlated with BC yield. These metabolites may affect energy metabolism, cell signaling, membrane integrity, and BC production by K. nataicola Y19. The further verification experiment gave the view that BC yield was not only closely related to the types of metabolites but also the concentration of metabolites. This study provides a novel theoretical framework for a highly efficient BC fermentation system utilizing stable fermented coconut water mediums.
Collapse
Affiliation(s)
- Shuangwen Fei
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Meijuan Fu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jiaxi Luo
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yanmei Wang
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jia Jia
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou, 570228, China
| |
Collapse
|
11
|
Sreedharan M, Vijayamma R, Liyaskina E, Revin VV, Ullah MW, Shi Z, Yang G, Grohens Y, Kalarikkal N, Ali Khan K, Thomas S. Nanocellulose-Based Hybrid Scaffolds for Skin and Bone Tissue Engineering: A 10-Year Overview. Biomacromolecules 2024; 25:2136-2155. [PMID: 38448083 DOI: 10.1021/acs.biomac.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Cellulose, the most abundant polymer on Earth, has been widely utilized in its nanoform due to its excellent properties, finding applications across various scientific fields. As the demand for nanocellulose continues to rise and its ease of use becomes apparent, there has been a significant increase in research publications centered on this biomaterial. Nanocellulose, in its different forms, has shown tremendous promise as a tissue engineered scaffold for regeneration and repair. Particularly, nanocellulose-based composites and scaffolds have emerged as highly demanding materials for both soft and hard tissue engineering. Medical practitioners have traditionally relied on collagen and its analogue, gelatin, for treating tissue damage. However, the limited mechanical strength of these biopolymers restricts their direct use in various applications. This issue can be overcome by making hybrids of these biopolymers with nanocellulose. This review presents a comprehensive analysis of the recent and most relevant publications focusing on hybrid composites of collagen and gelatin with a specific emphasis on their combination with nanocellulose. While bone and skin tissue engineering represents two areas where a majority of researchers are concentrating their efforts, this review highlights the use of nanocellulose-based hybrids in these contexts.
Collapse
Affiliation(s)
- Mridula Sreedharan
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Raji Vijayamma
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Elena Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, Saransk 430005, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yves Grohens
- Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56321 Lorient, France
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
12
|
Płoska J, Garbowska M, Rybak K, Berthold-Pluta A, Stasiak-Różańska L. Study on application of biocellulose-based material for cheese packaging. Int J Biol Macromol 2024; 264:130433. [PMID: 38408577 DOI: 10.1016/j.ijbiomac.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bacterial cellulose (BC, biocellulose) is a natural polymer of microbiological origin that meets the criteria of a biomaterial for food packaging. The aim of the research was to obtain biocellulose and test its chemical as well as physical characterization as a potential packaging for Dutch-type cheeses. Four variants of biocellulose-based material were obtained: not grinded and grinded variants obtained from YPM medium (YPM-BCNG and YPM-BCG, respectively) and not grinded and grinded variants from acid whey (AW) (AW-BCNG and AW-BCG, respectively). It was demonstrated that AW-BCNG exhibited the highest thermostability and the highest degradation temperature (348 °C). YPM-BCG and YPM-BCNG demonstrated higher sorption properties (approx. 40 %) compared to AW-BCG and AW-BCNG (approx. 15 %). Cheese packaged in biocellulose (except for YPM-BCNG) did not differ in water, fat, or protein content compared to the control cheese. All of the biocellulose packaging variants provided the cheeses with protection against unfavourable microflora. It was demonstrated that cheeses packaged in biocellulose were characterized by lower hardness, fracturability, gumminess, and chewiness than the control cheese sample. The results obtained indicate that BC may be a suitable packaging material for ripening cheeses, which shows a positive impact on selected product features.
Collapse
Affiliation(s)
- J Płoska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland.
| | - M Garbowska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - K Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - A Berthold-Pluta
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - L Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| |
Collapse
|
13
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
14
|
Lee J, An HE, Lee KH, Kim S, Park C, Kim CB, Yoo HY. Identification of Gluconacetobacter xylinus LYP25 and application to bacterial cellulose production in biomass hydrolysate with acetic acid. Int J Biol Macromol 2024; 261:129597. [PMID: 38266828 DOI: 10.1016/j.ijbiomac.2024.129597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Bacterial cellulose (BC) is a remarkable biomacromolecule with potential applications in food, biomedical, and other industries. However, the low economic feasibility of BC production processes hinders its industrialization. In our previous work, we obtained candidate strains with improved BC production through random mutations in Gluconacetobacter. In this study, the molecular identification of LYP25 strain with significantly improved productivity, the development of chestnut pericarp (CP) hydrolysate medium, and its application in BC fermentation were performed for cost-effective BC production process. As a result, the mutant strain was identified as Gluconacetobacter xylinus. The CP hydrolysate (CPH) medium contained 30 g/L glucose with 0.4 g/L acetic acid, whereas other candidates known to inhibit fermentation were not detected. Although acetic acid is generally known as a fermentation inhibitor, it improves the BC production by G. xylinus when present within about 5 g/L in the medium. Fermentation of G. xylinus LYP25 in CPH medium resulted in 17.3 g/L BC, a 33 % improvement in production compared to the control medium, and BC from the experimental and control groups had similar physicochemical properties. Finally, the overall process of BC production from biomass was evaluated and our proposed platform showed the highest yield (17.9 g BC/100 g biomass).
Collapse
Affiliation(s)
- Jeongho Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Hyung-Eun An
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea; Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-Ro, Guro-Gu, Seoul 08221, Republic of Korea
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Chang-Bae Kim
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea.
| |
Collapse
|
15
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
16
|
Saddique A, Kim JC, Bae J, Cheong IW. Low-temperature, ultra-fast, and recyclable self-healing nanocomposites reinforced with non-solvent silylated modified cellulose nanocrystals. Int J Biol Macromol 2024; 254:127984. [PMID: 37951429 DOI: 10.1016/j.ijbiomac.2023.127984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Developing polymeric materials with remarkable mechanical properties and fast self-healing performance even at low temperatures is challenging. Herein, the polymeric nanocomposites containing silane-treated cellulose nanocrystals (SCNC) with ultrafast self-healing and exceptional mechanical characteristics were developed even at low temperatures. First, CNC is modified with a cyclic silane coupling agent using an eco-friendly chemical vapor deposition method. The nanocomposite was then fabricated by blending SCNC with matrix prepolymer, prepared from monomers that possess lower critical solution temperature, followed by the inclusion of dibutyltin dilaurate and hexamethylene diisocyanate. The self-healing capability of the novel SCNC/polymer nanocomposites was enhanced remarkably by increasing the content of SCNC (0-3 wt%) and reaching (≥99 %) at temperatures (5 & 25 °C) within <20 min. Moreover, SCNC-3 showed a toughness of (2498 MJ/m3) and SCNC-5 displayed a robust tensile strength of (22.94 ± 0.4 MPa) whereas SCNC-0 exhibited a lower tensile strength (7.4 ± 03 MPa) and toughness of (958 MJ/m3). Additionally, the nanocomposites retain their original mechanical properties after healing at temperatures (5 & 25 °C) owing to the formation of hydrogen bonds via incorporation of the SCNC. These novel SCNC-based self-healable nanocomposites with tunable mechanical properties offer novel insight into preparing damage and temperature-responsive flexible and wearable devices.
Collapse
Affiliation(s)
- Anam Saddique
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jin Chul Kim
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea.
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA; Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA.
| | - In Woo Cheong
- Department of Applied Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
17
|
Kashcheyeva EI, Korchagina AA, Gismatulina YA, Gladysheva EK, Budaeva VV, Sakovich GV. Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose from Lignocellulose of Energy Crop. Polymers (Basel) 2023; 16:42. [PMID: 38201707 PMCID: PMC10780700 DOI: 10.3390/polym16010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This study is focused on exploring the feasibility of simultaneously producing the two products, cellulose nitrates (CNs) and bacterial cellulose (BC), from Miscanthus × giganteus. The starting cellulose for them was isolated by successive treatments of the feedstock with HNO3 and NaOH solutions. The cellulose was subjected to enzymatic hydrolysis for 2, 8, and 24 h. The cellulose samples after the hydrolysis were distinct in structure from the starting sample (degree of polymerization (DP) 1770, degree of crystallinity (DC) 64%) and between each other (DP 1510-1760, DC 72-75%). The nitration showed that these samples and the starting cellulose could successfully be nitrated to furnish acetone-soluble CNs. Extending the hydrolysis time from 2 h to 24 h led to an enhanced yield of CNs from 116 to 131%, with the nitrogen content and the viscosity of the CN samples increasing from 11.35 to 11.83% and from 94 to 119 mPa·s, respectively. The SEM analysis demonstrated that CNs retained the fiber shape. The IR spectroscopy confirmed that the synthesized material was specifically CNs, as evidenced by the characteristic frequencies of 1657-1659, 1277, 832-833, 747, and 688-690 cm-1. Nutrient media derived from the hydrolyzates obtained in 8 h and 24 h were of good quality for the synthesis of BC, with yields of 11.1% and 9.6%, respectively. The BC samples had a reticulate structure made of interlaced microfibrils with 65 and 81 nm widths and DPs of 2100 and 2300, respectively. It is for the first time that such an approach for the simultaneous production of CNs and BC has been employed.
Collapse
Affiliation(s)
- Ekaterina I. Kashcheyeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (A.A.K.); (Y.A.G.); (V.V.B.)
| | | | | | - Evgenia K. Gladysheva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (A.A.K.); (Y.A.G.); (V.V.B.)
| | | | | |
Collapse
|
18
|
Revin VV, Liyaskina EV, Parchaykina MV, Kurgaeva IV, Efremova KV, Novokuptsev NV. Production of Bacterial Exopolysaccharides: Xanthan and Bacterial Cellulose. Int J Mol Sci 2023; 24:14608. [PMID: 37834056 PMCID: PMC10572569 DOI: 10.3390/ijms241914608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, degradable biopolymers have become increasingly important as potential environmentally friendly biomaterials, providing a wide range of applications in various fields. Bacterial exopolysaccharides (EPSs) are biomacromolecules, which due to their unique properties have found applications in biomedicine, foodstuff, textiles, cosmetics, petroleum, pharmaceuticals, nanoelectronics, and environmental remediation. One of the important commercial polysaccharides produced on an industrial scale is xanthan. In recent years, the range of its application has expanded significantly. Bacterial cellulose (BC) is another unique EPS with a rapidly increasing range of applications. Due to the great prospects for their practical application, the development of their highly efficient production remains an important task. The present review summarizes the strategies for the cost-effective production of such important biomacromolecules as xanthan and BC and demonstrates for the first time common approaches to their efficient production and to obtaining new functional materials for a wide range of applications, including wound healing, drug delivery, tissue engineering, environmental remediation, nanoelectronics, and 3D bioprinting. In the end, we discuss present limitations of xanthan and BC production and the line of future research.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (E.V.L.); (M.V.P.); (I.V.K.); (K.V.E.); (N.V.N.)
| | | | | | | | | | | |
Collapse
|
19
|
Skiba EA, Shavyrkina NA, Skiba MA, Mironova GF, Budaeva VV. Biosynthesis of Bacterial Nanocellulose from Low-Cost Cellulosic Feedstocks: Effect of Microbial Producer. Int J Mol Sci 2023; 24:14401. [PMID: 37762703 PMCID: PMC10531556 DOI: 10.3390/ijms241814401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Biodegradable bacterial nanocellulose (BNC) is a highly in-demand but expensive polymer, and the reduction of its production cost is an important task. The present study aimed to biosynthesize BNC on biologically high-quality hydrolyzate media prepared from miscanthus and oat hulls, and to explore the properties of the resultant BNC depending on the microbial producer used. In this study, three microbial producers were utilized for the biosynthesis of BNC: individual strains Komagataeibacter xylinus B-12429 and Komagataeibacter xylinus B-12431, and symbiotic Medusomyces gisevii Sa-12. The use of symbiotic Medusomyces gisevii Sa-12 was found to have technological benefits: nutrient media require no mineral salts or growth factors, and pasteurization is sufficient for the nutrient medium instead of sterilization. The yield of BNCs produced by the symbiotic culture turned out to be 44-65% higher than that for the individual strains. The physicochemical properties of BNC, such as nanofibril width, degree of polymerization, elastic modulus, Iα allomorph content and crystallinity index, are most notably dependent on the microbial producer type rather than the nutrient medium composition. This is the first study in which we investigated the biosynthesis of BNC on hydrolyzate media prepared from miscanthus and oat hulls under the same conditions but using different microbial producers, and showed that it is advisable to use the symbiotic culture. The choice of a microbial producer is grounded on the yield, production process simplification and properties. The BNC production from technical raw materials would cover considerable demands of BNC for technical purposes without competing with food resources.
Collapse
Affiliation(s)
- Ekaterina A. Skiba
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Nadezhda A. Shavyrkina
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Maria A. Skiba
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Square, 125047 Moscow, Russia;
| | - Galina F. Mironova
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| | - Vera V. Budaeva
- Laboratory of Bioconversion, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (G.F.M.)
| |
Collapse
|
20
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
21
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
22
|
Ul-Islam M, Alhajaim W, Fatima A, Yasir S, Kamal T, Abbas Y, Khan S, Khan AH, Manan S, Ullah MW, Yang G. Development of low-cost bacterial cellulose-pomegranate peel extract-based antibacterial composite for potential biomedical applications. Int J Biol Macromol 2023; 231:123269. [PMID: 36649873 DOI: 10.1016/j.ijbiomac.2023.123269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
This study was aimed to develop low-cost bacterial cellulose (BC)-based antibacterial composite with pomegranate (Punica granatum L.) peel extract (PGPE) for potential biomedical applications. BC was cost-effectively produced by utilizing food wastes, and PGPE was ex situ impregnated into its hydrogel. Field-emission scanning electron microscopic (FE-SEM) observation showed a nanofibrous and microporous morphology of pristine BC and confirmed the development of BC-PGPE composite. Fourier transform infrared (FTIR) spectroscopy indicated the chemical interaction of PGPE with BC nanofibers. BC-PGPE composite held 97 % water of its dry weight and retained it for more than 48 h. The BC-PGPE composite exhibited better reswelling capabilities than pristine BC after three consecutive re-wetting cycles. The antibacterial activity of the BC-PGPE composite was determined via minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), disc diffusion, and plate count methods. The PGPE extract showed good antimicrobial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), both in the form of extract and composite with BC, with relatively better activity against the former. The BC-PGPE composite produced a 17 mm zone of inhibition against S. aureus, while no inhibition zone was formed against E. coli. Furthermore, BC-PGPE composite caused a 100 % and 50 % reduction in the growth of S. aureus and E. coli, respectively. The findings of this study indicate that BC-PGPE composite could be a promising antibacterial wound dressing material.
Collapse
Affiliation(s)
- Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Wafa Alhajaim
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Atiya Fatima
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Sumayia Yasir
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Tahseen Kamal
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia
| | - Yawar Abbas
- Department of Physics, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman.
| | - Abdul Hakim Khan
- Engineering Department, University of Technology and Applied Sciences, Salalah 211, Oman
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
23
|
Prilepskii A, Nikolaev V, Klaving A. Conductive bacterial cellulose: From drug delivery to flexible electronics. Carbohydr Polym 2023; 313:120850. [PMID: 37182950 DOI: 10.1016/j.carbpol.2023.120850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Bacterial cellulose (BC) is a chemically pure, non-toxic, and non-pyrogenic natural polymer with high mechanical strength and a complex fibrillar porous structure. Due to these unique biological and physical properties, BC has been amply used in the food industry and, to a somewhat lesser extent, in medicine and cosmetology. To expand its application the BC structure can be modified. This review presented some recent developments in electrically conductive BC-based composites. The as-synthesized BC is an excellent dielectric. Conductive polymers, graphene oxide, nanoparticles and other materials are used to provide it with conductive properties. Conductive bacterial cellulose (CBC) is currently investigated in numerous areas including electrically conductive scaffolds for tissue regeneration, implantable and wearable biointerfaces, flexible batteries, sensors, EMI shielding composites. However, there are several issues to be addressed before CBC composites can enter the market, namely, composite mechanical strength reduction, porosity decrease, change in chemical characteristics. Some of them can be addressed both at the stage of synthesis, biologically, or by adding (nano)materials with the required properties to the BC structure. We propose several solutions to meet the challenges and suggest some promising BC applications.
Collapse
|
24
|
Rocha ARFDS, Venturim BC, Ellwanger ERA, Pagnan CS, Silveira WBD, Martin JGP. Bacterial cellulose: Strategies for its production in the context of bioeconomy. J Basic Microbiol 2023; 63:257-275. [PMID: 36336640 DOI: 10.1002/jobm.202200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Bacterial cellulose has advantages over plant-derived cellulose, which make its use for industrial applications easier and more profitable. Its intrinsic properties have been stimulating the global biopolymer market, with strong growth expectations in the coming years. Several bacterial species are capable of producing bacterial cellulose under different culture conditions; in this context, strategies aimed at metabolic engineering and several possibilities of carbon sources have provided opportunities for the bacterial cellulose's biotechnological exploration. In this article, an overview of biosynthesis pathways in different carbon sources for the main producing microorganisms, metabolic flux under different growth conditions, and their influence on the structural and functional characteristics of bacterial cellulose is provided. In addition, the main industrial applications and ways to reduce costs and optimize its production using alternative sources are discussed, contributing to new insights on the exploitation of this biomaterial in the context of the bioeconomy.
Collapse
Affiliation(s)
- André R F da Silva Rocha
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bárbara Côgo Venturim
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elena R A Ellwanger
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Caroline S Pagnan
- Graduate Program in Design (PPGD), Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, Brazil
| | - Wendel B da Silveira
- Physiology of Microorganisms Laboratory (LabFis), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Guilherme P Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
25
|
Wastewater from the Arenga Starch Industry as a Potential Medium for Bacterial Cellulose and Cellulose Acetate Production. Polymers (Basel) 2023; 15:polym15040870. [PMID: 36850155 PMCID: PMC9963510 DOI: 10.3390/polym15040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Wastewater from the Arenga starch industry (WWAS) contains a high chemical oxygen demand (COD) concentration, so it has to be treated before being discharged into water bodies. Therefore, the purpose of this study was to utilize WWAS as a medium for bacterial cellulose (BC) and cellulose acetate (CA) production. This study consisted of the production of BC through fermentation and the production of CA through acetylation. Fermentation was conducted under static batch conditions with various initial pHs and sucrose additions, while acetylation was conducted with various BC-acetic anhydride ratios. The results of this study showed that the maximum BC production of 505.6 g/L of the culture medium was obtained under the optimal conditions of a sucrose addition of 200 g/L, an initial medium pH of 4.5, and a cultivation time of 14 d. Furthermore, a BC-acetic anhydride ratio of 1:3 resulted in CA being suitable as a biofilm raw material with a yield of 81.49%, an acetyl content of 39.82%, a degree of substitution of 2.456, and a degree of crystallinity of 36.7%. FT-IR, 1H and 13C NMR, XRD, and SEM analyses confirmed the successful process of acetylation of BC to CA.
Collapse
|
26
|
Magnetic Bacterial Cellulose Biopolymers: Production and Potential Applications in the Electronics Sector. Polymers (Basel) 2023; 15:polym15040853. [PMID: 36850137 PMCID: PMC9961894 DOI: 10.3390/polym15040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Bacterial cellulose (BC) is a biopolymer that has been widely investigated due to its useful characteristics, such as nanometric structure, simple production and biocompatibility, enabling the creation of novel materials made from additive BC in situ and/or ex situ. The literature also describes the magnetization of BC biopolymers by the addition of particles such as magnetite and ferrites. The processing of BC with these materials can be performed in different ways to adapt to the availability of materials and the objectives of a given application. There is considerable interest in the electronics field for novel materials and devices as well as non-polluting, sustainable solutions. This sector influences the development of others, including the production and optimization of new equipment, medical devices, sensors, transformers and motors. Thus, magnetic BC has considerable potential in applied research, such as the production of materials for biotechnological electronic devices. Magnetic BC also enables a reduction in the use of polluting materials commonly found in electronic devices. This review article highlights the production of this biomaterial and its applications in the field of electronics.
Collapse
|
27
|
Shahzad A, Ullah MW, Ali J, Aziz K, Javed MA, Shi Z, Manan S, Ul-Islam M, Nazar M, Yang G. The versatility of nanocellulose, modification strategies, and its current progress in wastewater treatment and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159937. [PMID: 36343829 DOI: 10.1016/j.scitotenv.2022.159937] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Deterioration in the environmental ecosystems through the depletion of nonrenewable resources and the burden of deleterious contaminants is considered a global concern. To this end, great interest has been shown in the use of renewable and environmentally-friendly reactive materials dually to promote environmental sustainability and cope with harmful contaminants. Among the different available options, the use of nanocellulose (NC) as an environmentally benign and renewable natural nanomaterial is an attractive candidate for environmental remediation owing to its miraculous physicochemical characteristics. This review discusses the intrinsic properties and the structural aspects of different types of NC, including cellulose nanofibrils (CNFs), cellulose nanocrystals (CNCs), and bacterial cellulose (BC) or bacterial nanocellulose (BNC). Also, the different modification strategies involving the functionalization or hybridization of NC by using different functional and reactive materials aimed at wastewater remediation have been elaborated. The modified or hybridized NC has been explored for its applications in the removal or degradation of aquatic contaminants through adsorption, filtration, coagulation, catalysis, photocatalysis, and pollutant sensing. This review highlights the role of NC in the modified composites and describes the underlying mechanisms involved in the removal of contaminants. The life-cycle assessment (LCA) of NC is discussed to unveil the hidden risks associated with its production to the final disposal. Moreover, the contribution of NC in the promotion of waste management at different stages has been described in the form of the five-Rs strategy. In summary, this review provides rational insights to develop NC-based environmentally-friendly reactive materials for the removal and degradation of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Ajmal Shahzad
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jawad Ali
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Kazim Aziz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif Javed
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Mudasir Nazar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
28
|
Öz YE, Kalender M. A novel static cultivation of bacterial cellulose production from sugar beet molasses: Series static culture (SSC) system. Int J Biol Macromol 2023; 225:1306-1314. [PMID: 36435464 DOI: 10.1016/j.ijbiomac.2022.11.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
In bacterial cellulose (BC) production, we developed a new static cultivation system named series static culture (SSC) to eliminate air limitation problem encountered in conventional static culture (CSC). In SSC system, the fermentation broth at the bottom of BC pellicle produced in initial culture medium is transferred to the next empty sterile culture medium at the end of a certain fermentation period. This procedure was performed until BC production ceased. Fermentation experiments were carried out using Gluconacetobacter xylinus NRRL B-759 and sugar beet molasses at 30 °C and initial pH 5. Also, some quality parameters of produced BC pellicles were determined. Final pH at the stages of SSC system was higher that of the initial pH due to sugar content (sucrose) of molasses and microorganism used. Total BC production increased with increasing sugar concentration in SSC. As a result, an increase of 22.02 % in BC production was achieved using developed SSC. FT-IR spectra of all BC pellicles produced were typical spectra. The absorption bands at the relevant wavenumbers identify the mode of vibrations of the created chemical bonds arising at the BC surface such as OH, CH, H-O-H, C-O-C, and C-OH. XRD analyses showed that the crystallinity index values of BC obtained from CCS and SSC were high. The form of produced all BC pellicles is generally Cellulose I. Removal of surface moisture and depolymerisation of carbon skeleton were determined from TGA-DTA thermograms. SEM images showed that the BC samples produced had nano-sized cellulose fibrils which were aggregated in fermentation media containing molasses. Finally, the BC samples, especially in molasses media, having high mechanical strength and WHC were found.
Collapse
Affiliation(s)
- Yunus Emre Öz
- Department of Bioengineering, Fırat University, 23100 Elazığ, Turkey
| | - Mehmet Kalender
- Department of Bioengineering, Fırat University, 23100 Elazığ, Turkey.
| |
Collapse
|
29
|
Taokaew S, Nakson N, Thienchaimongkol J, Kobayashi T. Enhanced production of fibrous bacterial cellulose in Gluconacetobacter xylinus culture medium containing modified protein of okara waste. J Biosci Bioeng 2023; 135:71-78. [PMID: 36437213 DOI: 10.1016/j.jbiosc.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022]
Abstract
In Gluconacetobacter xylinus cultivation for bacterial nanocellulose production, agro-industrial wastes, soybean residual okara, okara extracted protein, and modified okara protein, were used as a protein source. In comparison with homogenized raw okara and protein extracted from raw okara, acetic-acid modified protein provided the higher cellulose yield (2.8 g/l at 3 %w/v protein concentration) due to the improved protein solubility in the culture medium (89 %) and smaller particle size (0.2 μm) leading to facile uptake by the bacteria. Importantly, pH of the culture medium containing the modified protein measured before and after the cultivation was similar, suggesting the buffering capacity of the protein. Nanocellulose fibers were then produced densely in the network of hydrogels with high crystallinity nearly 90 %. Based on the results, economic constraints around nanocellulose production could be alleviated by valorization of okara waste, which provided enhanced sustainability.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Nawachon Nakson
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Jirath Thienchaimongkol
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takaomi Kobayashi
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
30
|
Płoska J, Garbowska M, Pluta A, Stasiak-Różańska L. Bacterial cellulose - innovative biopolymer and possibilities of its applications in dairy industry. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Low cost production of bacterial cellulose through statistical optimization and developing its composites for multipurpose applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Lee J, Lee KH, Kim S, Son H, Chun Y, Park C, Yoo HY. Microbial Production of Bacterial Cellulose Using Chestnut Shell Hydrolysates by Gluconacetobacter xylinus ATCC 53524. J Microbiol Biotechnol 2022; 32:1479-1484. [PMID: 36310363 PMCID: PMC9720068 DOI: 10.4014/jmb.2208.08022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Bacterial cellulose (BC) is gaining attention as a carbon-neutral alternative to plant cellulose, and as a means to prevent deforestation and achieve a carbon-neutral society. However, the high cost of fermentation media for BC production is a barrier to its industrialization. In this study, chestnut shell (CS) hydrolysates were used as a carbon source for the BC-producing bacteria strain, Gluconacetobacter xylinus ATCC 53524. To evaluate the suitability of the CS hydrolysates, major inhibitors in the hydrolysates were analyzed, and BC production was profiled during fermentation. CS hydrolysates (40 g glucose/l) contained 1.9 g/l acetic acid when applied directly to the main medium. As a result, the BC concentration at 96 h using the control group and CS hydrolysates was 12.5 g/l and 16.7 g/l, respectively (1.3-fold improved). In addition, the surface morphology of BC derived from CS hydrolysates revealed more densely packed nanofibrils than the control group. In the microbial BC production using CS, the hydrolysate had no inhibitory effect during fermentation, suggesting it is a suitable feedstock for a sustainable and eco-friendly biorefinery. To the best of our knowledge, this is the first study to valorize CS by utilizing it in BC production.
Collapse
Affiliation(s)
- Jeongho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Seunghee Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hyerim Son
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Youngsang Chun
- Department of Bio-Convergence Engineering, Dongyang Mirae University, Seoul 08221, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
33
|
Production of Bacterial Cellulose in the Medium with Yeasts Pre-Fermented Coconut Water or with Addition of Selected Amino Acids. Foods 2022; 11:foods11223627. [PMID: 36429219 PMCID: PMC9689973 DOI: 10.3390/foods11223627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The uncontrolled natural pre-fermentation process of coconut water represents great hidden safety hazards, unstable production, and impact on the quality of nata de coco-the trade name of bacterial cellulose (BC) in food industry. In this study, BC production from Komagataeibacter nataicola Q2 was conducted in the media of coconut water (50%, v/v) pre-fermented by 11 coconut-sourced yeast strains in static. Results suggested that coconut water pre-fermented by different yeast strains had varied effects on the production of BC. Compared with the use of fresh coconut water, the use of coconut water pre-fermented by Saccharomyces cerevisiae SC7 increased the BC yield by 165%. Both natural pre-fermentation and SC7 pre-fermentation altered the concentrations of amino acids in fresh coconut water. The addition of selected amino acids aspartic acid, glutamic acid, serine, methionine, threonine, isoleucine, phenylalanine, and proline at different concentrations had varied effects on the production of BC. The yield of BC was the highest when adding 3.0% (w/v) methionine. Moreover, adding 3.0% methionine allowed the production of BC with larger loops of looser aggregated microfibers, increased the crystallinity of BC from 64.8% to 69.4%, but decreased the temperature of maximum weight loss rate, hardness, and adhesiveness from 223 °C, 8.68 kg, and 92.8 g.sec to 212 °C, 7.01 kg, and 58.5 g.sec, respectively, in the test condition.
Collapse
|
34
|
Revin VV, Liyaskina EV, Parchaykina MV, Kuzmenko TP, Kurgaeva IV, Revin VD, Ullah MW. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers (Basel) 2022; 14:4670. [PMID: 36365662 PMCID: PMC9654748 DOI: 10.3390/polym14214670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 10/15/2023] Open
Abstract
Bacterial cellulose (BC) is currently one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially in the past decade. Currently, extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities. However, the commercial production of such materials is limited by the high cost and low yield of BC, and the lack of highly efficient industrial production technologies as well. Therefore, the present review aimed at studying the current literature data in the field of highly efficient BC production for the purpose of its further usage to obtain polymer nanocomposites. The review highlights the progress in synthesizing BC-based nanocomposites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering. Bacterial nanocellulose-based biosensors and adsorbents were introduced herein.
Collapse
Affiliation(s)
- Viktor V. Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Elena V. Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Marina V. Parchaykina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Tatyana P. Kuzmenko
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V. Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Vadim D. Revin
- Faculty of Architecture and Civil Engineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
35
|
Cellulose nanocrystal nanocomposites capable of low-temperature and fast self-healing performance. Carbohydr Polym 2022; 296:119973. [DOI: 10.1016/j.carbpol.2022.119973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022]
|
36
|
Xiao J, Chen Y, Xue M, Ding R, Kang Y, Tremblay PL, Zhang T. Fast-growing cyanobacteria bio-embedded into bacterial cellulose for toxic metal bioremediation. Carbohydr Polym 2022; 295:119881. [DOI: 10.1016/j.carbpol.2022.119881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
|
37
|
Nguyen HT, Sionkowska A, Lewandowska K, Brudzyńska P, Szulc M, Saha N, Saha T, Saha P. Chitosan Modified by Kombucha-Derived Bacterial Cellulose: Rheological Behavior and Properties of Convened Biopolymer Films. Polymers (Basel) 2022; 14:4572. [PMID: 36365566 PMCID: PMC9658712 DOI: 10.3390/polym14214572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2023] Open
Abstract
This work investigates the rheological behavior and characteristics of solutions and convened biopolymer films from Chitosan (Chi) modified by kombucha-derived bacterial cellulose (KBC). The Arrhenius equation and the Ostwald de Waele model (power-law) revealed that the Chi/KBC solutions exhibited non-Newtonian behavior. Both temperature and KBC concentration strongly affected their solution viscosity. With the selection of a proper solvent for chitosan solubilization, it may be possible to improve the performances of chitosan films for specific applications. The elasticity of the prepared films containing KBC 10% w/w was preferable when compared to the controls. FTIR analysis has confirmed the presence of bacterial cellulose, chitosan acetate, and chitosan lactate as the corresponding components in the produced biopolymer films. The thermal behaviors of the Chi (lactic acid)/KBC samples showed slightly higher stability than Chi (acetic acid)/KBC. Generally, these results will be helpful in the preparation processes of the solutions and biopolymer films of Chi dissolved in acetic or lactic acid modified by KBC powder to fabricate food packaging, scaffolds, and bioprinting inks, or products related to injection or direct extrusion through a needle.
Collapse
Affiliation(s)
- Hau Trung Nguyen
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Institute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City 727000, Vietnam
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Patrycja Brudzyńska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Marta Szulc
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Nabanita Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| | - Tomas Saha
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
| | - Petr Saha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Footwear Research Centre, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou IV 3685, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 76001 Zlin, Czech Republic
| |
Collapse
|
38
|
Anguluri K, La China S, Brugnoli M, Cassanelli S, Gullo M. Better under stress: Improving bacterial cellulose production by Komagataeibacter xylinus K2G30 (UMCC 2756) using adaptive laboratory evolution. Front Microbiol 2022; 13:994097. [PMID: 36312960 PMCID: PMC9605694 DOI: 10.3389/fmicb.2022.994097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Among naturally produced polymers, bacterial cellulose is receiving enormous attention due to remarkable properties, making it suitable for a wide range of industrial applications. However, the low yield, the instability of microbial strains and the limited knowledge of the mechanisms regulating the metabolism of producer strains, limit the large-scale production of bacterial cellulose. In this study, Komagataeibacter xylinus K2G30 was adapted in mannitol based medium, a carbon source that is also available in agri-food wastes. K. xylinus K2G30 was continuously cultured by replacing glucose with mannitol (2% w/v) for 210 days. After a starting lag-phase, in which no changes were observed in the utilization of mannitol and in bacterial cellulose production (cycles 1-25), a constant improvement of the phenotypic performances was observed from cycle 26 to cycle 30, accompanied by an increase in mannitol consumption. At cycle 30, the end-point of the experiment, bacterial cellulose yield increased by 38% in comparision compared to cycle 1. Furthermore, considering the mannitol metabolic pathway, D-fructose is an intermediate in the bioconversion of mannitol to glucose. Based on this consideration, K. xylinus K2G30 was tested in fructose-based medium, obtaining the same trend of bacterial cellulose production observed in mannitol medium. The adaptive laboratory evolution approach used in this study was suitable for the phenotypic improvement of K. xylinus K2G30 in bacterial cellulose production. Metabolic versatility of the strain was confirmed by the increase in bacterial cellulose production from D-fructose-based medium. Moreover, the adaptation on mannitol did not occur at the expense of glucose, confirming the versatility of K2G30 in producing bacterial cellulose from different carbon sources. Results of this study contribute to the knowledge for designing new strategies, as an alternative to the genetic engineering approach, for bacterial cellulose production.
Collapse
Affiliation(s)
| | - Salvatore La China
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | | | | | | |
Collapse
|
39
|
Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022; 27:molecules27175580. [PMID: 36080341 PMCID: PMC9458019 DOI: 10.3390/molecules27175580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic ulcers are among the main causes of morbidity and mortality due to the high probability of infection and sepsis and therefore exert a significant impact on public health resources. Numerous types of dressings are used for the treatment of skin ulcers-each with different advantages and disadvantages. Bacterial cellulose (BC) has received enormous interest in the cosmetic, pharmaceutical, and medical fields due to its biological, physical, and mechanical characteristics, which enable the creation of polymer composites and blends with broad applications. In the medical field, BC was at first used in wound dressings, tissue regeneration, and artificial blood vessels. This material is suitable for treating various skin diseases due its considerable fluid retention and medication loading properties. BC membranes are used as a temporary dressing for skin treatments due to their excellent fit to the body, reduction in pain, and acceleration of epithelial regeneration. BC-based composites and blends have been evaluated and synthesized both in vitro and in vivo to create an ideal microenvironment for wound healing. This review describes different methods of producing and handling BC for use in the medical field and highlights the qualities of BC in detail with emphasis on biomedical reports that demonstrate its utility. Moreover, it gives an account of biomedical applications, especially for tissue engineering and wound dressing materials reported until date. This review also includes patents of BC applied as a wound dressing material.
Collapse
|
40
|
Combined effect of phosphorus, magnesium, yeast extract on lipid productivity of Yarrowia lipolytica grown with molasses. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Lappa IK, Kachrimanidou V, Alexandri M, Papadaki A, Kopsahelis N. Novel Probiotic/Bacterial Cellulose Biocatalyst for the Development of Functional Dairy Beverage. Foods 2022; 11:foods11172586. [PMID: 36076772 PMCID: PMC9455237 DOI: 10.3390/foods11172586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The development of innovative functional products with potential health benefits, under the concept of bio-economy, is flourishing. This study undertook an evaluation of non-dairy lactobacilli Lactiplantibacillus pentosus B329 and Lactiplantibacillus plantarum 820 as “ready to use” starter cultures. Lactic acid bacteria (LAB) cultures were evaluated for their fermentation efficiency, before and after freeze-drying, using cheese whey (CW) as a fermentation substrate and subsequent immobilization on bacteria cellulose (BC) to produce a novel biocatalyst. The biocatalyst was applied in functional sour milk production and compared with free cells via the assessment of physicochemical and microbiological properties and sensory evaluation. Evidently, LAB strains exhibited high fermentative activity before and after freeze-drying. Results of a 5-month storage stability test showed that viability was 19% enhanced by immobilization on BC, supporting the concept of “ready to use” cultures for the production of fermented beverages. Likewise, sour milk produced by the BC biocatalyst presented higher organoleptic scores, compared to the free cells case, whereas immobilization on BC enhanced probiotic viability during post-fermentation storage (4 °C, 28 days). The obtained high viability (>107 log cfu/g) demonstrated the efficacy of the proposed bioprocess for the production of functional/probiotic-rich beverages. Ultimately, this work presents a consolidated scheme that includes the advantages and the cooperative effect of probiotic LAB strains combined with a functional biopolymer (BC) towards the formulation of novel functional products that coincide with the pillars of food systems sustainability.
Collapse
|
42
|
Bacterial Cellulose-Based Biofilm Forming Agent Extracted from Vietnamese Nata-de-Coco Tree by Ultrasonic Vibration Method: Structure and Properties. J CHEM-NY 2022. [DOI: 10.1155/2022/7502796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose has recently received more attention in several fields including biology and biomedical applications due to its outstanding physicochemical properties such as thermal stability, biodegradability, good water holding capacity, and high tensile. Cellulose, the most abundant biomolecule on Earth, is available in large amounts in plants. However, cellulose in plants is accompanied by other polymers such as hemicellulose, lignin, and pectin. On the other hand, highly purified bacterial cellulose without impurities is produced by several microorganisms. In which, the most active producer is Acetobacter xylinum. A. This study developed a new process using sonication to isolate bacterial cellulose from nata-de-coco Vietnam. Sonicating time and temperature, two important engineering factors, were considered and discussed (Temperature: 55, 60, 65, 70°C; Time: 15, 30, 60, 90 min). Research results have established that the ultrasonic vibration time of 60 minutes at 65 degrees Celsius gives the best structural properties of BC. The morphology, structural, and thermal properties of the obtained films were investigated by SEM, FTIR, and TGA. Besides, tensile strength was also evaluated. The results show that sonication is not only a favorable technique to isolate cellulose nanofibers but it also enhances their crystallinity.
Collapse
|
43
|
Jabbari F, Babaeipour V, Bakhtiari S. Bacterial cellulose-based composites for nerve tissue engineering. Int J Biol Macromol 2022; 217:120-130. [PMID: 35820488 DOI: 10.1016/j.ijbiomac.2022.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Nerve injuries and neurodegenerative disorders are very serious and costly medical challenges. Damaged nerve tissue may not be able to heal and regain its function, and scar tissue may restrict nerve cell regeneration. In recent years, new electroactive biomaterials have attracted widespread attention in the neural tissue engineering field. Bacterial cellulose (BC) due to its unique properties such as good mechanical properties, high water retention, biocompatibility, high crystallinity, large surface area, high purity, very fine network, and inability to absorb in the human body due to cellulase deficiency, can be considered a promising treatment for neurological injuries and disorders that require long-term support. However, BC lacks electrical activity, but can significantly improve the nerve regeneration rate by combining with conductive structures. Electrical stimulation has been shown to be an effective means of increasing the rate and accuracy of nerve regeneration. Many factors, such as the intensity and pattern of electrical current, have positive effects on cellular activity, including cell adhesion, proliferation, migration and differentiation, and cell-cell/tissue/molecule/drug interaction. This study discusses the importance and essential role of BC-based biomaterials in neural tissue regeneration and the effects of electrical stimulation on cellular behaviors.
Collapse
Affiliation(s)
- Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316, Tehran, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | - Samaneh Bakhtiari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
44
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
45
|
Perumal AB, Nambiar RB, Moses J, Anandharamakrishnan C. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
46
|
Ullah MW, Ul-Islam M, Wahid F, Yang G. Editorial: Nanocellulose: A Multipurpose Advanced Functional Material, Volume II. Front Bioeng Biotechnol 2022; 10:931256. [PMID: 35662839 PMCID: PMC9161146 DOI: 10.3389/fbioe.2022.931256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 01/20/2023] Open
Affiliation(s)
- Muhammad Wajid Ullah
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, China
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah, Oman
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Guang Yang,
| |
Collapse
|
47
|
da Silva Junior CJG, de Amorim JDP, de Medeiros ADM, de Holanda Cavalcanti AKL, do Nascimento HA, Henrique MA, do Nascimento Maranhão LJC, Vinhas GM, de Oliveira Souto Silva KK, de Santana Costa AF, Sarubbo LA. Design of a Naturally Dyed and Waterproof Biotechnological Leather from Reconstituted Cellulose. J Funct Biomater 2022; 13:jfb13020049. [PMID: 35645257 PMCID: PMC9149854 DOI: 10.3390/jfb13020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023] Open
Abstract
Consumerism in fashion involves the excessive consumption of garments in modern capitalist societies due to the expansion of globalisation, especially at the beginning of the 21st Century. The involvement of new designers in the garment industry has assisted in creating a desire for new trends. However, the fast pace of transitions between collections has made fashion increasingly frivolous and capable of generating considerable interest in new products, accompanied by an increase in the discarding of fabrics. Thus, studies have been conducted on developing sustainable textile materials for use in the fashion industry. The aim of the present study was to evaluate the potential of a vegan leather produced with a dyed, waterproof biopolymer made of reconstituted bacterial cellulose (BC). The dying process involved using plant-based natural dyes extracted from Allium cepa L., Punica granatum, and Eucalyptus globulus L. The BC films were then shredded and reconstituted to produce uniform surfaces with a constant thickness of 0.10 cm throughout the entire area. The films were waterproofed using the essential oil from Melaleuca alternifolia and wax from Copernicia prunifera. The characteristics of the biotechnological vegan leather were analysed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), flexibility and mechanical tests, as well as the determination of the water contact angle (°) and sorption index (s). The results confirmed that the biomaterial has high tensile strength (maximum: 247.21 ± 16.52 N) and high flexibility; it can be folded more than 100 times at the same point without breaking or cracking. The water contact angle was 83.96°, indicating a small water interaction on the biotextile. The results of the present study demonstrate the potential of BC for the development of novel, durable, vegan, waterproof fashion products.
Collapse
Affiliation(s)
- Claudio José Galdino da Silva Junior
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Dois Irmãos, Recife 52171-900, PE, Brazil; (C.J.G.d.S.J.); (J.D.P.d.A.); (A.D.M.d.M.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 52171-900, PE, Brazil;
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 52171-900, PE, Brazil
| | - Julia Didier Pedrosa de Amorim
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Dois Irmãos, Recife 52171-900, PE, Brazil; (C.J.G.d.S.J.); (J.D.P.d.A.); (A.D.M.d.M.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 52171-900, PE, Brazil;
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 52171-900, PE, Brazil
| | - Alexandre D’Lamare Maia de Medeiros
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Dois Irmãos, Recife 52171-900, PE, Brazil; (C.J.G.d.S.J.); (J.D.P.d.A.); (A.D.M.d.M.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 52171-900, PE, Brazil;
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 52171-900, PE, Brazil
| | | | - Helenise Almeida do Nascimento
- Centro de Tecnologia e Geociências, Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, s/n, Recife 52171-900, PE, Brazil; (H.A.d.N.); (M.A.H.); (G.M.V.)
| | - Mariana Alves Henrique
- Centro de Tecnologia e Geociências, Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, s/n, Recife 52171-900, PE, Brazil; (H.A.d.N.); (M.A.H.); (G.M.V.)
| | - Leonardo José Costa do Nascimento Maranhão
- Centro de Tecnologia, Departamento de Engenharia Têxtil, Universidade Federal do Rio Grande do Norte (UFRN), Avenida Senador Salgado Filho, n. 3000, Lagoa Nova, Natal 59078-970, RN, Brazil; (L.J.C.d.N.M.); (K.K.d.O.S.S.)
| | - Glória Maria Vinhas
- Centro de Tecnologia e Geociências, Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Cidade Universitária, s/n, Recife 52171-900, PE, Brazil; (H.A.d.N.); (M.A.H.); (G.M.V.)
| | - Késia Karina de Oliveira Souto Silva
- Centro de Tecnologia, Departamento de Engenharia Têxtil, Universidade Federal do Rio Grande do Norte (UFRN), Avenida Senador Salgado Filho, n. 3000, Lagoa Nova, Natal 59078-970, RN, Brazil; (L.J.C.d.N.M.); (K.K.d.O.S.S.)
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 52171-900, PE, Brazil;
- Centro de Comunicação e Design, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n, Nova Caruaru, Caruaru 50670-901, PE, Brazil
| | - Leonie Asfora Sarubbo
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, Dois Irmãos, Recife 52171-900, PE, Brazil; (C.J.G.d.S.J.); (J.D.P.d.A.); (A.D.M.d.M.)
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 52171-900, PE, Brazil;
- Escola Icam Tech, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 52171-900, PE, Brazil
- Correspondence:
| |
Collapse
|
48
|
Shrivastav P, Pramanik S, Vaidya G, Abdelgawad MA, Ghoneim MM, Singh A, Abualsoud BM, Amaral LS, Abourehab MAS. Bacterial cellulose as a potential biopolymer in biomedical applications: a state-of-the-art review. J Mater Chem B 2022; 10:3199-3241. [PMID: 35445674 DOI: 10.1039/d1tb02709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout history, natural biomaterials have benefited society. Nevertheless, in recent years, tailoring natural materials for diverse biomedical applications accompanied with sustainability has become the focus. With the progress in the field of materials science, novel approaches for the production, processing, and functionalization of biomaterials to obtain specific architectures have become achievable. This review highlights an immensely adaptable natural biomaterial, bacterial cellulose (BC). BC is an emerging sustainable biopolymer with immense potential in the biomedical field due to its unique physical properties such as flexibility, high porosity, good water holding capacity, and small size; chemical properties such as high crystallinity, foldability, high purity, high polymerization degree, and easy modification; and biological characteristics such as biodegradability, biocompatibility, excellent biological affinity, and non-biotoxicity. The structure of BC consists of glucose monomer units polymerized via cellulose synthase in β-1-4 glucan chains, creating BC nano fibrillar bundles with a uniaxial orientation. BC-based composites have been extensively investigated for diverse biomedical applications due to their similarity to the extracellular matrix structure. The recent progress in nanotechnology allows the further modification of BC, producing novel BC-based biomaterials for various applications. In this review, we strengthen the existing knowledge on the production of BC and BC composites and their unique properties, and highlight the most recent advances, focusing mainly on the delivery of active pharmaceutical compounds, tissue engineering, and wound healing. Further, we endeavor to present the challenges and prospects for BC-associated composites for their application in the biomedical field.
Collapse
Affiliation(s)
- Prachi Shrivastav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.,Bombay College of Pharmacy, Kolivery Village, Mathuradas Colony, Kalina, Vakola, Santacruz East, Mumbai, Maharashtra 400 098, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - Gayatri Vaidya
- Department of Studies in Food Technology, Davangere University, Davangere 577007, Karnataka, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Ajeet Singh
- Department of Pharmaceutical Sciences, J.S. University, Shikohabad, Firozabad, UP 283135, India.
| | - Bassam M Abualsoud
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Larissa Souza Amaral
- Department of Bioengineering (USP ALUMNI), University of São Paulo (USP), Av. Trabalhador São Carlense, 400, 13566590, São Carlos (SP), Brazil
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| |
Collapse
|
49
|
Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, Park JK. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol 2022; 209:9-30. [PMID: 35381280 DOI: 10.1016/j.ijbiomac.2022.03.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds. This review summarizes the techniques used to develop 3D BC scaffolds and discusses their potential merits and limitations. In addition, we discuss the various biomedical applications of BC-based scaffolds for which the 3D BC matrix confers desired structural and conformational features. Overall, this review provides comprehensive coverage of the idea, requirements, synthetic strategies, and current and prospective applications of 3D BC scaffolds, and thus, should be useful for researchers working with polysaccharides, biopolymers, or composite materials.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youlong Zhu
- Materials Science Institute, The PCFM and GDHPRC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
50
|
|