1
|
Maurer DJ, Liu C, Xepapadaki P, Stanic B, Bachert C, Finotto S, Gao Y, Graser A, Jartti T, Kistler W, Kowalski M, Lukkarinen H, Pasioti M, Tan G, Villiger M, Zhang L, Zhang N, Akdis M, Papadopoulos NG, Akdis CA. Physical activity in asthma control and its immune modulatory effect in asthmatic preschoolers. Allergy 2022; 77:1216-1230. [PMID: 34547110 PMCID: PMC9291774 DOI: 10.1111/all.15105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The impact of physical activity on immune response is a hot topic in exercise immunology, but studies involving asthmatic children are scarce. Our aims were to examine whether there were any differences in the level of physical activity and daily TV attendance, to assess its role on asthma control and immune responses to various immune stimulants. METHODS Weekly physical activity and daily television attendance were obtained from questionnaires at inclusion of the PreDicta study. PBMC cultures were stimulated with phytohemagglutinin (PHA), R848, poly I:C, and zymosan. A panel of cytokines was measured and quantified in cell culture supernatants using luminometric multiplex immunofluorescence beads-based assay. RESULTS Asthmatic preschoolers showed significantly more TV attendance than their healthy peers (58.6% vs. 41.5% 1-3 h daily and only 25.7% vs. 47.2% ≤1 h daily) and poor asthma control was associated with less frequent physical activity (PA) (75% no or occasional activity in uncontrolled vs. 20% in controlled asthma; 25% ≥3 times weekly vs. 62%). Asthmatics with increased PA exhibited elevated cytokine levels in response to polyclonal stimulants, suggesting a readiness of circulating immune cells for type 1, 2, and 17 cytokine release compared to subjects with low PA and high TV attendance. This may also represent a proinflammatory state in high PA asthmatic children. Low physical activity and high TV attendance were associated with a decrease in proinflammatory cytokines. Proinflammatory cytokines were correlating with each other in in vitro immune responses of asthmatic children, but not healthy controls, this correlation was more pronounced in children with sedentary behavior. CONCLUSION Asthmatic children show more sedentary behavior than healthy subjects, while poor asthma control is associated with a substantial decrease in physical activity. Our results suggest that asthmatic children may profit from regular exercise, as elevated cytokine levels in stimulated conditions indicate an immune system prepared for responding strongly in case of different types of infections. However, it has to be considered that a hyperinflammatory state in high PA may not be beneficial in asthmatic children.
Collapse
Affiliation(s)
- Debbie J. Maurer
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Chengyao Liu
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital Capital Medical University Beijing China
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Claus Bachert
- Upper Airway Research Laboratory Ghent University Hospital Ghent Belgium
| | - Susetta Finotto
- Department of Molecular Pneumology Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum Erlangen Erlangen Germany
| | - Ya‐Dong Gao
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
| | - Anna Graser
- Department of Molecular Pneumology Friedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum Erlangen Erlangen Germany
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine University of Turku and Turku University Hospital Turku Finland
- PEDEGO Research Unit, Medical Research Center University of Oulu Oulu Finland
- Department of Pediatrics and Adolescent Medicine Oulu University Hospital Oulu Finland
| | - Walter Kistler
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Marek Kowalski
- Department of Immunology, Rheumatology and Allergy Central University Hospital Lodz Poland
| | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine University of Turku and Turku University Hospital Turku Finland
| | - Maria Pasioti
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Michael Villiger
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Department of Sports Medicine Davos Hospital Davos Switzerland
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital Capital Medical University Beijing China
- Department of Allergy, Beijing TongRen Hospital Capital Medical University Beijing China
| | - Nan Zhang
- Upper Airway Research Laboratory Ghent University Hospital Ghent Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Nikolaos G. Papadopoulos
- Allergy Department, 2nd Pediatric Clinic National and Kapodistrian University of Athens Athens Greece
- Division of Infection, Immunity & Respiratory Medicine University of Manchester Manchester UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Swiss Research Institute for Sports Medicine (SRISM) Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education Davos Switzerland
| |
Collapse
|
2
|
Klimek L, Casper I, Siemer S, Wollenberg B, Stauber R, Koennecke M. [T-cell immune responses in chronic inflammatory diseases of the nasal mucosa]. HNO 2019; 67:881-892. [PMID: 31598772 DOI: 10.1007/s00106-019-00759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acute rhinosinusitis and chronic rhinosinusitis are inflammatory diseases of the mucosal membranes due to mislead immunological reactions to aeroallergens. T‑cells are divided into different groups based on their cytokine secretion: T‑helper type 1 (Th1) and type 2 (Th2) cells. The allergic immune response is caused by activation of specific Th2 cells. With specific immunotherapy, the mislead hyperactivated "allergic" immune response is reduced to a reaction within the normal range. The inflammatory forms of chronic rhinosinusitis are called endotypes, and, in the future, could enable a targeted, pathomechanistic therapy. These endotype-based treatment approaches target specific signaling pathways that have already shown good effects for chronic rhinosinusitis with nasal polyps using monoclonal antibodies. However, so far, only selected patients with non-rhinologic indications, off-label treatments, or in clinical trials have benefited from these treatments.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| | - I Casper
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland
| | - S Siemer
- HNO-Universitätsklinik Mainz, Mainz, Deutschland
| | - B Wollenberg
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| | - R Stauber
- HNO-Universitätsklinik Mainz, Mainz, Deutschland
| | - M Koennecke
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| |
Collapse
|
3
|
Sherkawy MM, Abo-Youssef AM, Salama AAA, Ismaiel IE. Fluoxetine protects against OVA induced bronchial asthma and depression in rats. Eur J Pharmacol 2018; 837:25-32. [PMID: 30145150 DOI: 10.1016/j.ejphar.2018.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Depression is very common in asthmatic patients and may increases risk for morbidity and mortality. The present work aimed to investigate the protective effect of fluoxetine, on behavioral and biochemical changes, associated with ovalbumin (OVA) - induced bronchial asthma and depression in rats. Rats were sensitized with intraperitoneal administration of OVA plus aluminum hydroxide for 3 consecutive days then at day 11 followed by OVA intranasal challenge at days 19, 20, 21. Rats were either pretreated with dexamethasone, fluoxetine10mg/kg or fluoxetine 20 mg/kg. At the end of the experiment, various tests were performed, including open field, forced swimming and respiratory function tests. Blood was drawn for serum IgE detection. Finally, rats were euthanized, brain-derived neurotrophic factor (BDNF) was estimated in bronchoalveolar lavage (BAL) fluid and lung content of reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α) and interleukin 4 (IL-4) were determined. Histopathological study was also performed. The results showed that fluoxetine significantly ameliorated OVA- induced biochemical and behavioral changes. Fluoxetine may protect against OVA-induced asthma and depression in rats. This effect may be mediated at least in part by its antioxidant, anti-inflammatory and immunosuppressant effect.
Collapse
Affiliation(s)
- Marwa M Sherkawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | | |
Collapse
|
4
|
van Rensburg IC, Kleynhans L, Keyser A, Walzl G, Loxton AG. B-cells with a FasL expressing regulatory phenotype are induced following successful anti-tuberculosis treatment. IMMUNITY INFLAMMATION AND DISEASE 2016; 5:57-67. [PMID: 28250925 PMCID: PMC5322165 DOI: 10.1002/iid3.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
Introduction Studies show that B‐cells, in addition to producing antibodies and antigen‐presentation, are able to produce cytokines as well. These include regulatory cytokines such as IL‐10 by regulatory B‐cells. Furthermore, a rare regulatory subset of B‐cells have the potential to express FasL, which is a death‐inducing ligand. This subset of B‐cells have a positive role during autoimmune disease, but has not yet been studied during tuberculosis. These FasL‐expressing B‐cells are induced by bacterial LPS and CpG, thus we hypothesized that this phenotype might be induced during tuberculosis as well. Methods B‐cells from participants with TB (at diagnosis and during treatment) and controls were collected, and analyzed by means of real‐time PCR and flow cytometry. In addition to this, BAL was collected from TB participants as well and analyzed by means of MAGPix (multi‐cytokine) technology. Results Gene expression analysis show that FASL transcript levels increase by the end of treatment. Similarly, phenotypic analysis show that there is a higher frequency of FasL‐expressing B‐cells by the end of treatment. Conclusion Collectively, these results indicate that these FasL‐expressing B‐cells are being induced during anti‐TB treatment, and thus may play a positive role. Further studies are required to elucidate this.
Collapse
Affiliation(s)
- Ilana C van Rensburg
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences SA MRC Centre for TB Research DST/NRF Centre of Excellence for Biomedical Tuberculosis Research Stellenbosch University Cape Town South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences SA MRC Centre for TB Research DST/NRF Centre of Excellence for Biomedical Tuberculosis Research Stellenbosch University Cape Town South Africa
| | - Alana Keyser
- Clinical Laboratory Sciences Faculty of Health Sciences University of Cape Town Cape Town South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences SA MRC Centre for TB Research DST/NRF Centre of Excellence for Biomedical Tuberculosis Research Stellenbosch University Cape Town South Africa
| | - Andre G Loxton
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences SA MRC Centre for TB Research DST/NRF Centre of Excellence for Biomedical Tuberculosis Research Stellenbosch University Cape Town South Africa
| |
Collapse
|
5
|
Novel Allergen Immunotherapy Routes. CURRENT TREATMENT OPTIONS IN ALLERGY 2016. [DOI: 10.1007/s40521-016-0071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Chen P, Wang DB, Liang YM. Evaluation of estrogen in endometriosis patients: Regulation of GATA-3 in endometrial cells and effects on Th2 cytokines. J Obstet Gynaecol Res 2016; 42:669-77. [PMID: 26890586 DOI: 10.1111/jog.12957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Chen
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyan China
| | - Dan-Bo Wang
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyan China
| | - Yan-Ming Liang
- Department of Obstetrics and Gynecology; Shengjing Hospital of China Medical University; Shenyan China
| |
Collapse
|
7
|
Abstract
BACKGROUND Allergic diseases are among the most common diseases of humans. The immune response towards allergens is regulated by T-lymphozytes and characterized by an interleukin (IL)-4, IL-5 and IL-13 dominated Th2 cytokine profile. RESULTS Allergen-specific immunotherapy (AIT) is the only causative treatment option and able to change the course of disease, e. g. to prevent the development of asthma and new sensitizations. The intralymphatic delivery of allergenes named intralymphatic immunotherapy (ILIT) has been evaluated in clinical trials and was demonstrated to be a highly potent application route with low effort and side effects while having equal efficacy if compared with current standard AIT forms. However, studies that verify important questions like optimal dose, new allergen forms, use of adjuvants etc. are still missing. Moreover, it has to be evaluated, whether different indications like rhinitis, or atopic dermatitis are suitable for ILIT and whether it is useful in children. Epicutaneous immunotherapy (EPIT) is a possible alternative application form. It is minimally invasive and basically consists of the affixation of allergen containing patches to the epidermis over 6 weeks. From the studies performed so far, the authors concluded, that epicutaneous immunotherapy is safe and efficacious in a dose-dependent manner after 6 patches only. CONCLUSIONS AIT is accepted to be the only causative treatment option for allergies. New application routes in ILIT and EPIT may become more important and allow for different delivery methods in the future, however further clinical studies are required and in preparation.
Collapse
|
8
|
Zhang Y, Gallastegui N, Rosenblatt JD. Regulatory B cells in anti-tumor immunity. Int Immunol 2015; 27:521-30. [PMID: 25999597 DOI: 10.1093/intimm/dxv034] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in understanding of the immune microenvironment have highlighted the role of immunosuppressive T cell, myeloid, dendritic and monocytic sub-populations in inhibition of the anti-tumor immune response. The role of B cells in modulating the immune response to solid tumors as well as lymphoid malignancies is less well understood. Murine models of autoimmune disease have defined B regulatory cell (Breg) subsets with immune suppressive activity, including B cell subsets that express IL-10, and transforming growth factor-β, which can facilitate T regulatory cell recruitment and expansion. Multiple murine tumor models point to the existence of similar immune suppressive B cell sub-populations that can migrate into tumor deposits and acquire an immune suppressive phenotype, which then leads to attenuation of the local anti-tumor immune response. Other murine models of viral or chemically induced skin carcinogenesis have identified a pivotal role for B cells in promoting inflammation and carcinogenesis. While many human solid tumors demonstrate significant B cell infiltration and/or tertiary lymphoid structure formation, the functional properties of tumor-infiltrating B cells and their effects on immunity are poorly understood. Recent successes in early Phase I/II trials using anti-checkpoint inhibitor antibodies such as nivolumab or pidilizumab directed against PD-1 in the setting of Hodgkin's and non-Hodgkin's lymphomas validate the therapeutic utility of reversing B cell-mediated immune suppression. Further studies to define Breg subsets, and mechanisms of suppression, may provide new avenues for modulation of the immune response and meaningful therapeutic intervention in both lymphoid and solid tumors.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Nicolas Gallastegui
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Joseph D Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
9
|
Burrows KE, Dumont C, Thompson CL, Catley MC, Dixon KL, Marshall D. OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. Eur J Immunol 2015; 45:1116-28. [PMID: 25545270 DOI: 10.1002/eji.201445163] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/18/2014] [Accepted: 12/19/2014] [Indexed: 12/21/2022]
Abstract
The costimulatory receptor OX40 is expressed on activated T cells and regulates T-cell responses. Here, we show the efficacy and mechanism of action of an OX40 blocking antibody using the chronic house dust mite (HDM) mouse model of lung inflammation and in vitro HDM stimulation of cells from HDM allergic human donors. We have demonstrated that OX40 blockade leads to a reduction in the number of eosinophils and neutrophils in the lavage fluid and lung tissue of HDM sensitized mice. This was accompanied by a decrease in activated and memory CD4(+) T cells in the lungs and further analysis revealed that both the Th2 and Th17 populations were inhibited. Improved lung function and decreased HDM-specific antibody responses were also noted. Significantly, efficacy was observed even when anti-OX40 treatment was delayed until after inflammation was established. OX40 blockade also inhibited the release of the Th2 cytokines IL-5 and IL-13 from cells isolated from HDM allergic human donors. Altogether, our data provide evidence of a role of the OX40/OX40L pathway in ongoing allergic lung inflammation and support clinical studies of a blocking OX40 antibody in Th2 high severe asthma patients.
Collapse
Affiliation(s)
- Katie E Burrows
- Immunology Therapeutic Area, UCB Pharma, Slough, Berkshire, UK
| | | | | | | | | | | |
Collapse
|
10
|
Chen ZR, Zhang GB, Wang YQ, Yan YD, Zhou WF, Zhu C, Chen Y, Wang J, Ji W. Therapeutic effects of anti-B7-H3 antibody in an ovalbumin-induced mouse asthma model. Ann Allergy Asthma Immunol 2013; 111:276-81. [PMID: 24054363 DOI: 10.1016/j.anai.2013.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND B7 molecules play a key role in regulating allergen-induced T cell activation in asthma, which may occur through T cell recruitment and T helper cell differentiation on allergen provocation. Initial studies have shown that B7-H3 (CD276), a recently identified B7 family member, plays a critical role in the development of Th2 cells. OBJECTIVE To investigate the effects of anti-B7-H3 monoclonal antibody (mAb) in a mouse model of allergic asthma. METHODS The asthma model was established by ovalbumin (OVA) sensitization and challenging in female BALB/c mice. Total cell numbers in bronchoalveolar lavage fluid (BALF) were determined, and the expression levels of interferon gamma (IFN-γ), interleukin (IL)-4, and IL-17 in BALF were measured by enzyme-linked immunosorbent assay. Pulmonary eosinophil infiltration and mucus production were detected by hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS), respectively. B7-H3 expression was detected by immunohistochemistry in frozen tissue sections. RESULTS Anti-B7-H3 mAb treatment alleviated the asthmatic syndrome, decreased the levels of B7-H3-positive cells in the lung tissues, abrogated hypercellularity, eosinophil infiltration, and mucus production, and inhibited IL-4 and IL-17 production in BALF at the induction phase as compared with the immunoglobulin G (IgG) control group (P < .01). In addition, the treatment of anti-B7-H3 mAb at the induction phase could increase the expression levels of IFN-γ as compared with the IgG control group (P < .01). Anti-B7-H3 mAb treatment at the effector phase did not inhibit the asthma response. CONCLUSION Blockade of B7-H3 signals may provide a novel therapeutic approach to the treatment of allergic asthma.
Collapse
Affiliation(s)
- Zheng-Rong Chen
- Department of Respiratory Disease, Children's Hospital Affiliated to Soochow University, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu JR, Yang Y, Liu XM, Sun JY, Wang YJ. Polymorphisms of the TIM-1 gene are associated with rheumatoid arthritis in the Chinese Hui minority ethnic population. GENETICS AND MOLECULAR RESEARCH 2012; 11:61-9. [PMID: 22290466 DOI: 10.4238/2012.january.9.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The T-cell immunoglobulin and mucin domain 1 (TIM-1) is known to be associated with susceptibility to rheumatoid arthritis (RA). We investigated the association of four single-nucleotide polymorphisms (SNPs) in the promoter region of the TIM-1 gene with susceptibility to RA in a Chinese Hui ethnic minority group. Using RFLP or sequence specific primer-PCR, 118 RA patients and 118 non-arthritis control individuals were analyzed for the -1637A>G, -1454G>A, -416G>C, and -232A>G SNPs in the TIM-1 gene. The polymorphisms -232A>G and -1637A>G in the promoter region of TIM-1 were found to be associated with susceptibility to the RA gene in the Hui population, while -416G>C and -1454G>A SNPs were not. Of these, the polymorphism of -232A>G is inconsistent with that found in a Korean population, suggesting that genetic variations of the TIM-1 gene contribute to RA susceptibility in different ways among different populations. Based on haplotype analysis, individuals with haplotypes AGCA (Χ(2) = 22.0, P < 0.01, OR (95%CI) >1), AGCG (Χ(2) = 18.16, P < 0.01, OR (95%CI) >1) and AGGA (Χ(2) = 5.58, P < 0.05, OR (95%CI) >1) are at risk to develop RA in the Chinese Hui population; those with the GAGA (Χ(2) = 7.44, P < 0.01, OR (95%CI) <1) haplotype may have a decreased likelihood of RA. GGCA and GGCG are more common in both RA and non-RA subjects. We conclude that -1637A>G and -232A>G polymorphisms of TIM-1 are associated with susceptibility to RA in the Chinese Hui population.
Collapse
Affiliation(s)
- J R Xu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Yinchuan, China
| | | | | | | | | |
Collapse
|
12
|
Ramadas RA, Roche MI, Moon JJ, Ludwig T, Xavier RJ, Medoff BD. CARMA1 is necessary for optimal T cell responses in a murine model of allergic asthma. THE JOURNAL OF IMMUNOLOGY 2011; 187:6197-207. [PMID: 22075698 DOI: 10.4049/jimmunol.1101348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CARMA1 is a lymphocyte-specific scaffold protein necessary for T cell activation. Deletion of CARMA1 prevents the development of allergic airway inflammation in a mouse model of asthma due to a defect in naive T cell activation. However, it is unknown if CARMA1 is important for effector and memory T cell responses after the initial establishment of inflammation, findings that would be more relevant to asthma therapies targeted to CARMA1. In the current study, we sought to elucidate the role of CARMA1 in T cells that have been previously activated. Using mice in which floxed CARMA1 exons can be selectively deleted in T cells by OX40-driven Cre recombinase (OX40(+/Cre)CARMA1(F/F)), we report that CD4(+) T cells from these mice have impaired T cell reactivation responses and NF-κB signaling in vitro. Furthermore, in an in vivo recall model of allergic airway inflammation that is dependent on memory T cell function, OX40(+/Cre)CARMA1(F/F) mice have attenuated eosinophilic airway inflammation, T cell activation, and Th2 cytokine production. Using MHC class II tetramers, we demonstrate that the development and maintenance of Ag-specific memory T cells is not affected in OX40(+/Cre)CARMA1(F/F) mice. In addition, adoptive transfer of Th2-polarized OX40(+/Cre)CARMA1(F/F) Ag-specific CD4(+) T cells into wild-type mice induces markedly less airway inflammation in response to Ag challenge than transfer of wild-type Th2 cells. These data demonstrate a novel role for CARMA1 in effector and memory T cell responses and suggest that therapeutic strategies targeting CARMA1 could help treat chronic inflammatory disorders such as asthma.
Collapse
Affiliation(s)
- Ravisankar A Ramadas
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
13
|
Lee MY, Seo CS, Lee JA, Lee NH, Kim JH, Ha H, Zheng MS, Son JK, Shin HK. Anti-asthmatic effects of Angelica dahurica against ovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. Food Chem Toxicol 2010; 49:829-37. [PMID: 21146576 DOI: 10.1016/j.fct.2010.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/16/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
Abstract
Asthma is a chronic immune inflammatory disease characterized by variable airflow obstruction. The present study was undertaken to assess the effects of an Angelica dahurica Bentham et Hooker ethanolic extract (AD) on airway inflammation in an ovalbumin (OVA)-induced airway inflammation model. Mice that received AD displayed significantly lower airway eosinophilia, cytokine levels, including interleukin (IL)-4, IL-5, and tumor necrosis factor (TNF)-alpha levels, mucus production and immunoglobulin (Ig)E, compared with OVA-induced mice. In our experiments, AD treatment reduced airway inflammation and suppressed oxidative stress in the OVA-induced asthma model, partly via induction of heme oxygenase (HO)-1. The effects of AD on OVA-induced HO-1 induction were partially reversed by the HO-1 inhibitor, tin protoporphyrin (SnPP). Our results clearly indicate that AD is a suppressor of airway allergic inflammation, and may thus be effectively used as an anti-inflammatory drug in the treatment of asthma.
Collapse
Affiliation(s)
- Mee-Young Lee
- Herbal Medicine EBM Research Center, Korea Institute of Oriental Medicine, Exporo 483, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee MY, Seo CS, Lee NH, Ha H, Lee JA, Lee H, Lee KY, Shin HK. Anti-asthmatic effect of schizandrin on OVA-induced airway inflammation in a murine asthma model. Int Immunopharmacol 2010; 10:1374-9. [PMID: 20727999 DOI: 10.1016/j.intimp.2010.07.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/14/2010] [Accepted: 07/28/2010] [Indexed: 12/27/2022]
Abstract
Asthma comprises a triad of reversible airway obstruction, bronchial smooth muscle cell hyperreactivity to bronchoconstrictors, and chronic bronchial inflammation. Clinical and experimental findings have established eosinophilia as a sign of allergic disorders. In the present investigation, we evaluated the anti-asthmatic effects of schizandrin and its underlying mechanisms in an in vivo murine asthmatic model. To accomplish this, female BALB/c mice were sensitized and challenged with ovalbumin (OVA), and examined for the following typical asthmatic reactions: increased numbers of eosinophils and other inflammatory cells in bronchoalveolar lavage fluid (BALF); production of Th1 cytokines (such as tumor necrosis factor (TNF)-α in BALF); production of Th2 cytokines (such as interleukin IL-4 and IL-5) in BALF; presence of total and OVA-specific immunoglobulins (Ig)E in serum; presence of oxidative stress; hyperplasia of goblet cells in the lung; and marked influx of inflammatory cells into the lung. Our results collectively show that schizandrin exerts profound inhibitory effects on accumulation of eosinophils into the airways and reduces the levels of IL-4, IL-5, IFN-γ, and TNF-α in BALF. Additionally, schizandrin suppresses the production of reactive oxygen species (ROS) in a dose-dependent manner, and inhibits goblet cell hyperplasia and inflammatory cell infiltration in lung tissue. Thus, schizandrin has anti-asthmatic effects, which seem to be partially mediated by reduction of oxidative stress and airway inflammation, in a murine allergic asthma model. These results indicate that schizandrin may be an effective novel therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Mee-Young Lee
- Herbal Medicine EBM Research Center, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gregory LG, Mathie SA, Walker SA, Pegorier S, Jones CP, Lloyd CM. Overexpression of Smad2 drives house dust mite-mediated airway remodeling and airway hyperresponsiveness via activin and IL-25. Am J Respir Crit Care Med 2010; 182:143-54. [PMID: 20339149 DOI: 10.1164/rccm.200905-0725oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Airway hyperreactivity and remodeling are characteristic features of asthma. Interactions between the airway epithelium and environmental allergens are believed to be important in driving development of pathology, particularly because altered epithelial gene expression is common in individuals with asthma. OBJECTIVES To investigate the interactions between a modified airway epithelium and a common aeroallergen in vivo. METHODS We used an adenoviral vector to generate mice overexpressing the transforming growth factor-beta signaling molecule, Smad2, in the airway epithelium and exposed them to house dust mite (HDM) extract intranasally. MEASUREMENTS AND MAIN RESULTS Smad2 overexpression resulted in enhanced airway hyperreactivity after allergen challenge concomitant with changes in airway remodeling. Subepithelial collagen deposition was increased and smooth muscle hyperplasia was evident resulting in thickening of the airway smooth muscle layer. However, there was no increase in airway inflammation in mice given the Smad2 vector compared with the control vector. Enhanced airway hyperreactivity and remodeling did not correlate with elevated levels of Th2 cytokines, such as IL-13 or IL-4. However, mice overexpressing Smad2 in the airway epithelium showed significantly enhanced levels of IL-25 and activin A after HDM exposure. Blocking activin A with a neutralizing antibody prevented the increase in lung IL-25 and inhibited subsequent collagen deposition and also the enhanced airway hyperreactivity observed in the Smad2 overexpressing HDM-exposed mice. CONCLUSIONS Epithelial overexpression of Smad2 can specifically alter airway hyperreactivity and remodeling in response to an aeroallergen. Moreover, we have identified novel roles for IL-25 and activin A in driving airway hyperreactivity and remodeling.
Collapse
Affiliation(s)
- Lisa G Gregory
- Leukocyte Biology Section, NHLI, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
16
|
Lombardi V, Singh AK, Akbari O. The role of costimulatory molecules in allergic disease and asthma. Int Arch Allergy Immunol 2009; 151:179-89. [PMID: 19786798 DOI: 10.1159/000242355] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The prevalence of allergic diseases has increased rapidly in recent years. It is well established that the deleterious allergic response is initiated by T-cell recognition of major histocompatibility class II-peptide complexes at the surface of antigen-presenting cells. While this first signal gives antigen specificity to the adaptive immune response, a second nonspecific costimulatory signal is required by T cells to become fully activated. This signal is provided by interactions between antigen-presenting cells and T cells through molecules borne at the surfaces of the two cell types. Depending on the type of molecules involved, this secondary signal can promote the development of an inflammatory allergic reaction or may favor immune regulation. Several molecules of the B7 family (CD80, CD86, PD-1, ICOS, CTLA-4) and tumor necrosis factor receptor family (OX40, CD30, 4-1BB, Fas, CD27, CD40) play an important role in delivering costimulatory signals in early and late phases of allergic response. Therefore, costimulatory molecules involved in promotion or prevention of allergic immune responses are potential targets for the development of novel therapeutic approaches. This review aims to recapitulate our current understanding of the relationship between allergic diseases and costimulatory molecules.
Collapse
Affiliation(s)
- Vincent Lombardi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033-9605, USA
| | | | | |
Collapse
|
17
|
Nam HS, Lee SY, Kim SJ, Kim JS, Kwon SS, Kim YK, Kim KH, Moon HS, Song JS, Park SH, Kim SC. The soluble tumor necrosis factor-alpha receptor suppresses airway inflammation in a murine model of acute asthma. Yonsei Med J 2009; 50:569-75. [PMID: 19718408 PMCID: PMC2730622 DOI: 10.3349/ymj.2009.50.4.569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/15/2009] [Accepted: 01/23/2009] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine that has been implicated in many aspects of the airway pathology in asthma. TNF-alpha blocking strategies are now being tried in asthma patients. This study investigated whether TNF-alpha blocking therapy inhibits airway inflammation and airway hyperresponsiveness (AHR) in a mouse model of asthma. We also evaluated the effect of TNF-alpha blocking therapy on cytokine production and adhesion molecule expression. MATERIALS AND METHODS Ovalbumin (OVA) sensitized BALB/c female mice were exposed to intranasal OVA administration on days 31, 33, 35, and 37. Mice were treated intraperitoneally with soluble TNF-alpha receptor (sTNFR) during the OVA challenge. RESULTS There were statistically significant decreases in the numbers of total cell and eosinophil in bronchoalveolar lavage fluid (BALF) in the sTNFR treated group compared with the OVA group. However, sTNFR-treatment did not significantly decrease AHR. Anti-inflammatory effect of sTNFR was accompanied with reduction of T helper 2 cytokine levels including interleukin (IL)-4, IL-5 and IL-13 in BALF and vascular cell adhesion molecule 1 expression in lung tissue. CONCLUSION These results suggest that sTNFR treatment can suppress the airway inflammation via regulation of Th2 cytokine production and adhesion molecule expression in bronchial asthma.
Collapse
Affiliation(s)
- Hae-Seong Nam
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Jun Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ju Sang Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soon Seog Kwon
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Kyoon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwan Hyung Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Sik Moon
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Sup Song
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hak Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seok Chan Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Abstract
Immune regulation plays a critical role in controlling potentially dangerous inflammation and maintaining health. The Fas ligand/Fas receptor axis has been studied extensively as a mechanism of killing T cells and other cells during infections, autoimmunity, and cancer. FasL expression has been primarily attributed to activated T cells and NK cells. Evidence has emerged that B lymphocytes can express FasL and other death-inducing ligands, and can mediate cell death under many circumstances. Among B cell subsets, the expression of both Fas ligand and IL-10 is highest on the CD5(+) B cell population, suggesting that CD5(+) B cells may have a specialized regulatory function. The relevance of killer B cells to normal immune regulation, disease pathogenesis, and inflammation is discussed.
Collapse
Affiliation(s)
- Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
19
|
Mathias CB, Freyschmidt EJ, Caplan B, Jones T, Poddighe D, Xing W, Harrison KL, Gurish MF, Oettgen HC. IgE influences the number and function of mature mast cells, but not progenitor recruitment in allergic pulmonary inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2416-24. [PMID: 19201896 PMCID: PMC2653867 DOI: 10.4049/jimmunol.0801569] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies performed using cultured cells indicate that IgE functions not only to trigger degranulation of mast cells following allergen exposure, but also to enhance their survival. Such an influence of IgE on mast cell homeostasis during allergic responses in vivo has not been established. In this study, we show that inhalation of Aspergillus fumigatus extract in mice induced a dramatic rise in IgE accompanied by an increase in airway mast cells. These had an activated phenotype with high levels of FcepsilonRI. Plasma mast cell protease-1 was also increased, indicating an elevated systemic mast cell load. In addition, enhanced levels of IL-5 and eosinophils were observed in the airway. Both mast cell expansion and activation were markedly attenuated in IgE(-/-) animals that are incapable of producing IgE in response to A. fumigatus. The recruitment of eosinophils to the airways was also reduced in IgE(-/-) mice. Analyses of potential cellular targets of IgE revealed that IgE Abs are not required for the induction of mast cell progenitors in response to allergen, but rather act by sustaining the survival of mature mast cells. Our results identify an important role for IgE Abs in promoting mast cell expansion during allergic responses in vivo.
Collapse
Affiliation(s)
- Clinton B. Mathias
- Division of Immunology, Children’s Hospital Boston, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Eva-Jasmin Freyschmidt
- Division of Immunology, Children’s Hospital Boston, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Benjamin Caplan
- Division of Immunology, Children’s Hospital Boston, Boston, MA 02115
| | - Tatiana Jones
- Division of Rheumatology, Allergy and
Immunology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Dimitri Poddighe
- Division of Immunology, Children’s Hospital Boston, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Wei Xing
- Division of Rheumatology, Allergy and
Immunology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | - Michael F. Gurish
- Division of Rheumatology, Allergy and
Immunology, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Hans C. Oettgen
- Division of Immunology, Children’s Hospital Boston, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Abstract
The immunological mechanisms of healthy and allergic immune responses, as well as allergen-specific immune therapy (ASIT) are determined by the activation of defined subpopulations of specific T-cells and the resulting cytokine pattern. Suppression of a Th2 cytokine pattern by regulatory T-cells (Treg) with IL-10 and/or TGF-beta is decisive for the success of an ASIT. A prerequisite for achieving immunologic tolerance is that sufficiently high amounts of the individual allergen components are present in the allergen extract used. This is true for all forms of application of allergens. Chemically or genetically modified allergens, which will not be recognized by the existing IgE antibodies, can be utilized to attain the high doses required.
Collapse
|
21
|
Kashyap M, Thornton AM, Norton SK, Barnstein B, Macey M, Brenzovich J, Shevach E, Leonard WJ, Ryan JJ. Cutting Edge: CD4 T Cell-Mast Cell Interactions Alter IgE Receptor Expression and Signaling. THE JOURNAL OF IMMUNOLOGY 2008; 180:2039-43. [DOI: 10.4049/jimmunol.180.4.2039] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Hutchison S, Choo-Kang BSW, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, Garside P. Tumour necrosis factor-alpha blockade suppresses murine allergic airways inflammation. Clin Exp Immunol 2008; 151:114-22. [PMID: 17931392 PMCID: PMC2276921 DOI: 10.1111/j.1365-2249.2007.03509.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2007] [Indexed: 11/29/2022] Open
Abstract
Asthma is a heterogeneous disease that has been increasing in incidence throughout western societies and cytokines, including proinflammatory tumour necrosis factor alpha (TNF-alpha), have been implicated in the pathogenesis of asthma. Anti-TNF-alpha therapies have been established successfully in the clinic for diseases such as rheumatoid arthritis and Crohn's disease. TNF-alpha-blocking strategies are now being trialled in asthma; however, their mode of action is poorly understood. Based on the observation that TNF-alpha induces lymph node hypertrophy we have attempted to investigate this as a mechanism of action of TNF-alpha in airway inflammation by employing two models of murine airway inflammation, that we have termed short and long models, representing severe and mild/moderate asthma, respectively. The models differ by their immunization schedules. In the short model, characterized by eosinophilic and neutrophilic airway inflammation the effect of TNF-alpha blockade was a reduction in draining lymph node (DLN) hypertrophy, eosinophilia, interleukin (IL)-5 production and immunoglobulin E (IgE) production. In the long model, characterized by eosinophilic inflammation, TNF-alpha blockade produced a reduction in DLN hypertrophy and IL-5 production but had limited effects on eosinophilia and IgE production. These results indicate that anti-TNF-alpha can suppress DLN hypertrophy and decrease airway inflammation. Further investigations showed that anti-TNF-alpha-induced inhibition of DLN hypertrophy cannot be explained by preventing l-selectin-dependent capture of lymphocytes into the DLN. Given that overall TNF blockade was able to suppress the short model (severe) more effectively than the long model (mild/moderate), the results suggest that TNF-alpha blocking therapies may be more effective in the treatment of severe asthma.
Collapse
Affiliation(s)
- S Hutchison
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bacharier LB, Boner A, Carlsen KH, Eigenmann PA, Frischer T, Götz M, Helms PJ, Hunt J, Liu A, Papadopoulos N, Platts-Mills T, Pohunek P, Simons FER, Valovirta E, Wahn U, Wildhaber J. Diagnosis and treatment of asthma in childhood: a PRACTALL consensus report. Allergy 2008; 63:5-34. [PMID: 18053013 DOI: 10.1111/j.1398-9995.2007.01586.x] [Citation(s) in RCA: 330] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is the leading chronic disease among children in most industrialized countries. However, the evidence base on specific aspects of pediatric asthma, including therapeutic strategies, is limited and no recent international guidelines have focused exclusively on pediatric asthma. As a result, the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma and Immunology nominated expert teams to find a consensus to serve as a guideline for clinical practice in Europe as well as in North America. This consensus report recommends strategies that include pharmacological treatment, allergen and trigger avoidance and asthma education. The report is part of the PRACTALL initiative, which is endorsed by both academies.
Collapse
Affiliation(s)
- L B Bacharier
- Department of Pediatrics, Washington University, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Koncz A, Pasztoi M, Mazan M, Fazakas F, Buzas E, Falus A, Nagy G. Nitric Oxide Mediates T Cell Cytokine Production and Signal Transduction in Histidine Decarboxylase Knockout Mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:6613-9. [DOI: 10.4049/jimmunol.179.10.6613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Podgaec S, Abrao MS, Dias JA, Rizzo LV, de Oliveira RM, Baracat EC. Endometriosis: an inflammatory disease with a Th2 immune response component. Hum Reprod 2007; 22:1373-9. [PMID: 17234676 DOI: 10.1093/humrep/del516] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Efforts have been made to correctly characterize the role of the immune response in endometriosis. The objective of this study was to analyse the interaction between Th1 and Th2 immune response patterns and endometriosis by evaluating a panel of cytokines. METHODS Between January 2004 and November 2005, 98 patients, classified into two groups according to the histologically confirmed presence (Group A) or absence of endometriosis (Group B), were evaluated. Interleukins (IL) 2, 4 and 10, tumour necrosis factor-alpha and interferon-gamma (IFN-gamma) were measured by flow cytometry in the peripheral blood and peritoneal fluid of all patients. RESULTS IFN-gamma and IL-10 levels were significantly higher in the peritoneal fluid of patients with endometriosis compared to those without endometriosis (P < 0.05). There was a significant alteration in the IL-4/IFN-gamma (P < 0.001), IL-4/IL-2 (P = 0.006), IL-10/IFN-gamma (P < 0.001) and the IL-10/IL-2 ratios (P < 0.001) in the peritoneal fluid of patients with endometriosis, with a predominance of IL-4 and IL-10, reflecting a shift towards Th2 immune response despite the increase in IFN-gamma concentrations. CONCLUSIONS Endometriosis is an inflammatory disease involving a possible shift towards Th2 immune response component, as demonstrated by the relative increase in cytokines characteristic of this pattern of immune response.
Collapse
Affiliation(s)
- S Podgaec
- Department of Obstetrics and Gynecology, Teaching Hospital, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|