1
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Muraosa Y, Hino Y, Takatsuka S, Watanabe A, Sakaida E, Saijo S, Miyazaki Y, Yamasaki S, Kamei K. Fungal chitin-binding glycoprotein induces Dectin-2-mediated allergic airway inflammation synergistically with chitin. PLoS Pathog 2024; 20:e1011878. [PMID: 38170734 PMCID: PMC10763971 DOI: 10.1371/journal.ppat.1011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.
Collapse
Affiliation(s)
- Yasunori Muraosa
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Infectious Diseases, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| |
Collapse
|
3
|
Sztandera-Tymoczek M, Szuster-Ciesielska A. Fungal Aeroallergens-The Impact of Climate Change. J Fungi (Basel) 2023; 9:jof9050544. [PMID: 37233255 DOI: 10.3390/jof9050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The incidence of allergic diseases worldwide is rapidly increasing, making allergies a modern pandemic. This article intends to review published reports addressing the role of fungi as causative agents in the development of various overreactivity-related diseases, mainly affecting the respiratory tract. After presenting the basic information on the mechanisms of allergic reactions, we describe the impact of fungal allergens on the development of the allergic diseases. Human activity and climate change have an impact on the spread of fungi and their plant hosts. Particular attention should be paid to microfungi, i.e., plant parasites that may be an underestimated source of new allergens.
Collapse
Affiliation(s)
- Monika Sztandera-Tymoczek
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Different Airway Inflammatory Phenotypes Correlate with Specific Fungal and Bacterial Microbiota in Asthma and Chronic Obstructive Pulmonary Disease. J Immunol Res 2022; 2022:2177884. [PMID: 35310604 PMCID: PMC8933093 DOI: 10.1155/2022/2177884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/22/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Studies of chronic airway inflammatory diseases have increasingly focused on airway microbiota. However, the microbiota characteristics of asthma and chronic obstructive pulmonary disease (COPD) patients with different airway inflammatory phenotypes remain unclear. Objective We aimed to reveal the differences of fungal and bacterial microbiota between eosinophilic asthma (EA) and noneosinophilic asthma (NEA) patients and between eosinophilic COPD (EC) and noneosinophilic COPD (NEC) patients. Further, explore whether similarities exist in the airway microbiota of patients with the same phenotype. Methods Induced sputum samples were collected from 45 asthma subjects and 39 COPD subjects. The airway microbiota of the subjects was profiled by nearly full-length 16S rRNA and internal transcribed space (ITS) sequencing. Results Subjects with eosinophilic phenotype (EA and EC) showed significant differences in both fungal and bacterial microbiota compared to the corresponding subjects with noneosinophilic phenotype (NEA and NEC). In addition, no differences were observed between the fungal microbiota of subjects with the same phenotype (EA vs. EC, NEA vs. NEC). In bacterial microbiota, the greater relative abundance of Streptococcus thermophilus was observed in EA and EC subjects, while Ochrobactrum was enriched in NEA and NEC subjects. In fungal microbiota, the EA and EC subjects showed higher relative abundances of Aspergillus and Bjerkandera, while the NEA and NEC subjects were enriched in Rhodotorula and Papiliotrema. Conclusions Different airway inflammatory phenotypes were related to specific fungal and bacterial microbiota in both asthma and COPD, while the same airway inflammatory phenotype revealed a degree of similarity in airway microbiota, particularly in fungal microbiota.
Collapse
|
5
|
Toxicity studies of Aspergillus fumigatus administered by inhalation to B6C3F1/N mice (revised). TOXICITY REPORT SERIES 2021:NTP-TOX-100. [PMID: 34283822 PMCID: PMC8436148 DOI: 10.22427/ntp-tox-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a thermotolerant, soil-borne fungal species that is ubiquitous in the environment. Mold was nominated to the National Toxicology Program (NTP) by a private individual due to suspected adverse health effects associated with personal exposure in indoor and occupational settings. A. fumigatus is of particular concern in the biowaste industry as the species can contaminate self-heating compost piles. Because of this potential for personal and occupational exposure and the lack of available toxicity data, toxicity studies were conducted in which male and female B6C3F1/N mice were exposed to A. fumigatus conidia (spores) two times a week for 3 months. All in-life procedures, including inhalation exposure, test article preparation, and hematology analysis, were completed by the National Institute for Occupational Safety and Health (NIOSH, Morgantown, WV). Battelle (Columbus, OH) conducted terminal necropsies, measured terminal body and organ weights, and evaluated gross lesions on-site at NIOSH. Tissue processing and histopathology were completed at Battelle. Grocott's methenamine silver (GMS) staining was performed at NIOSH. Genetic toxicology studies on mouse peripheral blood erythrocytes were conducted by Integrated Laboratory Systems, LLC (Research Triangle Park, NC). (Abstract Abridged).
Collapse
|
6
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
7
|
Aspergillus fumigatus Protease Alkaline Protease 1 (Alp1): A New Therapeutic Target for Fungal Asthma. J Fungi (Basel) 2020; 6:jof6020088. [PMID: 32560087 PMCID: PMC7345148 DOI: 10.3390/jof6020088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
We review three recent findings that have fundamentally altered our understanding of causative mechanisms underlying fungal-related asthma. These mechanisms may be partially independent of host inflammatory processes but are strongly dependent upon the actions of Alp1 on lung structural cells. They entail (i) bronchial epithelial sensing of Alp1; (ii) Alp1-induced airway smooth muscle (ASM) contraction; (iii) Alp1-induced airflow obstruction. Collectively, these mechanisms point to Alp1 as a new target for intervention in fungal asthma.
Collapse
|
8
|
Schmit T, Ghosh S, Mathur RK, Barnhardt T, Ambigapathy G, Wu M, Combs C, Khan MN. IL-6 Deficiency Exacerbates Allergic Asthma and Abrogates the Protective Effect of Allergic Inflammation against Streptococcus pneumoniae Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2020; 205:469-479. [PMID: 32540994 DOI: 10.4049/jimmunol.1900755] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Allergic asthma (AA) is characterized as a Th2-biased airway inflammation that can develop lung inflammation and remodeling of the respiratory tract. Streptococcus pneumoniae is a major respiratory pathogen, causing noninvasive (otitis media and pneumonia) and invasive diseases (sepsis) in humans. We sought to determine the role of IL-6 in the regulation of lung inflammation in murine AA caused by Aspergillus fumigatus as well as its consequence on the regulation of airway barrier integrity and S. pneumoniae disease. In an AA model, IL-6 deficiency led to increased lung inflammation, eosinophil recruitment, tissue pathology, and collagen deposition. Additionally, IL-6-deficient asthmatic mice exhibited reduced goblet cell hyperplasia and increased TGF-β production. These key changes in the lungs of IL-6-deficient asthmatic mice resulted in dysregulated tight junction proteins and increased lung permeability. Whereas the host response to AA protected against S. pneumoniae lung disease, the IL-6 deficiency abrogated the protective effect of allergic inflammation against S. pneumoniae pathogenesis. Consistent with in vivo data, IL-6 knockdown by small interfering RNA or the blockade of IL-6R signaling exacerbated the TGF-β-induced dysregulation of tight junction proteins, E-cadherin and N-cadherin expression, and STAT3 phosphorylation in MLE-12 epithelial cells. Our findings demonstrate a previously unrecognized role of host IL-6 response in the regulation of lung inflammation during AA and the control of S. pneumoniae bacterial disease. A better understanding of the interactions between lung inflammation and barrier framework could lead to the development of therapies to control asthma inflammation and preserve barrier integrity.
Collapse
Affiliation(s)
- Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - Sumit Ghosh
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215
| | - Ram Kumar Mathur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - Tyler Barnhardt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - Ganesh Ambigapathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - Colin Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202; and
| |
Collapse
|
9
|
Kercsmar CM, Shipp C. Management/Comorbidities of School-Aged Children with Asthma. Immunol Allergy Clin North Am 2019; 39:191-204. [PMID: 30954170 DOI: 10.1016/j.iac.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asthma is a complex heterogeneous disease characterized by reversible airflow obstruction. After appropriate diagnosis, the management in school-aged children centers on 3 broad domains: pharmacologic treatment, treatment of underlying comorbidities, and education of the patient and caregivers. It is important to understand that the phenotypic differences that exist in the school-aged child with asthma may impact underlying comorbid conditions as well as pharmacologic treatment choices. Following initiation of therapy, asthma control must be continually evaluated in order to optimize management.
Collapse
Affiliation(s)
- Carolyn M Kercsmar
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7041, Cincinnati, OH 45229, USA.
| | - Cassie Shipp
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 7041, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Amarsaikhan N, Tsoggerel A, Hug C, Templeton SP. The Metabolic Cytokine Adiponectin Inhibits Inflammatory Lung Pathology in Invasive Aspergillosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:956-963. [PMID: 31253725 DOI: 10.4049/jimmunol.1900174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Systemic immunity and metabolism are coregulated by soluble factors, including the insulin-regulating adipose tissue cytokine adiponectin. How these factors impact detrimental inflammatory responses during fungal infection remains unknown. In this study, we observed that mortality, fungal burden, and tissue histopathology were increased in adiponectin-deficient mice in a neutropenic model of invasive aspergillosis. Lung RNA sequencing, quantitative RT-PCR, and subsequent pathway analysis demonstrated activation of inflammatory cytokine pathways with upstream regulation by IL-1 and TNF in adiponectin-deficient mice with decreased/inhibited anti-inflammatory genes/pathways, suggesting broad cytokine-mediated pathology along with ineffective fungal clearance. Quantitative RT-PCR analysis confirmed increased transcription of IL-1a, IL-6, IL-12b, IL-17A/F, and TNF in adiponectin-deficient mice at early time points postinfection, with a specific increase in intracellular TNF in alveolar macrophages. Although eosinophil recruitment and activation were increased in adiponectin-deficient mice, mortality was delayed, but not decreased, in mice deficient in both adiponectin and eosinophils. Interestingly, neutrophil depletion was required for increased inflammation in adiponectin-deficient mice in response to swollen/fixed conidia, suggesting that immune suppression enhances detrimental inflammation, whereas invasive fungal growth is dispensable. Our results suggest that adiponectin inhibits excessive lung inflammation in invasive aspergillosis. Our study has therefore identified the adiponectin pathway as a potential source for novel therapeutics in immune-compromised patients with detrimental immunity to invasive fungal infection.
Collapse
Affiliation(s)
- Nansalmaa Amarsaikhan
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809; and
| | - Angar Tsoggerel
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809; and
| | | | - Steven P Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN 47809; and
| |
Collapse
|
11
|
Zamfir M, Gerstner DG, Walser SM, Bünger J, Eikmann T, Heinze S, Kolk A, Nowak D, Raulf M, Sagunski H, Sedlmaier N, Suchenwirth R, Wiesmüller GA, Wollin KM, Tesseraux I, Herr CE. A systematic review of experimental animal studies on microbial bioaerosols: Dose-response data for the derivation of exposure limits. Int J Hyg Environ Health 2019; 222:249-259. [DOI: 10.1016/j.ijheh.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 12/23/2022]
|
12
|
Zhang J, Ma C, Yang A, Zhang R, Gong J, Mo F. Is preterm birth associated with asthma among children from birth to 17 years old? -A study based on 2011-2012 US National Survey of Children's Health. Ital J Pediatr 2018; 44:151. [PMID: 30579359 PMCID: PMC6303925 DOI: 10.1186/s13052-018-0583-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preterm birth can interrupt lung development in utero and is associated with early life factors, which adversely affects the developing respiratory system. Studies on preterm birth and asthma risk are comparatively sparse and the results are not consistent. METHODS Multivariate analyses were performed on a cross-sectional data from the National Survey of Children's Health (NSCH) collected in 2011 to 2012. The NSCH was a nationally representative telephone survey sponsored by the Maternal and Child Health Bureau and conducted by the National Center for Health Statistics. A cross-sectional analysis using data from the US on 90,721 children was conducted to examine the relationship between preterm birth and asthma risk. RESULTS A total of 90,721 children under 17 years were included and 12% of the children were reported as preterm birth. The prevalence of diagnosed asthma was 15%, with a male to female ratio of 1.26:1. Children who were born preterm were 1.64 times (95% confidence interval: 1.45-1.84) more likely to develop asthma compared with those who were born term after controlling for confounders. Similarly, children who were low birth weight were 1.43 times (95% confidence interval: 1.25-1.63) more likely for asthma, and the odds ratio increased to 1.77 for those both preborn and low birth weight. Child's gender, race/ethnicity, age, family structure, family income levels, and household smoking were significantly associated with the odds of reported asthma. CONCLUSIONS Preterm birth was associated with increased risk of asthma among US children, supporting the notion that preterm birth may play a critical role in asthma development.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433 China
- School of Public Health, Brown University, Providence, RI USA
| | - Chenchao Ma
- Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Aimin Yang
- School of Public Health, Brown University, Providence, RI USA
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiannan Gong
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|
13
|
Sohail I, Ghosh S, Mukundan S, Zelewski S, Khan MN. Role of Inflammatory Risk Factors in the Pathogenesis of Streptococcus pneumoniae. Front Immunol 2018; 9:2275. [PMID: 30333833 PMCID: PMC6176091 DOI: 10.3389/fimmu.2018.02275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is a colonizer of the human nasopharynx (NP), causing a variety of infections in humans including otitis media, pneumonia, sepsis, and meningitis. The NP is an immune permissive site which allows for the persistence of commensal bacteria. Acute or chronic respiratory airway inflammation constitutes a significant risk factor for the manifestation of Spn infections. The inflammatory conditions caused by an upper respiratory viral infection or respiratory conditions such as allergic asthma and chronic obstructive pulmonary disorders (COPDs) are implicated in the dysregulation of airway inflammation and tissue damage, which compromise the respiratory barrier integrity. These immune events promote bacterial outgrowth leading to Spn dissemination and invasion into the bloodstream. Therefore, suppression of inflammation and restoration of respiratory barrier integrity could contain Spn infections manifesting in the backdrop of an inflammatory disease condition. The gained knowledge could be harnessed in the design of novel therapeutic interventions to circumvent Spn bacterial infections.
Collapse
Affiliation(s)
- Ifrah Sohail
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Sumit Ghosh
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Santhosh Mukundan
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Susan Zelewski
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - M Nadeem Khan
- Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
14
|
Li E, Tsai C, Maskatia ZK, Kakkar E, Porter P, Rossen RD, Perusich S, Knight JM, Kheradmand F, Corry DB. Benefits of antifungal therapy in asthma patients with airway mycosis: A retrospective cohort analysis. Immun Inflamm Dis 2018; 6:264-275. [PMID: 29575717 PMCID: PMC5946149 DOI: 10.1002/iid3.215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Fungal airway infection (airway mycosis) is increasingly recognized as a cause of asthma and related disorders. However, prior controlled studies of patients treated with antifungal antibiotics have produced conflicting results. Our objective is to measure the effect of antifungal therapy in moderate to severe adult asthmatics with positive fungal sputum cultures in a single center referral-based academic practice. METHODS We retrospectively evaluated 41 patients with asthma and culture-proven airway mycosis treated with either terbinafine, fluconazole, itraconazole, voriconazole, or posaconazole for 4 to >12 weeks together with standard bronchodilator and anti-inflammatory agents. Asthma control (1 = very poorly controlled; 2 = not well controlled; and 3 = well controlled), peak expiratory flow rates (PEFR), serum total IgE, and absolute blood eosinophil counts before and after antifungal therapy were assessed. In comparison, we also studied nine patients with airway mycosis and moderate to severe asthma who received standard therapy but no antifungals. RESULTS Treatment with azole-based and allylamine antifungals was associated with improved asthma control (mean change in asthma control 1.72-2.25; p = 0.004), increased PEFR (69.4% predicted to 79.3% predicted, p = 0.0011) and markedly reduced serum IgE levels (1,075 kU/L to 463 kU/L, p = 0.0005) and blood eosinophil counts (Mean absolute count 530-275, p = 0.0095). Reduction in symptoms, medication use, and relapse rates decreased as duration of therapy increased. Asthmatics on standard therapy who did not receive antifungals showed no improvement in asthma symptoms or PEFR. Antifungals were usually well tolerated, but discontinuation (12.2%) and relapse (50%) rates were relatively high. CONCLUSION Antifungals help control symptoms in a subset of asthmatics with culture-proven airway mycosis. Additional randomized clinical trials are warranted to extend and validate these findings.
Collapse
Affiliation(s)
- Evan Li
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
| | - Chu‐Lin Tsai
- Department of Emergency MedicineNational Taiwan University HospitalTaipeiTaiwan
| | | | - Ekta Kakkar
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
| | - Paul Porter
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Roger D. Rossen
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Sarah Perusich
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Biology of Inflammation CenterBaylor College of MedicineHoustonTexasUSA
| | - John M. Knight
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Farrah Kheradmand
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of Biology of Inflammation CenterBaylor College of MedicineHoustonTexasUSA
- Michael E. DeBakey VA Center for Translational Research on Inflammatory DiseasesHoustonTexasUSA
| | - David B. Corry
- Department of MedicineBaylor College of MedicineHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
- Department of Biology of Inflammation CenterBaylor College of MedicineHoustonTexasUSA
- Michael E. DeBakey VA Center for Translational Research on Inflammatory DiseasesHoustonTexasUSA
| |
Collapse
|
15
|
Lim C, Lim S, Lee B, Cho S. Ginsenoside Rg1 Exhibits Anti-asthmatic Activity in an Aspergillus Protease-Induced Asthma Model in Mice. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is one of the most common chronic airway diseases and is characterized by symptoms, such as, wheezing and coughing. Its prevalence in Korea is gradually increasing among children and adults, especially among those older than 60 years. In this study, we investigated the effects of ginsenoside Rg1 (Rg1), one of the major constituents of Panax ginseng Meyer on ovalbumin (OVA) plus Aspergillus protease ( A. protease) allergen-induced asthmatic mice. Mice were orally administered Rg1 for 10 days from 8 days after OVA + A. protease sensitization and intranasally administered booster doses of OVA + A. protease for 4 days from 14 days after sensitization. The effects of Rg1 administration on airway hyperresponsiveness (AHR), immune cell distributions in bronchoalveolar lavage fluid (BALF), and serum level of immunoglobulin E (IgE) were investigated at 18 days after sensitization. Histopathological changes in hematoxylin and eosin (H&E)-stained lung sections were also examined. Treatment of OVA + A. protease-sensitized/challenged asthmatic mice with Rg1 significantly decreased total eosinophil counts in BALF as compared with those of phosphate-buffered saline (PBS)-treated sensitized/challenged controls, and significantly decreased methacholine-induced AHR. Furthermore, IgE serum levels were significantly lower in Rg1 administered OVA + A. protease-sensitized asthmatic mice than in PBS-treated sensitized/challenged controls. The study shows Rg1 protects against A. protease allergen-induced asthma in mice.
Collapse
Affiliation(s)
- Chiyeon Lim
- College of Medicine, Dongguk University, Ilsan 10326, Republic of Korea
| | - Sehyun Lim
- School of Public Health, Far East University, Eumseong 27601, Republic of Korea
| | - Byoungho Lee
- Kyunghee Naseul Korean Medicine Clinic, Bucheon 14548, Republic of Korea
| | - Suin Cho
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Madigan LA, Wong GS, Gordon EM, Chen WS, Balenga N, Koziol-White CJ, Panettieri RA, Levine SJ, Druey KM. RGS4 Overexpression in Lung Attenuates Airway Hyperresponsiveness in Mice. Am J Respir Cell Mol Biol 2018; 58:89-98. [PMID: 28853915 DOI: 10.1165/rcmb.2017-0109oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A cardinal feature of asthma is airway hyperresponsiveness (AHR) to spasmogens, many of which activate G protein-coupled receptors (GPCRs) on airway smooth muscle (ASM) cells. Asthma subtypes associated with allergy are characterized by eosinophilic inflammation in the lung due to the type 2 immune response to allergens and proinflammatory mediators that promote AHR. The degree to which intrinsic abnormalities of ASM contribute to this phenotype remains unknown. The regulators of G protein signaling (RGS) proteins are a large group of intracellular proteins that inhibit GPCR signaling pathways. RGS2- and RGS5-deficient mice develop AHR spontaneously. Although RGS4 is upregulated in ASM from patients with severe asthma, the effects of increased RGS4 expression on AHR in vivo are unknown. Here, we examined the impact of forced RGS4 overexpression in lung on AHR using transgenic (Tg) mice. Tg RGS4 was expressed in bronchial epithelium and ASM in vivo, and protein expression in lung was increased at least 4-fold in Tg mice compared with wild-type (WT) mice. Lung slices from Tg mice contracted less in response to the m3 muscarinic receptor agonist methacholine compared with the WT, although airway resistance in live, unchallenged mice of both strains was similar. Tg mice were partially protected against AHR induced by fungal allergen challenge due to weakened contraction signaling in ASM and reduced type 2 cytokine (IL-5 and IL-13) levels in Tg mice compared with the WT. These results provide support for the hypothesis that increasing RGS4 expression and/or function could be a viable therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Laura A Madigan
- 1 Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, and
| | - Gordon S Wong
- 1 Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, and
| | - Elizabeth M Gordon
- 2 Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Wei-Sheng Chen
- 1 Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, and
| | - Nariman Balenga
- 1 Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, and
| | - Cynthia J Koziol-White
- 3 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 3 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Stewart J Levine
- 2 Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Kirk M Druey
- 1 Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, and
| |
Collapse
|
17
|
Morán G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J Mycol Med 2017; 28:128-136. [PMID: 29233467 DOI: 10.1016/j.mycmed.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils are the predominant inflammatory cells that infiltrate airways during acute exacerbation of asthma. The importance of A. fumigatus sensitization, and IgE response in the airways in patients with acute asthma is unclear. Rockefeller (RK) mice were sensitized with A. fumigatus extract protein. The animals were subsequently challenged with different degrees of A. fumigatus contamination in the cage bedding. All groups of mice were euthanized to obtain bronchoalveolar lavage fluid (BALF) for cytological and Elisa assays, and lung tissue for histological analysis. Moreover, several bioassays were conducted to determine whether BALF IgE antibodies can activate mast cells. In this study, we demonstrated that exposure of sensitized mice to a known concentration of A. fumigatus conidia produces bronchial hyperreactivity with marked neutrophilic bronchial infiltration and increased BALF IgE, capable of triggering mast cell degranulation. This study suggests that IgE may play a role in bronchial hyperreactivity associated to A. fumigatus exposure in mice. Mice sensitized and challenged with this fungus showed characteristics of severe asthma, with an increase of BALF neutrophils, histological changes consistent with severe asthma and an increase of IgE capable of triggering type I hypersensitivity.
Collapse
Affiliation(s)
- G Morán
- Department of pharmacology, faculty of veterinary science, universidad Austral de Chile, Valdivia, Chile.
| | - B Uberti
- Department of clinical veterinary sciences, faculty of veterinary sciences, universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of veterinary medicine, universidad Católica de Temuco, Temuco, Chile
| | - H Folch
- Department of immunology, faculty of medicine, universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
18
|
Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol 2017; 54:375-384. [PMID: 29202301 DOI: 10.1016/j.intimp.2017.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Repeated exposure to the fungal pathogen Aspergillus fumigates triggers spleen tyrosine kinase (SYK) signalling through dectin-1 activation, which is associated with deleterious airway inflammation. β-Glucan-induced dectin-1 signalling activates the NLRP3 inflammasome, which in turn rapidly produces IL-1β, a master regulator of inflammation. IL-1β expression results in Th17/Treg imbalance, pulmonary inflammation, and bystander tissue injury. This study reports that 3,4 methylenedioxy-β-nitrostyrene (MNS), a potent SYK inhibitor, markedly decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines in vitro. Furthermore, SYK inhibition markedly decreased β-glucan-induced IL-1β expression, suggesting that SYK is indispensable for NLRP3 inflammasome activation. Decreased IL-1β expression correlated with reduced Th17 response and enhanced immunosuppressive Treg response. Notably, SYK inhibition ameliorated inflammation caused by repeated intranasal β-glucan challenge in BALB/C mice. SYK inhibition also restored the Th17/Treg balance via decreased Th17 and increased Treg responses, as evidenced by decreased IL-17 and ror-γ levels. Additionally, inhibition of SYK increased IL-10 secreting CD4+FOXP3+ T cells that accompanied reduced T cell proliferation. Decreased IgA in the Bronchoalveolar lavage (BAL) fluid and serum also indicated the immunosuppressive potential of SYK inhibition. Histopathology data revealed that repeated β-glucan challenge caused substantial pulmonary damage, as indicated by septal thickening and interstitial lymphocytic, neutrophil and granulocyte recruitment. These processes were effectively prevented by SYK inhibition, resulting in lung protection. Collectively, our findings suggest that SYK inhibition ameliorates dectin-1- mediated detrimental pulmonary inflammation and subsequent tissue damage. Therefore, SYK can be a new target gene in the therapeutic approach against fungal induced airway inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Naveen Challagundla
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
19
|
Matsuse H, 1 Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan, Yamagishi T, Kodaka N, Nakano C, Fukushima C, Obase Y, Mukae H, 2 Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan. Therapeutic modality of plasmacytoid dendritic cells in a murine model of <em>Aspergillus fumigatus</em> sensitized and infected asthma. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Levetin E, Horner WE, Scott JA. Taxonomy of Allergenic Fungi. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 4:375-385.e1. [PMID: 26725152 DOI: 10.1016/j.jaip.2015.10.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
The Kingdom Fungi contains diverse eukaryotic organisms including yeasts, molds, mushrooms, bracket fungi, plant rusts, smuts, and puffballs. Fungi have a complex metabolism that differs from animals and plants. They secrete enzymes into their surroundings and absorb the breakdown products of enzyme action. Some of these enzymes are well-known allergens. The phylogenetic relationships among fungi were unclear until recently because classification was based on the sexual state morphology. Fungi lacking an obvious sexual stage were assigned to the artificial, now-obsolete category, "Deuteromycetes" or "Fungi Imperfecti." During the last 20 years, DNA sequencing has resolved 8 fungal phyla, 3 of which contain most genera associated with important aeroallergens: Zygomycota, Ascomycota, and Basidiomycota. Advances in fungal classification have required name changes for some familiar taxa. Because of regulatory constraints, many fungal allergen extracts retain obsolete names. A major benefit from this reorganization is that specific immunoglobulin E (IgE) levels in individuals sensitized to fungi appear to closely match fungal phylogenetic relationships. This close relationship between molecular fungal systematics and IgE sensitization provides an opportunity to systematically look at cross-reactivity and permits representatives from each taxon to serve as a proxy for IgE to the group.
Collapse
Affiliation(s)
- Estelle Levetin
- Faculty of Biological Science, University of Tulsa, Tulsa, Okla.
| | | | - James A Scott
- Division of Occupational & Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|