1
|
Cavalcante MF, Kazuma SM, Bender EA, Adorne MD, Ullian M, Veras MM, Saldiva PHN, Maranhão AQ, Guterres SS, Pohlmann AR, Abdalla DSP. A nanoformulation containing a scFv reactive to electronegative LDL inhibits atherosclerosis in LDL receptor knockout mice. Eur J Pharm Biopharm 2016; 107:120-9. [PMID: 27378286 DOI: 10.1016/j.ejpb.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease responsible for the majority of cases of myocardial infarction and ischemic stroke. The electronegative low-density lipoprotein, a modified subfraction of native LDL, is pro-inflammatory and plays an important role in atherogenesis. To investigate the effects of a nanoformulation (scFv anti-LDL(-)-MCMN-Zn) containing a scFv reactive to LDL(-) on the inhibition of atherosclerosis, its toxicity was evaluated in vitro and in vivo and further it was also administered weekly to LDL receptor knockout mice. The scFv anti-LDL(-)-MCMN-Zn nanoformulation did not induce cell death in RAW 264.7 macrophages and HUVECs. The 5mg/kg dose of scFv anti-LDL(-)-MCMN-Zn did not cause any typical signs of toxicity and it was chosen for the evaluation of its atheroprotective effect in Ldlr(-/-) mice. This nanoformulation significantly decreased the atherosclerotic lesion area at the aortic sinus, compared with that in untreated mice. In addition, the Il1b mRNA expression and CD14 protein expression were downregulated in the atherosclerotic lesions at the aortic arch of Ldlr(-/-) mice treated with scFv anti-LDL(-)-MCMN-Zn. Thus, the scFv anti-LDL(-)-MCMN-Zn nanoformulation inhibited the progression of atherosclerotic lesions, indicating its potential use in a future therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Marcela Frota Cavalcante
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Soraya Megumi Kazuma
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo André Bender
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Duarte Adorne
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Ullian
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Matera Veras
- LIM5, Department of Pathology, Medicine School, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Andrea Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Silvia Stanisçuaski Guterres
- Department of Production and Control of Medicines, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
2
|
Xia M, Chen D, Endresz V, Lantos I, Szabo A, Kakkar V, Lu X. Modulation of recombinant antigenic constructs containing multi-epitopes towards effective reduction of atherosclerotic lesion in B6;129S-Ldlr(tm1Her)Apob(tm2Sgy)/J mice. PLoS One 2015; 10:e0123393. [PMID: 25830298 PMCID: PMC4382319 DOI: 10.1371/journal.pone.0123393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/18/2015] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is increasingly recognized as a complex chronic inflammatory disease. Many more studies have extended vaccination against atherosclerosis by using epitopes from self-antigens or beyond and demonstrated that vaccination with antigens or derivatives could reduce the extent of the lesions in atherosclerosis-prone mice. Our previous study has demonstrated that construct AHHC [ApoB100688-707 + hHSP60303-312 + hHSP60153-163 + Cpn derived peptide (C)] significantly reduced atherosclerotic lesion. The aim of this study was to investigate whether AHHC can be modulated towards increased lesion reduction in mice by creating two other derivatives with a sequential epitope-substitution named RHHC in which A was replaced by an "R" (C5aR1-31) and RPHC with a further "H" (hHSP60303-312) conversion into "P" (protease-activated receptor-142-55) in mice. Antigenic epitopes were incorporated into a dendroaspin scaffold. Immunization of B6;129S-Ldlrtm1HerApobtm2Sgy/J mice with three constructs elicited production of high levels of antibodies against each epitope (apart from hHSP60153-163 and P which induced a low antibody response). Histological analyses demonstrated that the mice immunized with either RPHC or RHHC showed significant reductions in the size of atherosclerostic lesions compared to those with AHHC (69.5±1.1% versus 55.7±3.4%, P<0.01 or 65.6±1.3% versus 55.7±3.4%, P<0.01). Reduction of plaque size in the aortic sinus and descending aorta correlated with alterations in cellular immune responses when compared with controls. We conclude that a recombinant construct RPHC may provide new antigenic and structural features which are favorable for significant reduction in atherosclerotic lesion formation. This approach offers a novel strategy for developing anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Min Xia
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
| | - Daxin Chen
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- MRC Centre for Transplantation, King's College London, London, United Kingdom
| | - Valeria Endresz
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Ildiko Lantos
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Andrea Szabo
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Vijay Kakkar
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- Thrombosis Research Institute, Bangalore, India
| | - Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Ridker PM, Lüscher TF. Anti-inflammatory therapies for cardiovascular disease. Eur Heart J 2014; 35:1782-91. [PMID: 24864079 PMCID: PMC4155455 DOI: 10.1093/eurheartj/ehu203] [Citation(s) in RCA: 425] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/16/2014] [Accepted: 04/26/2014] [Indexed: 12/17/2022] Open
Abstract
Atherothrombosis is no longer considered solely a disorder of lipoprotein accumulation in the arterial wall. Rather, the initiation and progression of atherosclerotic lesions is currently understood to have major inflammatory influences that encompass components of both the innate and acquired immune systems. Promising clinical data for 'upstream' biomarkers of inflammation such as interleukin-6 (IL-6) as well as 'downstream' biomarkers such as C-reactive protein, observations regarding cholesterol crystals as an activator of the IL-1β generating inflammasome, and recent Mendelian randomization data for the IL-6 receptor support the hypothesis that inflammatory mediators of atherosclerosis may converge on the central IL-1, tumour necrosis factor (TNF-α), IL-6 signalling pathway. On this basis, emerging anti-inflammatory approaches to vascular protection can be categorized into two broad groups, those that target the central IL-6 inflammatory signalling pathway and those that do not. Large-scale Phase III trials are now underway with agents that lead to marked reductions in IL-6 and C-reactive protein (such as canakinumab and methotrexate) as well as with agents that impact on diverse non-IL-6-dependent pathways (such as varespladib and darapladib). Both approaches have the potential to benefit patients and reduce vascular events. However, care should be taken when interpreting these trials as outcomes for agents that target IL-6 signalling are unlikely to be informative for therapies that target alternative pathways, and vice versa. As the inflammatory system is redundant, compensatory, and crucial for survival, evaluation of risks as well as benefits must drive the development of agents in this class.
Collapse
Affiliation(s)
- Paul M Ridker
- Division of Cardiovascular Medicine, Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA, 02215 USA Division of Preventive Medicine, Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, 900 Commonwealth Avenue, Boston, MA, 02215 USA
| | - Thomas F Lüscher
- Cardiology, University Heart Center, University Hospital Zurich and Center for Molecular Cardiology, Campus Schlieren, University Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Lu X, Xia M, Endresz V, Faludi I, Mundkur L, Gonczol E, Chen D, Kakkar VV. Immunization With a Combination of 2 Peptides Derived From the C5a Receptor Significantly Reduces Early Atherosclerotic Lesion in
Ldlr
tm1Her
Apob
tm2Sgy
J Mice. Arterioscler Thromb Vasc Biol 2012; 32:2358-71. [DOI: 10.1161/atvbaha.112.253179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective—
The goal of this study was to assess whether immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with 2 peptides located at the N-terminus of the C5a receptor (C5aR), either alone or in combination, is effective in reducing atherosclerotic lesions.
Methods and Results—
Five- to 6-week-old female
Ldlr
tm1Her
Apob
tm2Sgy
J mice were immunized using a repetitive immunization multiple sites strategy with keyhole limpet hemocyanin-conjugated peptides derived from the C5aR, either alone (designated as C5aR-P1 [aa 1–21] and C5aR-P2 [aa 19–31]) or in combination (designated as C5aR-P1+C5aR-P2). Mice were fed a high-fat diet for 10 weeks. Lesions were evaluated histologically; local and systemic immune responses were analyzed by immunohistochemistry of aorta samples and cytokine measurements in plasma samples and splenocyte supernatants. Immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with these peptides elicited high concentrations of antibodies against each peptide. Immunization with the single peptide inhibited plaque development. Combined inoculation with C5aR-P1+C5aR-P2 had an additive effect on reducing the lesion in the aorta sinus and descending aortas when compared with controls. This effect correlated with cellular infiltration and cytokine/chemokine secretion in the serum or in stimulated spleen cells as well as specific cellular immune responses when compared with controls.
Conclusion—
Immunization of mice with C5aR-P1 and C5aR-P2, either alone or in combination, was effective in reducing early atherosclerotic lesion development. The combined peptide is more potential than either epitope alone to reduce atherosclerotic lesion formation through the induction of a specific Treg cell response as well as blockage of monocyte differentiation into macrophages.
Collapse
Affiliation(s)
- Xinjie Lu
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Min Xia
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Valeria Endresz
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Ildiko Faludi
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Lakshmi Mundkur
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Eva Gonczol
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Daxin Chen
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Vijay V. Kakkar
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| |
Collapse
|