1
|
Hu X, Zhang P, Wang T, Li Q, Li M, Zhao Z, Yu R, Tan Y, Yao C. MiR-33 as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps: a case-control study. Hereditas 2025; 162:37. [PMID: 40087680 PMCID: PMC11907919 DOI: 10.1186/s41065-025-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Cholecystectomy is often excessively utilized in the management of gallbladder polyps. It is crucial to effectively differentiate between adenomatous and cholesterol polyps to reduce unnecessary cholecystectomies. This study aimed to investigate the potential of miR-33 as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps. Gallbladder specimens were retrospectively collected from gallbladder polyp patients who underwent laparoscopic cholecystectomy at the Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, between June 2021 and December 2021. Pathological analysis categorized the specimens into two groups: the cholesterol polyp group (n = 13) and the adenomatous polyp group (n = 12). The expression levels of miR-33a and miR-33b in both groups were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). MiR-33a level and the miR-33a/miR-33b ratio were significantly lower in cholesterol polyps than in adenomatous polyps (p < 0.05). Spearman correlation analysis showed a strong positive correlation between miR-33a and miR-33b (r = 0.956, p < 0.001). Stepwise logistic regression analysis revealed that decreased miR-33b and elevated miR-33a/miR-33b ratio are independent risk factors for cholesterol polyps (p < 0.05). A predictive model was constructed, with the model's AUC for diagnosing adenomatous polyps being 0.885 (95% CI: 0.753-1.000, p = 0.001), exhibiting a notable specificity of 84.62% and a sensitivity of 83.33% at a cut-off of 0.424. MiR-33 could serve as a novel diagnostic biomarker for distinguishing cholesterol from adenomatous polyps to facilitate the diagnosis and treatment of clinicians.
Collapse
Affiliation(s)
- Xia Hu
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Ping Zhang
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Tong Wang
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Quanzhi Li
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Minjia Li
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Zhuohan Zhao
- The First Clinical Medical College, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Rui Yu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, 100105, China
| | - Yan Tan
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Beisanhuan Road, Chaoyang District, Beijing, 100105, China.
| | - Chengli Yao
- The Second Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
2
|
Chand S, Tripathi AS, Dewani AP, Sheikh NWA. Molecular targets for management of diabetes: Remodelling of white adipose to brown adipose tissue. Life Sci 2024; 345:122607. [PMID: 38583857 DOI: 10.1016/j.lfs.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.
Collapse
Affiliation(s)
- Shushmita Chand
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, ERA College of Pharmacy, ERA University, Lucknow, Uttar Pradesh, India.
| | - Anil P Dewani
- Department of Pharmacology, P. Wadhwani College of Pharmacy, Yavatmal, Maharashtra, India
| | | |
Collapse
|
3
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
6
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
7
|
MiR-34a-5p promotes hepatic gluconeogenesis by suppressing SIRT1 expression. Exp Cell Res 2022; 420:113336. [PMID: 36058294 DOI: 10.1016/j.yexcr.2022.113336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022]
Abstract
Elevated hepatic gluconeogenesis is a major contributor of fasting hyperglycemia in diabetes. MicroRNAs (miRNAs) are tightly linked to glucose metabolism, but their role in hepatic gluconeogenesis remains largely unkown. In this current study, miR-34a-5p expression was significantly increased in liver tissues of db/db mice. Overexpression of miR-34a-5p promoted hepatic glucose production in mouse primary hepatocytes with increased expressions of gluconeogenic genes while miR-34a-5p inhibition displayed a contrary action. MiR-34a-5p overexpression in mouse primary hepatocytes repressed SIRT1 expression. SIRT1 inhibition by EX527 blocked phosphoenolpyruvate carboxykinase (PEPCK) protein degradation and enhanced hepatic gluconeogenesis. Treatment of A485 (a CBP/p300 inhibitor) decreased miR-34a-5p and PEPCK expressions in the livers of db/db mice, but elevated SIRT1 protein expression. In mouse primary hepatocytes, A485 exhibited a similar result. Overexpression of miR-34a-5p attenuated A485-inhibited gluconeogenic gene expressions and A485-induced SIRT1 protein expression. Finally, after miR-34a-5p was inhibited in the livers of db/db mice, hepatic glucose production and gluconeogenic gene expressions were markedly lowered. Our findings highlight a critical role of miR-34a-5p in the regulation of hepatic gluconeogenesis and miR-34a-5p may be a potential target in the treatment of type 2 diabetes.
Collapse
|
8
|
Renalase: a novel regulator of cardiometabolic and renal diseases. Hypertens Res 2022; 45:1582-1598. [PMID: 35941358 PMCID: PMC9358379 DOI: 10.1038/s41440-022-00986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022]
Abstract
Renalase is a ~38 kDa flavin-adenine dinucleotide (FAD) domain-containing protein that can function as a cytokine and an anomerase. It is emerging as a novel regulator of cardiometabolic diseases. Expressed mainly in the kidneys, renalase has been reported to have a hypotensive effect and may control blood pressure through regulation of sympathetic tone. Furthermore, genetic variations in the renalase gene, such as a functional missense polymorphism (Glu37Asp), have implications in the cardiovascular and renal systems and can potentially increase the risk of cardiometabolic disorders. Research on the physiological functions and biochemical actions of renalase over the years has indicated a role for renalase as one of the key proteins involved in various disease states, such as diabetes, impaired lipid metabolism, and cancer. Recent studies have identified three transcription factors (viz., Sp1, STAT3, and ZBP89) as key positive regulators in modulating the expression of the human renalase gene. Moreover, renalase is under the post-transcriptional regulation of two microRNAs (viz., miR-29b, and miR-146a), which downregulate renalase expression. While renalase supplementation may be useful for treating hypertension, inhibition of renalase signaling may be beneficial to patients with cancerous tumors. However, more incisive investigations are required to unravel the potential therapeutic applications of renalase. Based on the literature pertaining to the function and physiology of renalase, this review attempts to consolidate and comprehend the role of renalase in regulating cardiometabolic and renal disorders. ![]()
Collapse
|
9
|
Zhang F, Wang G, Yan W, Jiang H. MiR-4268 suppresses gastric cancer genesis through inhibiting keratin 80. Cell Cycle 2022; 21:2051-2064. [PMID: 35748914 DOI: 10.1080/15384101.2022.2085351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer (GC) affects a large proportion of cancer patients worldwide, and the prediction of potential biomarkers can greatly improve its diagnosis and treatment. Here, miR-4268 and keratin 80 (KRT80) expression in GC tissues and cell lines was determined. The effect of downregulating miR-4268 and interfering with KRT80 expression on the viability, proliferation, apoptosis, and migration of GC cells were evaluated. The interaction between miR-4268 and KRT80 was studied using luciferase reporter and RNA pull-down assays. The western blot, CCK-8, BrdU, caspase-3 activity, Transwell assays were performed for the functional characterization. In GC tissues and cells, KRT80 expression was found to be significantly higher, while that of miR-4268 was significantly lower than the respective expressions in normal tissues and cells. Interference with KRT80 expression inhibited the viability, proliferation, and migration of GC cells and facilitated cell apoptosis in vitro. We further demonstrated that miR-4268 targeted KRT80 and negatively regulated its expression, and miR-4268 inhibitor alleviated the inhibitory effects of KRT80 downregulation on GC cell growth. Finally, miR-4268 may function as tumor suppressor through inhibiting PI3K/AKT/JNK pathways by targeting KRT80 in GC. Collectively, our present results indicate that the miR-4268/KRT80 axis acts as a potential therapeutic target for patients with GC.AbbreviationsGastric cancer (GC); MicroRNAs (miRNAs); Keratin 80 (KRT80); differentially expressed genes (DEGs); chemoradiotherapy (CRT); negative nonsense sequence (NC); radioimmunoprecipitation assay (RIPA); polyvinylidene fluoride (PVDF).
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastroenterology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Guoxian Wang
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenjuan Yan
- Department of Gastroenterology, The Third People's Hospital of Hubei Province, Wuhan, Hubei, China
| | - Hongmei Jiang
- Department of Gastroenterology, Wuhan Third Hospital, Tongren Hospital of Wuhan University (Optics Valley Area), Wuhan, Hubei, China
| |
Collapse
|
10
|
Lu RH, Lin MJ, Yang F, Jia SZ, Zhang YR, Qin CB, Meng XL, Nie GX. Anti-miR33 therapy improved hepatopancreatic lipid and immune metabolism disorders in grass carp, Ctenopharyngodon idella. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1611-1622. [PMID: 34427827 DOI: 10.1007/s10695-021-00956-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Lipid metabolism disorders are found ubiquitously in farmed fish and occur as a result of excessive fat accumulation. Previous studies have found that miR-33 is involved in lipid metabolism; however, its role in fish lipid metabolism is unclear. We sought to clarify this relationship in grass carp in vivo and in vitro. Our findings revealed the length of miR-33 to be 65 bp. Phylogenetic tree analysis showed that grass carp miR-33 was most closely related to fish miR-33 (Siganus canaliculatus). Hepatocytes transfected with miR-33 mimic displayed markedly raised TG content (P < 0.05) as well as increased levels of lipid synthesis-related transcription factors (P < 0.05). Compared with blank and saline groups, total serum cholesterol, AST, and LDL levels were suppressed in groups treated with the miR-33 antagomir (P < 0.05). Moreover, the expression levels of PPARγ and SREBP-1c mRNA were significantly decreased in contrast to those found in the control group (P < 0.05). Similar findings were noted in the expression of immune-related proinflammatory molecules (TNFα, IL-1β, IL-6, and NF-κB), which also demonstrated decreased levels (P < 0.05). Conversely, high expressions of anti-inflammatory factors (TGF-β1 and IL-10) were noted (P < 0.05). This investigation strongly supports the role of miR-33 in hepatopancreas-based lipid metabolism and immunity. miR-33 may have been highly conserved in early vertebrates in order to facilitate liver-specific metabolic and immunomodulatory functions. Our findings provide a basis for further investigations exploring the mechanisms surrounding fish lipid metabolism and may aid in preventing and treating immunocompromised fish as well as fish with fatty hepatopancreas, and other metabolic diseases.
Collapse
Affiliation(s)
- Rong-Hua Lu
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Meng-Jun Lin
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Feng Yang
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Shen-Zong Jia
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Chao-Bin Qin
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China
| | - Xiao-Lin Meng
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, 453007, Xinxiang, China.
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Ruskovska T, Massaro M, Carluccio MA, Arola-Arnal A, Muguerza B, Vanden Berghe W, Declerck K, Bravo FI, Calabriso N, Combet E, Gibney ER, Gomes A, Gonthier MP, Kistanova E, Krga I, Mena P, Morand C, Nunes Dos Santos C, de Pascual-Teresa S, Rodriguez-Mateos A, Scoditti E, Suárez M, Milenkovic D. Systematic bioinformatic analysis of nutrigenomic data of flavanols in cell models of cardiometabolic disease. Food Funct 2021; 11:5040-5064. [PMID: 32537624 DOI: 10.1039/d0fo00701c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavanol intake positively influences several cardiometabolic risk factors in humans. However, the specific molecular mechanisms of action of flavanols, in terms of gene regulation, in the cell types relevant to cardiometabolic disease have never been systematically addressed. On this basis, we conducted a systematic literature review and a comprehensive bioinformatic analysis of genes whose expression is affected by flavanols in cells defining cardiometabolic health: hepatocytes, adipocytes, endothelial cells, smooth muscle cells and immune cells. A systematic literature search was performed using the following pre-defined criteria: treatment with pure compounds and metabolites (no extracts) at low concentrations that are close to their plasma concentrations. Differentially expressed genes were analyzed using bioinformatics tools to identify gene ontologies, networks, cellular pathways and interactions, as well as transcriptional and post-transcriptional regulators. The systematic literature search identified 54 differentially expressed genes at the mRNA level in in vitro models of cardiometabolic disease exposed to flavanols and their metabolites. Global bioinformatic analysis revealed that these genes are predominantly involved in inflammation, leukocyte adhesion and transendothelial migration, and lipid metabolism. We observed that, although the investigated cells responded differentially to flavanol exposure, the involvement of anti-inflammatory responses is a common mechanism of flavanol action. We also identified potential transcriptional regulators of gene expression: transcriptional factors, such as GATA2, NFKB1, FOXC1 or PPARG, and post-transcriptional regulators: miRNAs, such as mir-335-5p, let-7b-5p, mir-26b-5p or mir-16-5p. In parallel, we analyzed the nutrigenomic effects of flavanols in intestinal cells and demonstrated their predominant involvement in the metabolism of circulating lipoproteins. In conclusion, the results of this systematic analysis of the nutrigenomic effects of flavanols provide a more comprehensive picture of their molecular mechanisms of action and will support the future setup of genetic studies to pave the way for individualized dietary recommendations.
Collapse
Affiliation(s)
- Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eileen R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Ireland
| | - Andreia Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade, Serbia and Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food and Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Christine Morand
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France.
| | - Claudia Nunes Dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal and Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal and CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Manuel Suárez
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, 43007, Tarragona, Spain
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAe, UNH, F-63000 Clermont-Ferrand, France. and Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
12
|
Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Mol Biol Rep 2020; 47:4553-4568. [PMID: 32383136 DOI: 10.1007/s11033-020-05494-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most common disorders in females all around the world. Similar to other types of cancer, several signaling pathways are demonstrated to be involved in the progression of this cancer including ERK/MAPK, PI3K/AKT, apoptotic signaling pathways, Wnt, and epidermal growth factor receptor (EGFR). Various microRNAs (miRNAs) and their target genes involved in cervical cancer have been extracted from the kinds of literature of Scopus, Pubmed and Google scholar databases. Regarding the targets, some of them were found to belong in EGFR signaling pathways. The regulation patterns of these miRNA are different in cervical cancer; however, their main aim is to trigger EGFR signaling to proceed with cancer. Moreover, several predicted miRNAs were found to have some interactions with the differentially expressed genes of cervical cancer which are the members of the EGFR signaling pathway by using miRWalk 3.0 (https://mirwalk.umm.uni-heidelberg.de/) and TargetScan 7.1 (https://www.targetscan.org/vert_71/). Also, the microarray data were obtained from the NCBI-Gene Expression Omnibus (GEO) datasets of cervical cancer. In the present review, we highlight the miRNAs involved in cervical cancer and the role of their targets in the EGFR signaling pathway. Furthermore, some predicted miRNAs were the candidate to target EGFR signaling pathway members differentially expressed in cervical cancer samples compared to normal samples.
Collapse
|
13
|
Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta 2020; 504:125-137. [PMID: 32017925 DOI: 10.1016/j.cca.2020.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/28/2022]
Abstract
Endoplasmic reticulum (ER) is an intracellular membranous organelle involved in the synthesis, folding, maturation and post-translation modification of secretory and transmembrane proteins. Therefore, ER is closely related to the maintenance of intracellular homeostasis and the good balance between health and diseases. Endoplasmic reticulum stress (ERS) occurs when unfolded/misfolded proteins accumulate after disturbance of ER environment. In response to ERS, cells trigger an adaptive response called the Unfolded protein response (UPR), which helps cells cope with the stress. In recent years, a large number of studies show that ERS can aggravate cardiovascular diseases. ERS-related proteins expression in cardiovascular diseases is on the rise. Therefore, down-regulation of ERS is critical for alleviating symptoms of cardiovascular diseases, which may be used in the near future to treat cardiovascular diseases. This article reviews the relationship between ERS and cardiovascular diseases and drugs that inhibit ERS. Furthermore, we detail the role of ERS inhibitors in the treatment of cardiovascular disease. Drugs that inhibit ERS are considered as promising strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiyuan Yang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
14
|
Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F, Xiao H. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett 2019; 24:51. [PMID: 31410089 PMCID: PMC6686269 DOI: 10.1186/s11658-019-0177-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) serve crucial roles in the progression of osteoporosis. This study investigated the role and specific molecular mechanism of miR-135-5p in regulating osteoblast differentiation and calcification. Methods Bone morphogenetic protein 2 (BMP2) was employed to interfere with the differentiation of MC3T3-E1. Then, miR-135-5p mimic or miR-135-5p inhibitor was transfected into MC3T3-E1, and quantitative RT-PCR was used to measure the expression of miR-135-5p. The expressions of runt-related transcription factor 2 (Runx2), osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) were determined using western blot. Alkaline phosphatase (ALP) activity was measured using an appropriate kit assay. Calcium nodule staining was evaluated with alizarin red staining. A luciferase reporter assay was used to verify the target of miR-135-5p. Hypoxia-inducible factor 1 α inhibitor (HIF1AN) overexpression was applied to investigate its own role in the mechanism and a miR-135-5p rescue experiment was also performed. Results Overexpression of miR-135-5p promoted osteogenic differentiation and calcification, as shown by the increase in ALP activity, calcification and osteogenic marker levels, including Runx2, OSX, OPN and OCN. Knockdown of miR-135-5p yielded the opposite results. HIF1AN was confirmed as a direct target of miR-135-5p. HIF1AN overexpression inhibited osteogenic differentiation and calcification while miR-135-5p reversed these effects. Conclusions These results indicate that miR-135-5p might have a therapeutic application related to its promotion of bone formation through the targeting of HIF1AN.
Collapse
Affiliation(s)
- Nuo Yin
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Longzhang Zhu
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Junjie Yuan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Li Du
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Haijun Xiao
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| |
Collapse
|
15
|
Osteoblast-targeted delivery of miR-33-5p attenuates osteopenia development induced by mechanical unloading in mice. Cell Death Dis 2018; 9:170. [PMID: 29415986 PMCID: PMC5833703 DOI: 10.1038/s41419-017-0210-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/11/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023]
Abstract
A growing body of evidence has revealed that microRNAs (miRNAs) play crucial roles in regulating osteoblasts and bone metabolism. However, the effects of miRNAs in osteoblast mechanotransduction remain to be defined. In this study, we investigated the regulatory effect of miR-33-5p in osteoblasts and tested its anti-osteopenia effect when delivered by an osteoblast-targeting delivery system in vivo. First, we demonstrated that miR-33-5p could promote the activity and mineralization of osteoblasts without influencing their proliferation in vitro. Then our data showed that supplementing miR-33-5p in osteoblasts by a targeted delivery system partially recovered the osteopenia induced by mechanical unloading at the biochemical, microstructural, and biomechanical levels. In summary, our findings demonstrate that miR-33-5p is a key factor in the occurrence and development of the osteopenia induced by mechanical unloading. In addition, targeted delivery of the mimics of miR-33-5p is a promising new strategy for the treatment of pathological osteopenia.
Collapse
|
16
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
17
|
Dlouha D, Blaha M, Blaha V, Fatorova I, Hubacek JA, Stavek P, Lanska V, Parikova A, Pitha J. Analysis of circulating miRNAs in patients with familial hypercholesterolaemia treated by LDL/Lp(a) apheresis. ATHEROSCLEROSIS SUPP 2017; 30:128-134. [PMID: 29096828 DOI: 10.1016/j.atherosclerosissup.2017.05.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND LDL/Lp(a) apheresis therapy is a well-established method of aggressively lowering LDL and Lp(a). Recently, miRNAs have been discussed as markers of vascular status including atherosclerosis. MiRNAs inhibit post-transcriptional processes through RNA duplex formation resulting in gene silencing or regulation of gene expression. MATERIALS AND METHODS We measured a profile of 175 plasma-circulating miRNAs using pre-defined Serum/Plasma Focus Human microRNA PCR Panels in pooled samples of 11 subjects with familial hypercholesterolaemia under long-term apheresis treatment. Subsequently we analysed expressions of ten pre-selected miRNAs potentially involved in lipid homeostasis in the same group of subjects. We compared plasma-circulating miRNA levels isolated from peripheral blood collected immediately before and after apheresis. RESULTS The greatest differences in plasma levels were found in miR-451a, miR-16, miR-19a/b, miR-223 and miR-185. In subsequent individual miRNA assay we detected a significant increase in miR-33b levels after apheresis (P < 0.05). Additionally, correlations between plasma lipids and miR-33a (P < 0.04) and miR-122 (P < 0.01) have been determined. Moreover, miR-122 levels in LDLR homozygotes were higher compared to heterozygotes after, but not before, apheresis treatment (P < 0.04). CONCLUSIONS LDL/Lp(a) apheresis has an impact on miRNAs associated with lipid homeostasis and vascular status.
Collapse
Affiliation(s)
- Dana Dlouha
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Milan Blaha
- 4th Department of Internal Medicine, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Vladimir Blaha
- Department of Gerontology and Metabolism, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Ilona Fatorova
- 4th Department of Internal Medicine, Charles University School of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jaroslav A Hubacek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Stavek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vera Lanska
- Medical Statistical Unit, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Parikova
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Pitha
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Internal Medicine, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Hajjar DP, Hajjar KA. Alterations of Cholesterol Metabolism in Inflammation-Induced Atherogenesis. JOURNAL OF ENZYMOLOGY AND METABOLISM 2016; 1:104. [PMID: 28868527 PMCID: PMC5575901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vascular inflammation is central to the pathogenesis of the atherosclerotic lesion. In the setting of hypercholesterolemia, vascular inflammation accelerates the accumulation of cholesterol within arterial smooth muscle cells, macrophages, and other immune cells. In disorders such as obesity, diabetes, and thrombosis, a myriad of interactions between sterol metabolites and inflammatory mediators exacerbate cholesterol deposition in the vessel wall, leading to the well-known consequences of stroke, transient ischemic attack, myocardial infarction, and peripheral vascular insufficiency. This review highlights emerging concepts in the regulation of cholesterol synthesis, the lipolytic enzymes involved in cholesterol utilization, and the therapies that successfully modulate vascular inflammation. In addition, developments relating to the role of inflammasomes in the management of cholesterol-mediated inflammation are discussed.
Collapse
Affiliation(s)
- David P. Hajjar
- Department of Biochemistry and Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Katherine A. Hajjar
- Department of Pediatrics and Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, USA
| |
Collapse
|
19
|
Wang H, Sun Z, Wang Y, Hu Z, Zhou H, Zhang L, Hong B, Zhang S, Cao X. miR-33-5p, a novel mechano-sensitive microRNA promotes osteoblast differentiation by targeting Hmga2. Sci Rep 2016; 6:23170. [PMID: 26980276 PMCID: PMC4793269 DOI: 10.1038/srep23170] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/25/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) interfere with the translation of specific target mRNAs and are thought to thereby regulate many cellular processes. However, the role of miRNAs in osteoblast mechanotransduction remains to be defined. In this study, we investigated the ability of a miRNA to respond to different mechanical environments and regulate mechano-induced osteoblast differentiation. First, we demonstrated that miR-33-5p expressed by osteoblasts is sensitive to multiple mechanical environments, microgravity and fluid shear stress. We then confirmed the ability of miR-33-5p to promote osteoblast differentiation. Microgravity or fluid shear stress influences osteoblast differentiation partially via miR-33-5p. Through bioinformatics analysis and a luciferase assay, we subsequently confirmed that Hmga2 is a target gene of miR-33-5p that negatively regulates osteoblast differentiation. Moreover, miR-33-5p regulates osteoblast differentiation partially via Hmga2. In summary, our findings demonstrate that miR-33-5p is a novel mechano-sensitive miRNA that can promote osteoblast differentiation and participate in the regulation of differentiation induced by changes in the mechanical environment, suggesting this miRNA as a potential target for the treatment of pathological bone loss.
Collapse
Affiliation(s)
- Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.,Department of orthopedics, No. 454 Hospital of PLA, 210002, Nanjing, Jiangsu, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hua Zhou
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Lianchang Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Bo Hong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Abstract
The mechanisms or causes of pancreatic β-cell death as well as impaired insulin secretion, which are the principal events of diabetic etiopathology, are largely unknown. Diabetic complications are known to be associated with abnormal plasma lipid profile, mainly elevated level of cholesterol and free fatty acids. However, in recent years, elevated plasma cholesterol has been implicated as a primary modulator of pancreatic β-cell functions as well as death. High-cholesterol diet in animal models or excess cholesterol in pancreatic β-cell causes transporter desensitization and results in morphometric changes in insulin granules. Moreover, cholesterol is also held responsible to cause oxidative stress, mitochondrial dysfunction, and activation of proapoptotic markers leading to β-cell death. The present review focuses on the pathways and molecularevents that occur in the β-cell under the influence of excess cholesterol that hampers the basal physiology of the cell leading to the progression of diabetes.
Collapse
|
21
|
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5:358-366. [PMID: 26133261 PMCID: PMC4501559 DOI: 10.1016/j.redox.2015.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. Nox is a unique class of enzymes whose sole function is the generation of ROS. Nox-derived ROS play a major role in cell physiology. Enhanced expression and activation of Nox has been reported in numerous pathologies. Nox expression is regulated via complex transcription factor-epigenetic mechanisms. Understanding of Nox regulation is essential to counteract ROS-induced cell damage.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Shlomo Sasson
- The Institute for Drug Research, Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
22
|
Xue Y, Wei Z, Ding H, Wang Q, Zhou Z, Zheng S, Zhang Y, Hou D, Liu Y, Zen K, Zhang CY, Li J, Wang D, Jiang X. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241:671-81. [PMID: 26117405 DOI: 10.1016/j.atherosclerosis.2015.06.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis. METHODS AND RESULTS A significant down-regulation of PGC-1α protein was observed in human atherosclerotic vessel samples. Using microarray and bioinformatics analyses, PGC-1α was identified as a common target gene of miR-19b-3p, miR-221-3p and miR-222-3p, which are mainly located in the intima of atherosclerotic vessels. In vitro induction of miR-19b-3p, miR-221-3p and miR-222-3p by the inflammatory cytokines TNFα and IFNγ may affect PGC-1α protein production and consequently result in mitochondrial dysfunction in Human Aortic Endothelial Cells (HAECs). The overexpression of miR-19b-3p, miR-221-3p and miR-222-3p in HAECs caused intracellular ROS accumulation, which led to cellular apoptosis. CONCLUSION Taken together, these results demonstrate that PGC-1α plays a protective role against the vascular complications of atherosclerosis. Moreover, the posttranscriptional regulation of PGC-1α by miR-19b/221/222 was unveiled, which provides a novel mechanism in which a panel of microRNAs can modulate endothelial cell apoptosis via the regulation mitochondrial function.
Collapse
Affiliation(s)
- Yunxing Xue
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhe Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Hanying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Qiang Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shasha Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yuchen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China.
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China.
| |
Collapse
|
23
|
Wang H, Yan C, Shi X, Zheng J, Deng L, Yang L, Yu F, Yang Y, Shao Y. MicroRNA-575 targets BLID to promote growth and invasion of non-small cell lung cancer cells. FEBS Lett 2015; 589:805-11. [PMID: 25728273 DOI: 10.1016/j.febslet.2015.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/27/2023]
Abstract
This study was designed to detect miR-575 expression and function in non-small cell lung cancer (NSCLC). A higher expression of miR-575 in NSCLC tissues was observed compared with adjacent non-neoplastic tissues. Furthermore, re-introduction of miR-575 significantly promoted cell proliferation, migration, and invasion in the NSCLC line. Moreover, we showed that BLID is negatively regulated by miR-575 at the posttranscriptional level, via a specific target site within the 3'UTR. Overexpression of BLID counteracted miR-575-induced proliferation and invasion in NSCLC cells. The expression of BLID is frequently downregulated in NSCLC tumors and cell lines and inversely correlates with miR-575 expression. The findings of this study contribute to the current understanding of the functions of miR-575 in NSCLC.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Chunhua Yan
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Xiaodong Shi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Jiaolin Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Lili Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Lei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Fangfei Yu
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Yuandi Yang
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Yuxia Shao
- Department of Respiratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
24
|
Chakraborty C, Doss CGP, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:697-712. [PMID: 24944010 DOI: 10.1002/wrna.1240] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
The prevalence of type-2 diabetes (T2D) is increasing significantly throughout the globe since the last decade. This heterogeneous and multifactorial disease, also known as insulin resistance, is caused by the disruption of the insulin signaling pathway. In this review, we discuss the existence of various miRNAs involved in regulating the main protein cascades in the insulin signaling pathway that affect insulin resistance. The influence of miRNAs (miR-7, miR-124a, miR-9, miR-96, miR-15a/b, miR-34a, miR-195, miR-376, miR-103, miR-107, and miR-146) in insulin secretion and beta (β) cell development has been well discussed. Here, we highlight the role of miRNAs in different significant protein cascades within the insulin signaling pathway such as miR-320, miR-383, miR-181b with IGF-1, and its receptor (IGF1R); miR-128a, miR-96, miR-126 with insulin receptor substrate (IRS) proteins; miR-29, miR-384-5p, miR-1 with phosphatidylinositol 3-kinase (PI3K); miR-143, miR-145, miR-29, miR-383, miR-33a/b miR-21 with AKT/protein kinase B (PKB) and miR-133a/b, miR-223, miR-143 with glucose transporter 4 (GLUT4). Insulin resistance, obesity, and hyperlipidemia (high lipid levels in the blood) have a strong connection with T2D and several miRNAs influence these clinical outcomes such as miR-143, miR-103, and miR-107, miR-29a, and miR-27b. We also corroborate from previous evidence how these interactions are related to insulin resistance and T2D. The insights highlighted in this review will provide a better understanding on the impact of miRNA in the insulin signaling pathway and insulin resistance-associated diagnostics and therapeutics for T2D.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India
| | | | | | | |
Collapse
|
25
|
Flowers E, Aouizerat BE. MicroRNA associated with dyslipidemia and coronary disease in humans. Physiol Genomics 2013; 45:1199-205. [PMID: 24170031 DOI: 10.1152/physiolgenomics.00106.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are structural components of an epigenetic mechanism of posttranscriptional regulation of messenger RNA translation. Recently, there has been significant interest in the application of microRNA as a blood-based biomarker of underlying physiological conditions. Dyslipidemia is a complex, heterogeneous condition conferring substantially increased risk for cardiovascular disease. The purpose of this review is to describe the current body of knowledge on the role of microRNA regulation of lipoprotein metabolism in humans and to discuss relevant methodological and study design considerations. We highlight the potential roles for microRNA in gene-environment interactions.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California; and
| | | |
Collapse
|
26
|
Abstract
Fetal programming associated with in utero exposure to maternal stress is thought to alter gene expression, resulting in phenotypes that promote survival in a pathogen-rich and nutrient-poor environment but substantially increase the risk of cardiovascular, metabolic and renal disorders (such as diabetes mellitus) in adults with obesity. These (epi)genetic phenomena are modified by environmental and socioeconomic factors, resulting in multiple subphenotypes and clinical consequences. In individuals from areas undergoing rapid economic development, which is associated with a transition from communicable to noncommunicable diseases, an efficient innate immune response can exaggerate obesity-associated inflammation. By contrast, in individuals with a genetic predisposition to autoimmune or monogenic diabetes mellitus, obesity can lead to atypical presentation of diabetes mellitus, termed 'double diabetes mellitus'. The increasingly young age at diagnosis of diabetes mellitus in developing countries results in prolonged exposure to glucolipotoxicity, low-grade inflammation and increased oxidative stress, which put enormous strain on pancreatic β cells and renal function. These conditions create a metabolic milieu conducive to cancer growth. This Review discusses how rapid changes in technology and human behaviour have brought on the global epidemic of metabolic diseases, and suggests that solutions will be based on using system change, technology and behavioural strategies to combat this societal-turned-medical problem.
Collapse
Affiliation(s)
- Alice P S Kong
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT Hong Kong Special Administrative Region, China
| | | | | | | | | | | |
Collapse
|
27
|
Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 2013; 4:e780. [PMID: 23990020 PMCID: PMC3763462 DOI: 10.1038/cddis.2013.301] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Aberrant regulation of cholesterol homeostasis is associated with obesity as well as multiple types of cancer. However, the mechanism behind these is largely missing. Here, we show that microRNA (miRNA)-128-2 is not only a pro-apoptotic microRNA but it also alters the expression of genes involved in cellular cholesterol homeostasis. Cholesterol efflux via ATP-binding cassette transporters (ABCA1 and ABCG1) is a mechanism for cells to eliminate excess cholesterol and prevent cellular cholesterol accumulation. The regulation of these pathways is complex with transcriptional regulation by sterol-regulatory element-binding protein (SREBP) and liver X receptor/retinoid X receptor (RXR) transcription factors but poorly understood at the post-transcriptional levels. MiR-128-2 increases the expression of SREBP2 and decreases the expression of SREBP1 in HepG2, MCF7 and HEK293T cells independent of sirtuin 1 (SIRT1) status. MiR-128-2 inhibits the expression of ABCA1, ABCG1 and RXRα directly through a miR-128-2-binding site within their respective 3'untranslated regions. The administration of miR-128-2 leads to decline in the protein and mRNA levels of ABCA1, ABCG1 and RXRα. Conversely, anti-miRNA treatment leads to increased ABCA1, ABCG1 and RXRα expression. The inverse correlation between miR-128-2 and its targets viz. ABCA1 and ABCG1 was also established during high-fat diet in different mice tissues. Our data show that cholesterol efflux is attenuated by miR-128-2 overexpression and, conversely, stimulated by miR-128-2 silencing. Further, we also observed the induction of ER stress response by miR-128-2. In this study, we provide the first evidence of miR-128-2 to be a new regulator of cholesterol homeostasis. Our study shows dual role of miR-128-2, as a pro-apoptotic molecule as well as a regulator of cholesterol homeostasis.
Collapse
|
28
|
Flowers E, Froelicher ES, Aouizerat BE. MicroRNA regulation of lipid metabolism. Metabolism 2013; 62:12-20. [PMID: 22607769 PMCID: PMC3440514 DOI: 10.1016/j.metabol.2012.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 01/28/2023]
Abstract
MicroRNAs are structural components of an epigenetic mechanism of post-transcriptional regulation of messenger RNA translation. Recently, there is significant interest in the application of microRNA as a blood-based biomarker of underlying physiologic conditions, and the therapeutic administration of microRNA inhibitors and mimics. The purpose of this review is to describe the current body of knowledge on microRNA regulation of genes involved in lipid metabolism, and to introduce the role of microRNA in development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiologic Nursing, University of California, San Francisco, School of Nursing, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
29
|
Schraml E, Grillari J. From cellular senescence to age-associated diseases: the miRNA connection. LONGEVITY & HEALTHSPAN 2012; 1:10. [PMID: 24472232 PMCID: PMC3922944 DOI: 10.1186/2046-2395-1-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022]
Abstract
Cellular senescence has evolved from an in-vitro model system to study aging in vitro to a multifaceted phenomenon of in-vivo importance as senescent cells in vivo have been identified and their removal delays the onset of age-associated diseases in a mouse model system. From the large emerging class of non-coding RNAs, miRNAs have only recently been functionally implied in the regulatory networks that are modified during the aging process. Here we summarize examples of similarities between the differential expression of miRNAs during senescence and age-associated diseases and suggest that these similarities might emphasize the importance of senescence for the pathogenesis of age-associated diseases. Understanding such a connection on the level of miRNAs might offer valuable opportunities for designing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Elisabeth Schraml
- Department of Biotechnology, BOKU VIBT University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Evercyte GmbH, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
30
|
Rottiers V, Najafi-Shoushtari SH, Kristo F, Gurumurthy S, Zhong L, Li Y, Cohen DE, Gerszten RE, Bardeesy N, Mostoslavsky R, Näär AM. MicroRNAs in metabolism and metabolic diseases. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:225-33. [PMID: 22156303 PMCID: PMC3880782 DOI: 10.1101/sqb.2011.76.011049] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aberrant cholesterol/lipid homeostasis is linked to a number of diseases prevalent in the developed world, including metabolic syndrome, type II diabetes, and cardiovascular disease. We have previously uncovered gene regulatory mechanisms of the sterol regulatory element-binding protein (SREBP) family of transcription factors, which control the expression of genes involved in cholesterol and lipid biosynthesis and uptake. Intriguingly, we recently discovered conserved microRNAs (miR-33a/b) embedded within intronic sequences of the human SREBF genes that act in a concerted manner with their host gene products to regulate cholesterol/lipid homeostasis. Indeed, miR-33a/b control the levels of ATP-binding cassette (ABC) transporter ABCA1, a cholesterol efflux pump critical for high-density lipoprotein (HDL) synthesis and reverse cholesterol transport from peripheral tissues. Importantly, antisense inhibition of miR-33 in mice results in elevated HDL and decreased atherosclerosis. Interestingly, miR-33a/b also act in the fatty acid/lipid homeostasis pathway by controlling the fatty acid β-oxidation genes carnitine O-octanoyltransferase (CROT), hydroxyacyl-coenzyme A-dehydrogenase (HADHB), and carnitine palmitoyltransferase 1A (CPT1A), as well as the energy sensor AMP-activated protein kinase (AMPKα1), the NAD(+)-dependent sirtuin SIRT6, and the insulin signaling intermediate IRS2, key regulators of glucose and lipid metabolism. These results have revealed a highly integrated microRNA (miRNA)-host gene circuit governing cholesterol/lipid metabolism and energy homeostasis in mammals that may have important therapeutic implications for the treatment of cardiometabolic disorders.
Collapse
Affiliation(s)
- Veerle Rottiers
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - S. Hani Najafi-Shoushtari
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fjoralba Kristo
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sushma Gurumurthy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Lei Zhong
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Yingxia Li
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Cohen
- Department of Medicine, Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E. Gerszten
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, MA 02115, USA
| | - Raul Mostoslavsky
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Medicine, Harvard Medical School, MA 02115, USA
| | - Anders M. Näär
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Abstract
Diabetes is the most common metabolic disorder and is recognized as one of the most important health threats of our time. MicroRNAs (miRNAs) are a novel group of non-coding small RNAs that have been implicated in a variety of physiological processes, including glucose homeostasis. Recent research has suggested that miRNAs play a critical role in the pathogenesis of diabetes and its related cardiovascular complications. This review focuses on the aberrant expression of miRNAs in diabetes and examines their role in the pathogenesis of endothelial dysfunction, cardiovascular disease, and diabetic retinopathy. Furthermore, we discuss the potential role of miRNAs as blood biomarkers and examine the potential of therapeutic interventions targeting miRNAs in diabetes.
Collapse
Affiliation(s)
- Saran Shantikumar
- Laboratory of Vascular Pathology and Regeneration, Bristol Heart Institute and School of Clinical Science-Regenerative Medicine Section, University of Bristol, Bristol Royal Infirmary, Marlborough Street, BS2 8HW Bristol, UK
| | | | | |
Collapse
|
32
|
CHEN WJ, YIN K, ZHAO GJ, TANG CK. microRNAs:A New Mechanisms for Regulation of Lipid Metabolism*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Abstract
MicroRNAs (miRNAs) have recently been found to be critical regulators of metabolic homeostasis. A study in Nature by Trajkovski et al. (2011) shows that the highly related miRNAs miR-103 and miR-107 modulate insulin sensitivity and glucose homeostasis in obese mice. These miRNAs might represent therapeutic targets to ameliorate obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Anders M Näär
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|