1
|
Perry RN, Albarracin D, Aherrahrou R, Civelek M. Network Preservation Analysis Reveals Dysregulated Metabolic Pathways in Human Vascular Smooth Muscle Cell Phenotypic Switching. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:372-381. [PMID: 37387208 PMCID: PMC10434832 DOI: 10.1161/circgen.122.003781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Vascular smooth muscle cells are key players involved in atherosclerosis, the underlying cause of coronary artery disease. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. An in-depth characterization of their gene regulatory networks can help better understand how their dysfunction may impact disease progression. METHODS We conducted a gene expression network preservation analysis in aortic smooth muscle cells isolated from 151 multiethnic heart transplant donors cultured under quiescent or proliferative conditions. RESULTS We identified 86 groups of coexpressed genes (modules) across the 2 conditions and focused on the 18 modules that are least preserved between the phenotypic conditions. Three of these modules were significantly enriched for genes belonging to proliferation, migration, cell adhesion, and cell differentiation pathways, characteristic of phenotypically modulated proliferative vascular smooth muscle cells. The majority of the modules, however, were enriched for metabolic pathways consisting of both nitrogen-related and glycolysis-related processes. Therefore, we explored correlations between nitrogen metabolism-related genes and coronary artery disease-associated genes and found significant correlations, suggesting the involvement of the nitrogen metabolism pathway in coronary artery disease pathogenesis. We also created gene regulatory networks enriched for genes in glycolysis and predicted key regulatory genes driving glycolysis dysregulation. CONCLUSIONS Our work suggests that dysregulation of vascular smooth muscle cell metabolism participates in phenotypic transitioning, which may contribute to disease progression, and suggests that AMT (aminomethyltransferase) and MPI (mannose phosphate isomerase) may play an important role in regulating nitrogen and glycolysis-related metabolism in smooth muscle cells.
Collapse
Affiliation(s)
- R. Noah Perry
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Diana Albarracin
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
| | - Mete Civelek
- Center for Public Health Genomics (R.N.P., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.N.P., D.A., M.C.), University of Virginia, Charlottesville
| |
Collapse
|
2
|
Lanzer JD, Valdeolivas A, Pepin M, Hund H, Backs J, Frey N, Friederich HC, Schultz JH, Saez-Rodriguez J, Levinson RT. A network medicine approach to study comorbidities in heart failure with preserved ejection fraction. BMC Med 2023; 21:267. [PMID: 37488529 PMCID: PMC10367269 DOI: 10.1186/s12916-023-02922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/05/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Comorbidities are expected to impact the pathophysiology of heart failure (HF) with preserved ejection fraction (HFpEF). However, comorbidity profiles are usually reduced to a few comorbid disorders. Systems medicine approaches can model phenome-wide comorbidity profiles to improve our understanding of HFpEF and infer associated genetic profiles. METHODS We retrospectively explored 569 comorbidities in 29,047 HF patients, including 8062 HFpEF and 6585 HF with reduced ejection fraction (HFrEF) patients from a German university hospital. We assessed differences in comorbidity profiles between HF subtypes via multiple correspondence analysis. Then, we used machine learning classifiers to identify distinctive comorbidity profiles of HFpEF and HFrEF patients. Moreover, we built a comorbidity network (HFnet) to identify the main disease clusters that summarized the phenome-wide comorbidity. Lastly, we predicted novel gene candidates for HFpEF by linking the HFnet to a multilayer gene network, integrating multiple databases. To corroborate HFpEF candidate genes, we collected transcriptomic data in a murine HFpEF model. We compared predicted genes with the murine disease signature as well as with the literature. RESULTS We found a high degree of variance between the comorbidity profiles of HFpEF and HFrEF, while each was more similar to HFmrEF. The comorbidities present in HFpEF patients were more diverse than those in HFrEF and included neoplastic, osteologic and rheumatoid disorders. Disease communities in the HFnet captured important comorbidity concepts of HF patients which could be assigned to HF subtypes, age groups, and sex. Based on the HFpEF comorbidity profile, we predicted and recovered gene candidates, including genes involved in fibrosis (COL3A1, LOX, SMAD9, PTHL), hypertrophy (GATA5, MYH7), oxidative stress (NOS1, GSST1, XDH), and endoplasmic reticulum stress (ATF6). Finally, predicted genes were significantly overrepresented in the murine transcriptomic disease signature providing additional plausibility for their relevance. CONCLUSIONS We applied systems medicine concepts to analyze comorbidity profiles in a HF patient cohort. We were able to identify disease clusters that helped to characterize HF patients. We derived a distinct comorbidity profile for HFpEF, which was leveraged to suggest novel candidate genes via network propagation. The identification of distinctive comorbidity profiles and candidate genes from routine clinical data provides insights that may be leveraged to improve diagnosis and identify treatment targets for HFpEF patients.
Collapse
Affiliation(s)
- Jan D Lanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Mark Pepin
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Hauke Hund
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Jobst-Hendrik Schultz
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| |
Collapse
|
3
|
Xu Z, Guo C, Ye Q, Shi Y, Sun Y, Zhang J, Huang J, Huang Y, Zeng C, Zhang X, Ke Y, Cheng H. Endothelial deletion of SHP2 suppresses tumor angiogenesis and promotes vascular normalization. Nat Commun 2021; 12:6310. [PMID: 34728626 PMCID: PMC8564544 DOI: 10.1038/s41467-021-26697-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
SHP2 mediates the activities of multiple receptor tyrosine kinase signaling and its function in endothelial processes has been explored extensively. However, genetic studies on the role of SHP2 in tumor angiogenesis have not been conducted. Here, we show that SHP2 is activated in tumor endothelia. Shp2 deletion and pharmacological inhibition reduce tumor growth and microvascular density in multiple mouse tumor models. Shp2 deletion also leads to tumor vascular normalization, indicated by increased pericyte coverage and vessel perfusion. SHP2 inefficiency impairs endothelial cell proliferation, migration, and tubulogenesis through downregulating the expression of proangiogenic SRY-Box transcription factor 7 (SOX7), whose re-expression restores endothelial function in SHP2-knockdown cells and tumor growth, angiogenesis, and vascular abnormalization in Shp2-deleted mice. SHP2 stabilizes apoptosis signal-regulating kinase 1 (ASK1), which regulates SOX7 expression mediated by c-Jun. Our studies suggest SHP2 in tumor associated endothelial cells is a promising anti-angiogenic target for cancer therapy.
Collapse
Affiliation(s)
- Zhiyong Xu
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunyi Guo
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoli Ye
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueli Shi
- grid.13402.340000 0004 1759 700XThe Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yihui Sun
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- grid.13402.340000 0004 1759 700XDepartment of Urology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Huang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yizhou Huang
- grid.13402.340000 0004 1759 700XDepartment of Gynecology of Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunlai Zeng
- grid.469539.40000 0004 1758 2449Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Xue Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, China
| | - Hongqiang Cheng
- grid.13402.340000 0004 1759 700XDepartment of Pathology and Pathophysiology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China ,grid.13402.340000 0004 1759 700XDepartment of Cardiology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Li Z, Li L, Zhang H, Zhou HJ, Ji W, Min W. Short AIP1 (ASK1-Interacting Protein-1) Isoform Localizes to the Mitochondria and Promotes Vascular Dysfunction. Arterioscler Thromb Vasc Biol 2020; 40:112-127. [PMID: 31619063 PMCID: PMC7204498 DOI: 10.1161/atvbaha.119.312976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Vascular endothelial cells (ECs) normally maintain vascular homeostasis and are regulated by proinflammatory cytokines and reactive oxygen species. A human genome-wide association study identified that AIP1 (ASK1 [apoptosis signal-regulating kinase 1]-interacting protein-1; also identified as DAB2IP) gene variants confer susceptibility to cardiovascular disease, but the underlying mechanism is unknown. Approach and Results: We detected a normal AIP1 form (named AIP1A) in the healthy aorta, but a shorter form of AIP1 (named AIP1B) was found in diseased aortae that contained atherosclerotic plaques and graft arteriosclerosis. AIP1B transcription in resting ECs was suppressed through epigenetic inhibition by RIF1 (Rap1 [ras-related protein 1]-interacting factor 1)/H3K9 (histone H3 lysine 9) methyltransferase-mediated H3K9 trimethylation, and this inhibition was released by proinflammatory cytokines. AIP1A, but not AIP1B, was downregulated by proteolytic degradation through a Smurf1 (SMAD [suppressor of mothers against decapentaplegic miscellaneous] ubiquitylation regulatory factor 1)-dependent pathway in ECs under inflammation. Therefore, AIP1B was the major form present during inflammatory conditions. AIP1B, which lacks the N-terminal pleckstrin homology domain of AIP1A, localized to the mitochondria and augmented TNFα (tumor necrosis factor alpha)-induced mitochondrial reactive oxygen species generation and EC activation. AIP1B-ECTG (EC-specific AIP1B transgenic) mice exhibited augmented reactive oxygen species production, EC activation, and neointima formation in vascular remodeling models. CONCLUSIONS Our current study suggests that a shift from anti-inflammatory AIP1A to proinflammatory AIP1B during chronic inflammation plays a key role in inflammatory vascular diseases.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apoptosis
- Arteriosclerosis/genetics
- Arteriosclerosis/metabolism
- Arteriosclerosis/pathology
- Blotting, Western
- Cells, Cultured
- DNA/genetics
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Gene Expression Regulation
- Genome-Wide Association Study/methods
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Mitochondria/pathology
- Signal Transduction
- ras GTPase-Activating Proteins/biosynthesis
- ras GTPase-Activating Proteins/genetics
Collapse
Affiliation(s)
- Zheng Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, U.S.A
| | - Li Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, U.S.A
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haifeng Zhang
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, U.S.A
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, U.S.A
| | - Weidong Ji
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, U.S.A
| |
Collapse
|
5
|
Xiang Q, Yang B, Li L, Qiu B, Qiu C, Gao X, Zhou H(J, Min W. Critical role of Lin28-TNFR2 signalling in cardiac stem cell activation and differentiation. J Cell Mol Med 2019; 23:0. [PMID: 30734494 PMCID: PMC6433861 DOI: 10.1111/jcmm.14202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
Tumour necrotic factor receptor-2 (TNFR2) has been to be cardiac-protective and is expressed in cardiac progenitor cells. Our goal is to define the mechanism for TNFR2-mediated cardiac stem cell activation and differentiation. By employing a protocol of in vitro cardiac stem cell (CSC) differentiation from human inducible pluripotent stem cell (hiPSC), we show that expression of TNFR2 precedes expression of CSC markers followed by expression of mature cardiomyocyte proteins. Activation of TNFR2 by a specific agonist promotes whereas inhibition of TNFR2 by neutralizing antibody diminishes hiPSC-based CSC differentiation. Interestingly, pluripotent cell factor RNA-binding protein Lin28 enhances TNFR2 protein expression in early CSC activation by directly binding to a conserved Lin28-motif within the 3'UTR of Tnfr2 mRNA. Furthermore, inhibition of Lin28 blunts TNFR2 expression and TNFR2-dependent CSC activation and differentiation. Our study demonstrates a critical role of Lin28-TNFR2 axis in CSC activation and survival, providing a novel strategy to enhance stem cell-based therapy for the ischaemic heart diseases.
Collapse
Affiliation(s)
- Qiuling Xiang
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
- Translational Medicine Center, the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Bicheng Yang
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
| | - Li Li
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
- Translational Medicine Center, the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Bin Qiu
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
| | - Caihong Qiu
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
| | - Xiao‐Bing Gao
- Department of Comparative Medicine and Obstetrics, Gynecology, and Reproductive SciencesYale University School of MedicineNew HavenConnecticut
| | - Huanjiao (Jenny) Zhou
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
| | - Wang Min
- Yale Stem CenterInterdepartmental Program in Vascular Biology and TherapeuticsDepartment of PathologyYale University School of MedicineNew HavenConnecticut
| |
Collapse
|
6
|
Qin L, Min W, Xin S. AIP1 Suppresses Transplant Arteriosclerosis Through Inhibition of Vascular Smooth Muscle Cell Inflammatory Response to IFNγ. Anat Rec (Hoboken) 2018; 302:1587-1593. [PMID: 30471213 DOI: 10.1002/ar.24040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
IFNγ-induced vascular smooth muscle cells (VSMCs) inflammatory response plays a key role in transplant arteriosclerosis (TA). However, the mechanisms regulating this process remains poorly defined. Here, we show that ASK1-interacting protein 1 (AIP1) deletion markedly augments the expression of IFNγ-induced chemokines in mouse aortic allografts. Subsequently, donor arterial grafts from AIP1 deficient mice exhibited an accelerated development of TA. Furthermore, AIP1 knockdown significantly increased IFNγ signaling activation in cultured VSMCs and thus enhances chemokines production in response to IFNγ. Together, we conclude that AIP1 functions as an inhibitor of VSMCs inflammation by regulating IFNγ signaling and therefore suppresses TA progression. Our findings suggest that AIP1 might be a potential therapeutic target for chronic transplant rejection. Anat Rec, 302:1587-1593, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Lingfeng Qin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| |
Collapse
|
7
|
He J, Huang S, Lin Z, Zhang J, Su J, Ji W, Liu X. Disabled homolog 2 interactive protein functions as a tumor suppressor in osteosarcoma cells. Oncol Lett 2018; 16:703-712. [PMID: 29963135 PMCID: PMC6019915 DOI: 10.3892/ol.2018.8776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/16/2017] [Indexed: 11/29/2022] Open
Abstract
The disabled homolog 2 interactive protein (DAB2IP) gene is a member of the family of Ras GTPases and functions as a tumor suppressor in many types of carcinoma; however, its function in osteosarcoma remains unclear. The aim of the present study was to determine the function of DAB2IP in osteosarcoma and normal bone cells in vitro. The expression of DAB2IP protein was assessed in osteoblast and osteosarcoma cell lines by western blot analysis. The effects of DAB2IP expression on cell proliferation, colony formation, apoptosis, cell cycle, and cell migration and invasion were evaluated by in vitro studies. DAB2IP expression was lower in osteosarcoma cell lines than in normal osteoblast cell lines. DAB2IP expression affected cell proliferation, apoptosis and cell cycle distribution. In addition, DAB2IP inhibited the migration and invasion of osteosarcoma and normal osteoblast cells. Therefore, DAB2IP may function as a tumor suppressor in osteosarcoma cell lines by inhibiting cell proliferation and invasion.
Collapse
Affiliation(s)
- Jianan He
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sun University, Guangzhou, Guangdong 510655, P.R. China.,Department of Interventional Radiology, The Fifth Affiliated Hospital of Sun Yat-sun University, Zhuhai, Guangdong 519000, P.R. China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenhua Lin
- Department of Orthopaedic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Jiqin Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jialin Su
- Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xingmo Liu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sun University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
8
|
Zhang J, Chen C, Li L, Zhou HJ, Li F, Zhang H, Yu L, Chen Y, Min W. Endothelial AIP1 Regulates Vascular Remodeling by Suppressing NADPH Oxidase-2. Front Physiol 2018; 9:396. [PMID: 29731721 PMCID: PMC5921534 DOI: 10.3389/fphys.2018.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Objective: AIP1 expression is downregulated in human atherosclerotic plaques and global deletion of AIP1 in mice exacerbates atherosclerosis in ApoE-KO mouse models. However, the direct role of AIP1 in endothelium, vascular remodeling and associated vascular diseases has not been determined. Approach and Results: We used endothelial cell (EC)-specific AIP1-deficient (AIP1-ECKO) mice to define the role of AIP1 in vascular remodeling and intima-media thickening in a mouse carotid artery ligation model characterized by both neointimal hyperplasia and inward vessel remodeling. Compared to WT littermates, AIP1-ECKO mice had 2.2-fold larger intima area and 4.4-fold thicker intima as measured by intima/media ratio in arteries with more proliferating vascular smooth muscle cells (VSMCs) at week 2-4 post-injury. Increased reactive oxygen species (ROS) in endothelium at early time points induced inflammation and vessel dysfunction in AIP1-ECKO prior to VSMC accumulations. Moreover, knockdown of AIP1 in human EC enhanced ROS generation which was attenuated by co-silencing of NOX2. Mechanistically, AIP1 via its proline-rich region binds to the SH3 domain of cytosolic subunit p47phox to disrupt formation of an active NOX2 complex, attenuating ROS production. Conclusion: Our study supports that AIP1 regulates vascular remodeling with intima-media thickening by suppressing endothelial NOX2-dependent oxidative stress. Highlights: •In a carotid ligation model, endothelial cell (EC)-specific AIP1-deficient (AIP1-ECKO) mice had much larger media area, thicker vessel wall and augmented neointima formation.•Increased production of reactive oxygen species in vascular EC at early time points concomitant with vessel dysfunction in AIP1-ECKO.•AIP1 via its proline-rich region binds to the SH3 domain of cytosolic subunit p47phox to disrupt formation of an active NOX2 complex, attenuating ROS production.
Collapse
Affiliation(s)
- Jiqin Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Chaofei Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Li Li
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanjiao J. Zhou
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Fenghe Li
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Haifeng Zhang
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Luyang Yu
- Institute of Genetics, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology and The Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
9
|
Kim HJ, Son JE, Kim JH, Lee CC, Yang H, Yaghmoor SS, Ahmed Y, Yousef JM, Abualnaja KO, Al-Malki AL, Kumosani TA, Kim JH, Yoon Park JH, Lee CY, Kim JE, Lee KW. Gingerenone A Attenuates Monocyte-Endothelial Adhesion via Suppression of I Kappa B Kinase Phosphorylation. J Cell Biochem 2017; 119:260-268. [PMID: 28513976 DOI: 10.1002/jcb.26138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
Abstract
During the early stages of atherosclerosis, monocytes bind and migrate into the endothelial layer, promoting inflammation within the aorta. In order to prevent the development of atherosclerosis, it is critical to inhibit such inflammation. The therapeutic effects of ginger have been investigated in several models of cardiovascular disease. However, although a number of previous studies have focused on specific compounds, the mechanisms of action responsible remain unclear. Here, we investigated five major compounds present in ginger, and observed that gingerenone A exhibited the strongest inhibitory effects against tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS) induced monocyte-endothelial adhesion. Furthermore, gingerenone A significantly suppressed the expression of TNF-α and LPS-induced vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 2 (CCL2), key mediators of the interaction between monocytes, and endothelial cells. Transactivation of nuclear factor-κB (NF-κB), which is a key transcription factor of VCAM-1 and CCL2, was induced by TNF-α and LPS, and inhibited by treatment of gingerenone A. Gingerenone A also inhibited the phosphorylation of NF-κB inhibitor (IκB) α and IκB Kinase. Taken together, these results demonstrate that gingerenone A attenuates TNF-α and LPS-induced monocyte adhesion and the expression of adhesion factors in endothelial cells via the suppression of NF-κB signaling. J. Cell. Biochem. 119: 260-268, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hee Joo Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Joe Eun Son
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Jae Hwan Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Charles C Lee
- Department of Food Science, Cornell University, Ithaca, New York
| | - Hee Yang
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Soonham Sami Yaghmoor
- Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Youssri Ahmed
- Faculty of Science and Production of Bioproducts for Industrial Applications Research Group, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jehad Mustafa Yousef
- Faculty of Science for Girl's, Department of Biochemistry, Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Omer Abualnaja
- Faculty of Science and Bioactive Natural Products Research Group, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman Labeed Al-Malki
- Faculty of Science, Department of Biochemistry, Experimental Biochemistry Unit, King Fahd Medical Research Center and Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taha Abdullah Kumosani
- Faculty of Science, Department of Biochemistry, Experimental Biochemistry Unit, King Fahd Medical Research Center and Production of Bioproducts for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang Yong Lee
- Department of Food Science, Cornell University, Ithaca, New York.,Production of Bio-products for Industrial Applications Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jong-Eun Kim
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyang, South Korea
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ye Z, Austin E, Schaid DJ, Bailey KR, Pellikka PA, Kullo IJ. ADAB2IPgenotype: sex interaction is associated with abdominal aortic aneurysm expansion. J Investig Med 2017; 65:1077-1082. [DOI: 10.1136/jim-2016-000404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 02/06/2023]
Abstract
A faster expansion rate of abdominal aortic aneurysm (AAA) increases the risk of rupture. Women are at higher risk of rupture than men, but the mechanisms underlying this increased risk are unknown. We investigated whether genetic variants that influence susceptibility for AAA (CDKN2A-2B,SORT1,DAB2IP,LRP1andLDLR) are associated with AAA expansion and whether these associations differ by sex in 650 patients with AAA (mean age 70±8 years, 17% women) enrolled in the Mayo Clinic Vascular Disease Biorepository. Women had a mean aneurysm expansion 0.41 mm/year greater than men after adjustment for baseline AAA size. In addition to baseline size, mean arterial pressure (MAP), non-diabetic status,SORT1-rs599839[G] andDAB2IP-rs7025486[A] were associated with greater aneurysm expansion (all p<0.05). The associations of MAP and rs599839[G] were similar in both sexes, while the associations of baseline size, pulse pressure (PP) and rs7025486[A] were stronger in women than men (all p-sexinteraction≤0.02). A three-way interaction of PP*sex* rs7025486[A] was noted in a full-factorial analysis (p=0.007) independent of baseline size and MAP. In the high PP group (≥median), women had a mean growth rate 0.68 mm/year greater per [A] of rs7025486 than men (p-sexinteraction=0.003), whereas there was no difference in the low PP group (p-sexinteraction=0.8). We demonstrate that variantsDAB2IP-rs7025486[A] andSORT1-rs599839[G] are associated with AAA expansion. The association of rs7025486[A] is stronger in women than men and amplified by high PP, contributing to sex differences in aneurysm expansion.
Collapse
|
11
|
Miner GH, Faries PL, Costa KD, Hanss BG, Marin ML. An update on the etiology of abdominal aortic aneurysms: implications for future diagnostic testing. Expert Rev Cardiovasc Ther 2015; 13:1079-90. [PMID: 26401919 DOI: 10.1586/14779072.2015.1082906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abdominal aortic aneurysm (AAA) disease is multifactorial with both environmental and genetic risk factors. The current research in AAA revolves around genetic profiles and expression studies in both human and animal models. Variants in genes involved in extracellular matrix degradation, inflammation, the renin-angiotensin system, cell growth and proliferation and lipid metabolism have been associated with AAA using a variety of study designs. However, the results have been inconsistent and without a standard animal model for validation. Thus, despite the growing body of knowledge, the specific variants responsible for AAA development, progression and rupture have yet to be determined. This review explores some of the more significant genetic studies to provide an overview of past studies that have influenced the current understanding of AAA etiology. Expanding our understanding of disease pathogenesis will inform research into novel diagnostics and therapeutics and ultimately to improve outcomes for patients with AAA.
Collapse
Affiliation(s)
- Grace H Miner
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Peter L Faries
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Kevin D Costa
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | - Basil G Hanss
- a Icahn school of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|