1
|
Xu C, Zhang Q, Xu S, Xiao Y, Zhao L, Li T, Guo W, Zhong Y, Chen H. Interaction of accelerometer-measured physical activity and genetic risk on cardiovascular diseases: a prospective cohort study from UK Biobank. BMJ Open Sport Exerc Med 2025; 11:e002547. [PMID: 40303384 PMCID: PMC12039035 DOI: 10.1136/bmjsem-2025-002547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Objectives This study aimed to evaluate the interactions of physical activity and polygenic risk score (PRS) on risks of atrial fibrillation, coronary heart disease (CHD), hypertension, and ischaemic stroke. Methods This study included 91 629 participants from UK Biobank in this study, all of whom had worn a wrist-worn accelerometer for 7 consecutive days. We computed total volume of physical activity (TPA) and time spent in moderate to vigorous intensity physical activity (MVPA) and light intensity physical activity (LPA). Cox proportional hazard models were used to evaluate associations of physical activity with the four cardiovascular outcomes. Interactions between physical activity and PRS were investigated on multiplicative and additive scales. Results During a median follow-up of 7.9 years, 3811 atrial fibrillation, 3994 CHD, 7345 hypertension and 1001 ischaemic stroke cases were recorded. TPA, MVPA and LPA were all negatively associated with risks of the four cardiovascular outcomes, generally independent of genetic risk. Association between LPA and atrial fibrillation was U-shaped among low-PRS stratum (p=0.01), and association between TPA and hypertension was attenuated with genetic risk increasing (p=0.02). Attributable risk (AR) of inactivity was higher in the high-PRS population. For example, increasing MVPA resulted in a twofold greater reduction in CHD cases among individuals with high PRS (AR=2.17%) than among those with low PRS (AR=1.09%). Conclusions Increasing physical activity, including LPA, was associated with a reduced risk of cardiovascular diseases. The extent of this benefit may differ among individuals with different genetic risks.
Collapse
Affiliation(s)
- Chaoyu Xu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingrong Zhang
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihua Xu
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiyuan Xiao
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangyu Zhao
- School of Physical Education, Shandong University, Jinan, Shandong, China
| | - Tuojian Li
- School of Physical Education, Shandong University, Jinan, Shandong, China
| | - Wenjie Guo
- Medical Services Division, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanling Zhong
- Medical Services Division, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haitao Chen
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Abbas FA, Batool S, Hina M, Khalid T, Aman A, Awan FR, Hussain M. Impact of Gene-Smoking Interaction on Risk of Atherosclerosis: Molecular Study of Prothrombin (F2) Gene rs1799963 G/A Polymorphism in Atherosclerotic Patients. Cardiovasc Toxicol 2025:10.1007/s12012-025-09997-z. [PMID: 40261540 DOI: 10.1007/s12012-025-09997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Atherosclerosis is a multifactorial disease influenced by genetic and lifestyle factors (e.g., smoking). The rs1799963 G/A polymorphism in the prothrombin (F2) gene is associated with thrombosis and cardiovascular diseases. However, the interaction between this genetic variant and smoking on the risk of atherosclerosis has not been thoroughly investigated. This study aims to explore the impact of rs1799963 polymorphism-smoking interaction on the risk of atherosclerosis. For this, control (n = 40) and angiographically confirmed atherosclerotic patients (n = 82) were recruited from District Sargodha, Pakistan. All subjects were genotyped for rs1799963 G/A variants by in-house developed tri-ARMS-PCR assay. Statistical analysis was performed to evaluate the interaction between rs1799963 polymorphism and smoking in relation to atherosclerosis risk. Risk of atherosclerosis was increased by the individual effects of F2 rs1799963 G allele [OR 2.96 (95% CI:1.8-8.08) p = 0.034] and smoking [OR 3.9 (95% CI:1.4-10.8) p = 0.008]. Subjects harboring rs1799963 G allele and who were active smokers had ~ 20 times higher risk of atherosclerosis. Synergy index indicated that combined effect of smoking and rs1799963 G allele was higher than their individual effects, which had a positive interaction with atherosclerosis [synergy index = 2.125 (95% CI: 1.66-2.59)]. These findings suggest a strong interaction between F2 rs1799963 polymorphism and smoking for atherosclerosis. The presence of rs1799963 G allele in conjunction with active smoking status greatly increases the risk of atherosclerosis.
Collapse
Affiliation(s)
- Farrakh Ali Abbas
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan
| | - Shazia Batool
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan
| | - Moazma Hina
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan
| | - Tayyba Khalid
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan
| | - Amna Aman
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan
| | - Fazli Rabbi Awan
- Human Molecular Genetics and Metabolic Disorders Group, Health Biotechnology Division, National Institute for Biotechnology and Genetics Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan.
| | - Misbah Hussain
- Department of Biotechnology, University of Sargodha, University Road, Sargodha, Pakistan.
| |
Collapse
|
3
|
Richardson S, Marshall J, Rendeiro C. Dietary patterns and physical activity in young South Asians and white Europeans and their potential implications for cardiovascular risk. Sci Rep 2025; 15:12969. [PMID: 40234529 PMCID: PMC12000287 DOI: 10.1038/s41598-025-97605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
Individuals of South Asian (SA) ethnicity have greater risk of developing cardiovascular disease (CVD) relative to white Europeans (WEs). Factors which generally contribute to increased CVD risk include physical inactivity and poor dietary habits, including high intake of salt and saturated fat. Contrastingly, diets rich in fibre, antioxidants and polyphenols are considered cardioprotective. The current questionnaire-based study aimed to examine whether the dietary habits and physical activity levels of young adult SAs living in the UK may contribute to their increased CVD risk in comparison to age-matched WEs. All participants (80 healthy individuals, 40 SA/ 40 WE (gender-balanced, aged 18-26 years) completed questionnaires to assess: general health; habitual physical activity levels, assessed by the International Physical Activity Questionnaire; and dietary patterns, assessed by EPIC-food frequency questionnaire and three-day food diaries. SAs had higher sitting times (SA: 469 ± 19.4, WE: 387 ± 21.5 min/day, p = 0.0107) and were less physically active (SA: 2050 ± 1110, WE: 4850 ± 2810 MET mins/day, p < 0.0001) than WEs. Further, SAs had lower consumption of cardioprotective nutrients, such as fibre (p = 0.0183), folate (p = 0.0242), vitamin C (p = 0.0105) and phytochemicals, such as flavonoids (p = 0.0644). SAs also consumed less alcohol (p < 0.0001), fat (p = 0.0066), sugar (p = 0.0218) and sodium (p = 0.0011) compared to WEs. These findings suggest that lower consumption of nutrients and phytochemicals that are cardioprotective, rather than excess consumption of fat, sugar and sodium, amongst young SAs may contribute to their increased CVD risk. Young SA individuals may also reduce their future CVD risk by increasing their physical activity.
Collapse
Affiliation(s)
- Sophie Richardson
- School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janice Marshall
- School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Franco L, Gallego N, Velarde C, Valencia D, Pérez-Bedoya JP, Betancur K, Marisancen K, Parra P, Carvalho S, Parra L, Jiménez E, Martínez C, Saldarriaga C, Arango JC, González-Jaramillo N, García J, Valencia A. Variants in candidate genes and their interactions with smoking on the risk of acute coronary syndrome. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2025; 45:107-117. [PMID: 40257950 DOI: 10.7705/biomedica.7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/19/2024] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Multiple genetic and environmental factors interact with the development of acute coronary syndrome. Smoking is one of the environmental factors that might alter the metabolic pathways shared by genes associated with this condition. OBJECTIVE To investigate the association of acute coronary syndrome with genetic variants related to inflammation, lipid metabolism, and platelet aggregation among subjects from the northeastern region of Colombia. The effects of interactions between polymorphisms and smoking were also evaluated. MATERIALS AND METHODS We analyzed data from 330 acute coronary syndrome cases and 430 controls. Associations between 20 polymorphisms and acute coronary syndrome were evaluated using logistic regression, adjusting for confounders. Gene and smoking interaction terms were calculated, and variants were analyzed separately in smokers and non-smokers for their association with acute coronary syndrome. RESULTS Two variants were associated with acute coronary syndrome, rs10455872 in the LPA gene (OR = 2.69; 95% CI: 1.61-4.49) and rs429358 in the APOE gene (OR = 1.93; 95% CI: 1.30-2.87). We identified smoking interactions with the variants rs6511720 in the LDLR gene (p = 0.04) and rs2227631 in the SERPINE1 gene (p = 0.02), with significant effects in non-smokers (rs6511720: OR = 0.40; 95% CI: 0.19-0.88; and rs2227631: OR = 0.69; 95% CI: 0.48-1.00), but not in smokers (rs6511720: OR = 1.28; 95% CI: 0.66-2.46; and rs2227631: OR = 1.30; 95% CI: 0.91-1.87). CONCLUSIONS Variants in the candidate genes LPA and APOE are associated with an increased risk of acute coronary syndrome in a population from northeastern Colombia. The effects of rs6511720 in LDLR and rs2227631 in SERPINE1 differ according to smoking habits and are significant in non-smokers. These results are helpful for early risk screening of acute coronary syndrome, mainly in individuals without defined conventional risk factors.
Collapse
Affiliation(s)
- Liliana Franco
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Natalia Gallego
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Cristian Velarde
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Diana Valencia
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Kelly Betancur
- Centro de investigaciones, Clínica Cardio VID, Medellín, Colombia
| | - Kelly Marisancen
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Paola Parra
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Santiago Carvalho
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luisa Parra
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Evert Jiménez
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Carlos Martínez
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia; Centro de investigaciones, Clínica Cardio VID, Medellín, Colombia
| | - Clara Saldarriaga
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia; Centro de investigaciones, Clínica Cardio VID, Medellín, Colombia
| | | | | | - Jenny García
- Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ana Valencia
- Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
5
|
Jurado Vélez J, Anderson N, Datcher I, Foster C, Jackson P, Hidalgo B. Striving Towards Equity in Cardiovascular Genomics Research. Curr Atheroscler Rep 2025; 27:34. [PMID: 39964583 PMCID: PMC11836143 DOI: 10.1007/s11883-025-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW Our review emphasizes recent advancements and persisting gaps in cardiovascular genomics, particularly highlighting how emerging studies involving underrepresented populations have uncovered new genetic variants associated with cardiovascular diseases. RECENT FINDINGS Initiatives like the H3Africa project, the Million Veterans Program, and the All of Us Research Program are working to address this gap by focusing on underrepresented groups. Additionally, emerging research is centering on the interplay between genetic factors and socio-environmental determinants of health, which disproportionately impact marginalized communities. As cardiovascular genomics research grows, increasing the inclusion of underrepresented populations is essential for gaining a more comprehensive understanding of genetic variability. This will lead to more accurate and clinically meaningful strategies for preventing and treating cardiovascular diseases across all ancestral backgrounds and diverse populations.
Collapse
Affiliation(s)
- Javier Jurado Vélez
- Marnix E Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nekayla Anderson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivree Datcher
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pamela Jackson
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Sharma A, Kapur S, Kancharla P, Yang T. Sex differences in gut microbiota, hypertension, and cardiovascular risk. Eur J Pharmacol 2025; 987:177183. [PMID: 39647571 PMCID: PMC11714433 DOI: 10.1016/j.ejphar.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The intricate ecosystem of the gut microbiome exhibits sex-specific differences, influencing the susceptibility to cardiovascular diseases (CVD). Imbalance within the gut microbiome compromises the gut barrier, activates inflammatory pathways, and alters the production of metabolites, all of which initiate chronic diseases including CVD. In particular, the interplay between lifestyle choices, hormonal changes, and metabolic byproducts uniquely affects sex-specific gut microbiomes, potentially shaping the risk profiles for hypertension and CVD differently in men and women. Understanding the gut microbiome's role in CVD risk offers informative reasoning behind the importance of developing tailored preventative strategies based on sex-specific differences in CVD risk. Furthermore, insight into the differential impact of social determinants and biological factors on CVD susceptibility emphasizes the necessity for more nuanced approaches. This review also outlines specific dietary interventions that may enhance gut microbiome health, offering a glimpse into potential therapeutic avenues for reducing CVD risk that require greater awareness. Imbalance in natural gut microbiomes may explain etiologies of chronic diseases; we advocate for future application to alter the gut microbiome as possible treatment of the aforementioned diseases. This review mentions the idea of altering the gut microbiome through interventions such as fecal microbiota transplantation (FMT), a major application of microbiome-based therapy that is first-line for Clostridium difficile infections and patient-specific probiotics highlights more innovative approaches to hypertension and CVD prevention. Through increased analysis of gut microbiota compositions along with patient-centric probiotics and microbiome transfers, this review advocates for future preventative strategies for hypertension.
Collapse
Affiliation(s)
- Anish Sharma
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Sahil Kapur
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Priyal Kancharla
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH, USA.
| |
Collapse
|
7
|
Zhang J, Shen P, Wang Y, Li Z, Xu L, Qiu J, Hu J, Yang Z, Wu Y, Zhu Z, Lin H, Jiang Z, Shui L, Tang M, Jin M, Tong F, Chen K, Wang J. Interaction between walkability and fine particulate matter on ischemic heart disease: A prospective cohort study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117520. [PMID: 39674020 DOI: 10.1016/j.ecoenv.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Previous studies have suggested that neighborhoods characterized by higher walkability are related to a reduced risk of ischemic heart disease (IHD), whereas exposure to PM2.5 is positively associated with risk of IHD. Nevertheless, their joint impact on IHD warrants further investigation. METHODS This prospective cohort study was performed in Yinzhou, Ningbo, China, comprising 47,516 participants. Individual-level walkability and PM2.5 were evaluated using a commercial walkability database and a land use regression (LUR) model, respectively. Hazard ratios (HRs) and 95 % confidence intervals (95 % CIs) were calculated using two Cox proportional hazards models: one based on two-year average PM2.5 levels prior to baseline, and the other incorporating time-varying PM2.5 assessed on a monthly scale. Dose-response relationships were explored using restricted cubic spline (RCS) functions. Interactions on both additive and multiplicative scales were assessed via relative excess risk due to interaction (RERI) and likelihood-ratio tests. Joint effects were explored and visualized using a 3D wireframe plot. RESULTS Over a median follow-up of 5.14 years, 1735 incident cases of IHD were identified. Adjusted HRs (95 % CIs) were 1.56 (1.34-1.81) per 10 μg/m3 increase in PM2.5 and 0.96 (0.94-0.98) per 10-unit increase in walkability, with both exposures exhibiting non-linear dose-response relationships. Walkability and PM2.5 were positively correlated (rs = 0.12, P < 0.001), and a multiplicative interaction was detected (Pinteraction = 0.019). CONCLUSION Walkability was inversely associated with risk of IHD, whereas exposure to PM2.5 was positively associated with IHD. Notably, the pernicious effects of PM2.5 could be attenuated in areas with higher levels of walkability. Our findings underscore the significance of walkable urban design, air quality improvement, as preventive strategies for IHD.
Collapse
Affiliation(s)
- Jiayun Zhang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Yixing Wang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zihan Li
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Jie Qiu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Jingjing Hu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Zongming Yang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Yonghao Wu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China
| | - Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Zhiqin Jiang
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo 315040, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo 315100, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Tong
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310058, China.
| |
Collapse
|
8
|
Yildirim Z, Swanson K, Wu X, Zou J, Wu J. Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish. Annu Rev Pharmacol Toxicol 2025; 65:71-90. [PMID: 39284102 PMCID: PMC12011342 DOI: 10.1146/annurev-pharmtox-022724-095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
Collapse
Affiliation(s)
- Zehra Yildirim
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - Kyle Swanson
- Greenstone Biosciences, Palo Alto, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
9
|
Ma Y, Li D, Cui F, Wang J, Tang L, Yang Y, Liu R, Xie J, Tian Y. Exposure to Air Pollutants and Myocardial Infarction Incidence: A UK Biobank Study Exploring Gene-Environment Interaction. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107002. [PMID: 39388260 PMCID: PMC11466320 DOI: 10.1289/ehp14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Unraveling gene-environment interaction can provide a novel insight into early disease prevention. Nevertheless, current understanding of the interplay between genetic predisposition and air pollution in relation to myocardial infarction (MI) risk remains limited. Furthermore, the potential long-term influence of air pollutants on MI incidence risk warrants more conclusive evidence in a community population. OBJECTIVE We investigated interactions between genetic predisposition and exposure to air pollutants on MI incidence. METHODS This study incorporated a sample of 456,354 UK Biobank participants and annual mean air pollution (PM 2.5 , PM 10 , NO 2 , and NO x ) from the UK Department for Environment, Food and Rural Affairs (2006-2021). The Cox proportional hazards model was employed to explore MI incidence after chronic air pollutants exposure. By quantifying genetic risk through the calculation of polygenic risk score (PRS), this study further examined the interactions between genetic risk and exposure to air pollutants in the development of MI on both additive and multiplicative scales. RESULTS Among 456,354 participants, 9,114 incident MI events were observed during a median follow-up of 12.08 y. Chronic exposure to air pollutants was linked with an increased risk of MI occurrence. Specifically, the hazard ratios (per interquartile range) were 1.12 (95% CI: 1.10, 1.13) for PM 2.5 , 1.20 (95% CI: 1.19, 1.22) for PM 10 , 1.13 (95% CI: 1.12, 1.15) for NO 2 , and 1.12 (95% CI: 1.11, 1.13) for NO x . In terms of the joint effects, participants with high PRS and high level of air pollution exposure exhibited the greatest risk of MI among all study participants (∼ 255 % to 324%). Remarkably, both multiplicative and additive interactions were detected in the ambient air pollutants exposure and genetic risk on the incidence of MI. DISCUSSION There were interactions between exposure to ambient air pollutants and genetic susceptibility on the risk of MI onset. Moreover, the joint effects of these two exposures were greater than the effect of each factor alone. https://doi.org/10.1289/EHP14291.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Zhang P, Gou L, Murugan DD, Zhang H. Editorial: Epigenetic and genetic mechanisms underlying cardiovascular diseases and neurodevelopmental disorders. Front Genet 2024; 15:1401354. [PMID: 38633404 PMCID: PMC11021750 DOI: 10.3389/fgene.2024.1401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Peng Zhang
- Shenzhen Key Laboratory of ENT, Institute of ENT and Longgang ENT Hospital, Shenzhen, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Healthcare Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Ma Y, Li D, Cui F, Wang J, Tang L, Yang Y, Liu R, Tian Y. Air pollutants, genetic susceptibility, and abdominal aortic aneurysm risk: a prospective study. Eur Heart J 2024:ehad886. [PMID: 38241289 DOI: 10.1093/eurheartj/ehad886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND AND AIMS Air pollutants are important contributors to cardiovascular diseases, but associations between long-term exposure to air pollutants and the risk of abdominal aortic aneurysm (AAA) are still unknown. METHODS This study was conducted using a sample of 449 463 participants from the UK Biobank. Hazard ratios and 95% confidence intervals for the risk of AAA incidence associated with long-term exposure to air pollutants were estimated using the Cox proportional hazards model with time-varying exposure measurements. Additionally, the cumulative incidence of AAA was calculated by using the Fine and Grey sub-distribution hazards regression model. Furthermore, this study investigated the combined effects and interactions between air pollutants exposure and genetic predisposition in relation to the risk of AAA onset. RESULTS Long-term exposure to particulate matter with an aerodynamic diameter <2.5 µm [PM2.5, 1.21 (1.16, 1.27)], particulate matter with an aerodynamic diameter <10 µm [PM10, 1.21 (1.16, 1.27)], nitrogen dioxide [NO2, 1.16 (1.11, 1.22)], and nitrogen oxides [NOx, 1.10 (1.05, 1.15)] was found to be associated with an elevated risk of AAA onset. The detrimental effects of air pollutants persisted even in participants with low-level exposure. For the joint associations, participants with both high levels of air pollutants exposure and high genetic risk had a higher risk of developing AAA compared with those with low concentrations of pollutants exposure and low genetic risk. The respective risk estimates for AAA incidence were 3.18 (2.46, 4.12) for PM2.5, 3.09 (2.39, 4.00) for PM10, 2.41 (1.86, 3.13) for NO2, and 2.01 (1.55, 2.61) for NOx. CONCLUSIONS In this study, long-term air pollutants exposure was associated with an increased risk of AAA incidence.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yingping Yang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
12
|
Huang K, Jia J, Liang F, Li J, Niu X, Yang X, Chen S, Cao J, Shen C, Liu X, Yu L, Lu F, Wu X, Zhao L, Li Y, Hu D, Huang J, Liu Y, Gu D, Liu F, Lu X. Fine Particulate Matter Exposure, Genetic Susceptibility, and the Risk of Incident Stroke: A Prospective Cohort Study. Stroke 2024; 55:92-100. [PMID: 38018834 PMCID: PMC11831602 DOI: 10.1161/strokeaha.123.043812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Both genetic factors and environmental air pollution contribute to the risk of stroke. However, it is unknown whether the association between air pollution and stroke risk is influenced by the genetic susceptibilities of stroke and its risk factors. METHODS This prospective cohort study included 40 827 Chinese adults without stroke history. Satellite-based monthly fine particulate matter (PM2.5) estimation at 1-km resolution was used for exposure assessment. Based on 534 identified genetic variants from genome-wide association studies in East Asians, we constructed 6 polygenic risk scores for stroke and its risk factors, including atrial fibrillation, blood pressure, type 2 diabetes, body mass index, and triglyceride. The Cox proportional hazards model was applied to evaluate the hazard ratios and 95% CIs for the associations of PM2.5 and polygenic risk score with incident stroke and the potential effect modifications. RESULTS Over a median follow-up of 12.06 years, 3147 incident stroke cases were documented. Compared with the lowest quartile of PM2.5 exposure, the hazard ratio (95% CI) for stroke in the highest quartile group was 2.72 (2.42-3.06). Among individuals at high genetic risk, the relative risk of stroke was 57% (1.57; 1.40-1.76) higher than those at low genetic risk. Although no statistically significant interaction was found, participants with both the highest PM2.5 and high genetic risk showed the highest risk of stroke, with ≈4× that of the lowest PM2.5 and low genetic risk group (hazard ratio, 3.55 [95% CI, 2.84-4.44]). Similar upward gradients were observed in the risk of stroke when assessing the joint effects of PM2.5 and genetic risks of blood pressure, type 2 diabetes, body mass index, atrial fibrillation, and triglyceride. CONCLUSIONS Long-term exposure to PM2.5 was associated with a higher risk of incident stroke across different genetic susceptibilities. Our findings highlighted the great importance of comprehensive assessment of air pollution and genetic risk in the prevention of stroke.
Collapse
Affiliation(s)
- Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jiajing Jia
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiaoge Niu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People’s Hospital and People’s Hospital of Zhengzhou University, Zhengzhou, 450053, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300203, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People’s Hospital and Cardiovascular Institute, Guangzhou, 510080, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial People’s Hospital, Fuzhou, 350014, China
| | - Fanghong Lu
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Liancheng Zhao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Ying Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Dongfeng Gu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
13
|
Ma Y, Zhang J, Li D, Tang L, Li Y, Cui F, Wang J, Wen C, Yang J, Tian Y. Genetic Susceptibility Modifies Relationships Between Air Pollutants and Stroke Risk: A Large Cohort Study. Stroke 2024; 55:113-121. [PMID: 38134266 DOI: 10.1161/strokeaha.123.044284] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The extent to which genetic susceptibility modifies the associations between air pollutants and the risk of incident stroke is still unclear. This study was designed to investigate the separate and joint associations of long-term exposure to air pollutants and genetic susceptibility on stroke risk. METHODS The participants of this study were recruited by the UK Biobank between 2006 and 2010. These participants were followed up from the enrollment until the occurrence of stroke events or censoring of data. Hazard ratios (HRs) and 95% CIs for stroke events associated with long-term exposure to air pollutants were estimated by fitting both crude and adjusted Cox proportional hazards models. Additionally, the polygenic risk score was calculated to estimate whether the polygenic risk score modifies the associations between exposure to air pollutants and incident stroke. RESULTS A total of 502 480 subjects were included in this study. After exclusion, 452 196 participants were taken into the final analysis. During a median follow-up time of 11.7 years, 11 334 stroke events were observed, with a mean age of 61.60 years, and men accounted for 56.2% of the total cases. Long-term exposures to particulate matter with an aerodynamic diameter smaller than 2.5 µm (adjusted HR, 1.70 [95% CI, 1.43-2.03]) or particulate matter with an aerodynamic diameter smaller than 10 µm (adjusted HR, 1.50 [95% CI, 1.36-1.66]), nitrogen dioxide (adjusted HR, 1.10 [95% CI, 1.07-1.12]), and nitrogen oxide (adjusted HR, 1.04 [95% CI, 1.02-1.05]) were pronouncedly associated with increased risk of stroke. Meanwhile, participants with high genetic risk and exposure to high air pollutants had ≈45% (31%, 61%; particulate matter with an aerodynamic diameter smaller than 2.5 µm), 48% (33%, 65%; particulate matter with an aerodynamic diameter smaller than 10 µm), 51% (35%, 69%; nitrogen dioxide), and 39% (25%, 55%; nitrogen oxide) higher risk of stroke compared with those with low genetic risk and exposure to low air pollutants, respectively. Of note, we observed additive and multiplicative interactions between genetic susceptibility and air pollutants on stroke events. CONCLUSIONS Chronic exposure to air pollutants was associated with an increased risk of stroke, especially in populations at high genetic risk.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimeng Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT (Y.L.)
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wen
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China (C.W.)
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People's Hospital (J.Z., J.Y.)
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang (J.Z., J.Y.)
- Hubei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China (J.Z., J.Y.)
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating) (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Maternal and Child Health (Y.M., D.L., L.T., F.C., J.W., Y.T.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Petersen KE, Rosthøj S, Halkjær J, Loft S, Tjønneland A, Olsen A. Parental cardiovascular disease and cardiovascular disease risk factors in the offspring: The Diet, Cancer and Health cohorts. Atherosclerosis 2024; 388:117406. [PMID: 38141480 DOI: 10.1016/j.atherosclerosis.2023.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) aggregates in families and offspring with parental CVD may have adverse risk factor levels long time before the potential onset of CVD. We compared risk factor levels in offspring of parents with atherosclerotic CVD (ASCVD) and parents with no ASCVD at different parental ages at onset. METHODS The study included 5751 participants (median age: 50 years) of the Diet, Cancer and Health - Next Generations study. Measurements included blood pressure, body composition and lipid fractions. Information on parental ASCVD and age at disease onset was obtained through register linkage. Parental ASCVD was defined as myocardial infarction, ischemic stroke or peripheral artery disease occurring <70 years, prematurely (mothers: <65 years fathers: <55 years), divided into age categories or using a broader classification of CVD. Linear regression models using Generalized Estimating Equations were used for analysis. Analyses were adjusted for age, sex, education, smoking, alcohol intake, physical activity and some additionally for BMI. RESULTS Offspring with parental ASCVD had a higher blood pressure, waist circumference, BMI, visceral adipose tissue, percentage of body fat and non-HDL cholesterol levels, but not other lipid levels, compared to offspring with no parental ASCVD (all p < 0.01). Overall, the same patterns were observed for parental ASCVD occurring prematurely and using a broader CVD classification. CONCLUSIONS Offspring with parental ASCVD had a higher blood pressure, higher body composition measures and higher non-HDL cholesterol levels compared to offspring with no parental ASCVD. Findings were overall consistent across different classifications of parental ASCVD.
Collapse
Affiliation(s)
| | - Susanne Rosthøj
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Jytte Halkjær
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tjønneland
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark; Department of Public Health, Section of Environmental Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Denmark.
| |
Collapse
|
15
|
Chen X, Wen J, Wu W, Peng Q, Cui X, He L. A review of factors influencing sensitive skin: an emphasis on built environment characteristics. Front Public Health 2023; 11:1269314. [PMID: 38111482 PMCID: PMC10726041 DOI: 10.3389/fpubh.2023.1269314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Background Sensitive skin (SS) is a condition characterized by hyperreactivity. Impacting around 37 percent of the worldwide population and exerting an influence on the quality of life for affected individuals. Its prevalence rate has increased due to factors such as elevating stress levels and deteriorating environmental conditions. The exposome factors influencing SS have extended from demographic, biological attributes, and lifestyle to external environments. Built environments (BEs) have demonstrated as root drivers for changes in behaviors and environmental exposure which have the potential to trigger SS, but the review of the associations between BEs and SS is currently lacking. Objective This review aims to achieve two primary objectives: (1) Examine exposome factors that exert influence on SS at the individual and environmental levels. (2) Develop a theoretical framework that establishes a connection between BEs and SS, thereby offering valuable insights into the impact of the built environment on this condition. Methods An extensive literature search was carried out across multiple fields, including sociology, epidemiology, basic medicine, clinical medicine, and environmental research, with a focus on SS. To identify pertinent references, renowned databases such as PubMed, Web of Science, and CNKI were utilized. Results SS is the outcome of interactions between individual attributes and environmental factors. These influencing factors can be categorized into five distinct classes: (1) demographic and socioeconomic characteristics including age, gender, and race; (2) physiological and biological attributes such as emotional changes, skin types, sleep disorders, and menstrual cycles in women; (3) behavioral factors, such as spicy diet, cosmetic use, alcohol consumption, and physical exercise; (4) natural environmental features, including climate conditions and air pollution; (5) built environmental features such as population density, green space availability, road network density, and access to public transportation, also have the potential to affect the condition. Conclusion The importance of interdisciplinary integration lies in its ability to ascertain whether and how BEs are impacting SS. By elucidating the role of BEs in conjunction with other factors in the onset of SS, we can provide guidance for future research endeavors and the formulation of interventions aimed at mitigating the prevalence of SS.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Wen
- The Centre for Modern Chinese City Studies, East China Normal University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiuzhi Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiangfen Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Institute of Skin Health, Kunming, China
| |
Collapse
|
16
|
Chen SF, Loguercio S, Chen KY, Lee SE, Park JB, Liu S, Sadaei HJ, Torkamani A. Artificial Intelligence for Risk Assessment on Primary Prevention of Coronary Artery Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2023; 17:215-231. [DOI: 10.1007/s12170-023-00731-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of Review
Coronary artery disease (CAD) is a common and etiologically complex disease worldwide. Current guidelines for primary prevention, or the prevention of a first acute event, include relatively simple risk assessment and leave substantial room for improvement both for risk ascertainment and selection of prevention strategies. Here, we review how advances in big data and predictive modeling foreshadow a promising future of improved risk assessment and precision medicine for CAD.
Recent Findings
Artificial intelligence (AI) has improved the utility of high dimensional data, providing an opportunity to better understand the interplay between numerous CAD risk factors. Beyond applications of AI in cardiac imaging, the vanguard application of AI in healthcare, recent translational research is also revealing a promising path for AI in multi-modal risk prediction using standard biomarkers, genetic and other omics technologies, a variety of biosensors, and unstructured data from electronic health records (EHRs). However, gaps remain in clinical validation of AI models, most notably in the actionability of complex risk prediction for more precise therapeutic interventions.
Summary
The recent availability of nation-scale biobank datasets has provided a tremendous opportunity to richly characterize longitudinal health trajectories using health data collected at home, at laboratories, and through clinic visits. The ever-growing availability of deep genotype-phenotype data is poised to drive a transition from simple risk prediction algorithms to complex, “data-hungry,” AI models in clinical decision-making. While AI models provide the means to incorporate essentially all risk factors into comprehensive risk prediction frameworks, there remains a need to wrap these predictions in interpretable frameworks that map to our understanding of underlying biological mechanisms and associated personalized intervention. This review explores recent advances in the role of machine learning and AI in CAD primary prevention and highlights current strengths as well as limitations mediating potential future applications.
Collapse
|
17
|
Münzel T, Sørensen M, Hahad O, Nieuwenhuijsen M, Daiber A. The contribution of the exposome to the burden of cardiovascular disease. Nat Rev Cardiol 2023; 20:651-669. [PMID: 37165157 DOI: 10.1038/s41569-023-00873-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/12/2023]
Abstract
Large epidemiological and health impact assessment studies at the global scale, such as the Global Burden of Disease project, indicate that chronic non-communicable diseases, such as atherosclerosis and diabetes mellitus, caused almost two-thirds of the annual global deaths in 2020. By 2030, 77% of all deaths are expected to be caused by non-communicable diseases. Although this increase is mainly due to the ageing of the general population in Western societies, other reasons include the increasing effects of soil, water, air and noise pollution on health, together with the effects of other environmental risk factors such as climate change, unhealthy city designs (including lack of green spaces), unhealthy lifestyle habits and psychosocial stress. The exposome concept was established in 2005 as a new strategy to study the effect of the environment on health. The exposome describes the harmful biochemical and metabolic changes that occur in our body owing to the totality of different environmental exposures throughout the life course, which ultimately lead to adverse health effects and premature deaths. In this Review, we describe the exposome concept with a focus on environmental physical and chemical exposures and their effects on the burden of cardiovascular disease. We discuss selected exposome studies and highlight the relevance of the exposome concept for future health research as well as preventive medicine. We also discuss the challenges and limitations of exposome studies.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Mette Sørensen
- Danish Cancer Society, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
18
|
Diego VP, Manusov EG, Mao X, Curran JE, Göring H, Almeida M, Mahaney MC, Peralta JM, Blangero J, Williams-Blangero S. Genotype-by-socioeconomic status interaction influences heart disease risk scores and carotid artery thickness in Mexican Americans: the predominant role of education in comparison to household income and socioeconomic index. Front Genet 2023; 14:1132110. [PMID: 37795246 PMCID: PMC10547145 DOI: 10.3389/fgene.2023.1132110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/17/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Socioeconomic status (SES) is a potent environmental determinant of health. To our knowledge, no assessment of genotype-environment interaction has been conducted to consider the joint effects of socioeconomic status and genetics on risk for cardiovascular disease (CVD). We analyzed Mexican American Family Studies (MAFS) data to evaluate the hypothesis that genotype-by-environment interaction (GxE) is an important determinant of variation in CVD risk factors. Methods: We employed a linear mixed model to investigate GxE in Mexican American extended families. We studied two proxies for CVD [Pooled Cohort Equation Risk Scores/Framingham Risk Scores (FRS/PCRS) and carotid artery intima-media thickness (CA-IMT)] in relation to socioeconomic status as determined by Duncan's Socioeconomic Index (SEI), years of education, and household income. Results: We calculated heritability for FRS/PCRS and carotid artery intima-media thickness. There was evidence of GxE due to additive genetic variance heterogeneity and genetic correlation for FRS, PCRS, and CA-IMT measures for education (environment) but not for household income or SEI. Conclusion: The genetic effects underlying CVD are dynamically modulated at the lower end of the SES spectrum. There is a significant change in the genetic architecture underlying the major components of CVD in response to changes in education.
Collapse
Affiliation(s)
- Vincent P. Diego
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Eron G. Manusov
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Xi Mao
- Department of Economics, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Joanne E. Curran
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Harald Göring
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Marcio Almeida
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Michael C. Mahaney
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Juan M. Peralta
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - John Blangero
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Sarah Williams-Blangero
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
19
|
Gregg JT, Himes BE, Asselbergs FW, Moore JH. Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.02.23293567. [PMID: 37577697 PMCID: PMC10418568 DOI: 10.1101/2023.08.02.23293567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Motivation Genome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is not present in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWAS methodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions. We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) via the discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GxE) interaction associations. First, we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes) for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects and identified GxE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis to explore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits and the estimated latent phenotype values were used to measure the amount of AHF variance explained. Results Our method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novel gene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents an improvement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analyses suggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE framework can be applied to decode the genetics of other complex diseases. Availability All code is available at https://github.com/EpistasisLab/latent_phenotype_project.
Collapse
Affiliation(s)
- John T. Gregg
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E. Himes
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jason H. Moore
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
20
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
21
|
Song J, An Z, Zhu J, Li J, Qu R, Tian G, Wang G, Zhang Y, Li H, Jiang J, Wu H, Wang Y, Wu W. Subclinical cardiovascular outcomes of acute exposure to fine particulate matter and its constituents: A glutathione S-transferase polymorphism-based longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157469. [PMID: 35868381 DOI: 10.1016/j.scitotenv.2022.157469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
To explore the acute subclinical cardiovascular effects of fine particulate matter (PM2.5) and its constituents, a longitudinal study with 61 healthy young volunteers was conducted in Xinxiang, China. Linear mixed-effect models were used to analyze the association of PM2.5 and its constituents with cardiovascular outcomes, respectively, including blood pressure (BP), heart rate (HR), serum levels of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA). Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were examined. A 10 μg/m3 increase in PM2.5 was associated with -1.04 (95 % CI: -1.86 to -0.22) mmHg and -0.90 (95 % CI: -1.69 to -0.11) mmHg decreases in diastolic BP (DBP) and mean arterial BP (MABP) along with 1.83 % (95 % CI: 0.59-3.08 %), 5.93 % (95 % CI: 0.70-11.16 %) increases in 8-OHdG and hs-CRP, respectively. Ni content was positively associated with the 8-OHdG levels whereas several other metals presented negative association with 8-OHdG and HR. Intriguingly, GSTT1+/GSTTM1+ subjects showed higher susceptibility to PM2.5-induced alterations of DBP and PMA, and GSTT1-/GSTM1+ subjects showed higher alteration on t-PA. Taken together, our findings indicated that short-term PM2.5 exposure induced oxidative stress, systemic inflammation, autonomic alterations, and fibrinolysis in healthy young subjects. Among multiple examined metal components Ni appeared to positively associated with systematic oxidative stress. In addition, GST-sufficient subjects might be more prone to PM2.5-induced autonomic alterations.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Rongrong Qu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yinbiao Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
22
|
Geng T, Chang X, Wang L, Liu G, Liu J, Khor CC, Neelakantan N, Yuan JM, Koh WP, Pan A, Dorajoo R, Heng CK. The association of genetic susceptibility to smoking with cardiovascular disease mortality and the benefits of adhering to a DASH diet: The Singapore Chinese Health Study. Am J Clin Nutr 2022; 116:386-393. [PMID: 35551603 PMCID: PMC9348979 DOI: 10.1093/ajcn/nqac128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding the genetic predisposition to cardiovascular disease (CVD) may help to improve clinical intervention strategies. Lifestyle factors, such as diet, may differ among ethnic groups and may, in turn, modify individuals' risks to diseases. OBJECTIVES We examined the genetic predisposition to ever smoking in relation to CVD mortality and assessed whether such an association could be modified by dietary intake. METHODS A total of 23,760 Chinese adults from the Singapore Chinese Heath Study who were free of cancer and CVD at recruitment (1993-1998) were included in the study. A weighted genetic risk score (wGRS) was calculated to define the genetically determined regular smoking behavior (never or ever). Multivariable-adjusted Cox regression models were used to assess the association between the wGRS and CVD mortality. We also conducted a 1-sample Mendelian randomization analysis for ever smoking and CVD mortality. RESULTS Over a mean of 22.6 years of follow-up, 2301 CVD deaths were identified. A genetic predisposition to ever smoking was significantly associated with CVD mortality; the multivariable-adjusted HR of CVD mortality was 1.07 (95% CI: 1.03-1.12), with a per-SD increment in the wGRS. However, the Mendelian randomization analysis did not support a causal relationship between ever smoking and CVD mortality (OR, 1.13; 95% CI: 0.87-1.45). Additionally, the Dietary Approaches to Stop Hypertension (DASH) score significantly modified the association between the smoking wGRS and CVD mortality; the association between a genetic predisposition to smoking and CVD mortality was only observed among individuals with a low DASH score (P-interaction = 0.004). CONCLUSIONS A genetic predisposition to smoking was associated with CVD mortality in the Chinese population. In addition, we detected a significant interaction showing higher CVD mortality related to genetically determined smoking among those with lower DASH scores.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Nutrition and Food Hygiene, Ministry of Education Key Lab of Environment and Health and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Ministry of Education Key Lab of Environment and Health and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore,Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Nithya Neelakantan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Medical Center Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|