1
|
Ye L, Chang CC, Li Q, Tintut Y, Hsu JJ. Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models. J Cardiovasc Dev Dis 2024; 11:410. [PMID: 39728300 DOI: 10.3390/jcdd11120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with 18F-sodium fluoride. Photoacoustic imaging provides high contrast that enables in vivo evaluation of plaque composition, yet this method is limited by optical penetration depth. Light-sheet fluorescence microscopy provides high-resolution, three-dimensional imaging of cardiovascular structures and has been used for ex vivo assessment of atherosclerotic calcification, but its limited tissue penetration and requisite complex sample preparation preclude its use in vivo to evaluate cardiac tissue. Overall, with these evolving imaging tools, our understanding of cardiovascular calcification development in animal models is improving, and the combination of traditional imaging techniques with emerging molecular imaging modalities will enhance our ability to investigate therapeutic strategies for atherosclerotic calcification.
Collapse
Affiliation(s)
- Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Chih-Chiang Chang
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Qian Li
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Yin Tintut
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, University of California, Los Angeles, CA 90404, USA
| | - Jeffrey J Hsu
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| |
Collapse
|
2
|
Gonzalez-Ramos S, Wang J, Cho JM, Zhu E, Park SK, In JG, Reddy ST, Castillo EF, Campen MJ, Hsiai TK. Integrating 4-D light-sheet fluorescence microscopy and genetic zebrafish system to investigate ambient pollutants-mediated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165947. [PMID: 37543337 PMCID: PMC10659062 DOI: 10.1016/j.scitotenv.2023.165947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Ambient air pollutants, including PM2.5 (aerodynamic diameter d ~2.5 μm), PM10 (d ~10 μm), and ultrafine particles (UFP: d < 0.1 μm) impart both short- and long-term toxicity to various organs, including cardiopulmonary, central nervous, and gastrointestinal systems. While rodents have been the principal animal model to elucidate air pollution-mediated organ dysfunction, zebrafish (Danio rerio) is genetically tractable for its short husbandry and life cycle to study ambient pollutants. Its electrocardiogram (ECG) resembles that of humans, and the fluorescent reporter-labeled tissues in the zebrafish system allow for screening a host of ambient pollutants that impair cardiovascular development, organ regeneration, and gut-vascular barriers. In parallel, the high spatiotemporal resolution of light-sheet fluorescence microscopy (LSFM) enables investigators to take advantage of the transparent zebrafish embryos and genetically labeled fluorescent reporters for imaging the dynamic cardiac structure and function at a single-cell resolution. In this context, our review highlights the integrated strengths of the genetic zebrafish system and LSFM for high-resolution and high-throughput investigation of ambient pollutants-mediated cardiac and intestinal toxicity.
Collapse
Affiliation(s)
- Sheila Gonzalez-Ramos
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jing Wang
- Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Seul-Ki Park
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Julie G In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA; Molecular Toxicology Interdepartmental Degree Program, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Eliseo F Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA; Department of Bioengineering, School of Engineering & Applied Science, University of California, Los Angeles, CA, USA; Greater Los Angeles VA Healthcare System, Department of Medicine, Los Angeles, California, USA.
| |
Collapse
|
3
|
Sodimu O, Almasian M, Gan P, Hassan S, Zhang X, Liu N, Ding Y. Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice. JOURNAL OF BIOPHOTONICS 2023; 16:e202200278. [PMID: 36624523 PMCID: PMC10192002 DOI: 10.1002/jbio.202200278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 12/24/2022] [Indexed: 05/17/2023]
Abstract
Light-sheet microscopy (LSM) enables us to strengthen the understanding of cardiac development, injury, and regeneration in mammalian models. This emerging technique decouples laser illumination and fluorescence detection to investigate cardiac micro-structure and function with a high spatial resolution while minimizing photodamage and maximizing penetration depth. To unravel the potential of volumetric imaging in cardiac development and repair, we sought to integrate our in-house LSM, Adipo-Clear, and virtual reality (VR) with neonatal mouse hearts. We demonstrate the use of Adipo-Clear to render mouse hearts transparent, the development of our in-house LSM to capture the myocardial architecture within the intact heart, and the integration of VR to explore, measure, and assess regions of interests in an interactive manner. Collectively, we have established an innovative and holistic strategy for image acquisition and interpretation, providing an entry point to assess myocardial micro-architecture throughout the entire mammalian heart for the understanding of cardiac morphogenesis.
Collapse
Affiliation(s)
- Oluwatofunmi Sodimu
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Milad Almasian
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peiheng Gan
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sohail Hassan
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xinyuan Zhang
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ning Liu
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yichen Ding
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Imaging and Surgical Innovation, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
4
|
Teranikar T, Nguyen P, Lee J. Biomechanics of cardiac development in zebrafish model. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022; 19:20210898. [PMID: 35167770 PMCID: PMC8848759 DOI: 10.1098/rsif.2021.0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K. Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
6
|
Engelbrecht L, Ollewagen T, de Swardt D. Advances in fluorescence microscopy can reveal important new aspects of tissue regeneration. Biochimie 2022; 196:194-202. [DOI: 10.1016/j.biochi.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
7
|
Roustaei M, In Baek K, Wang Z, Cavallero S, Satta S, Lai A, O'Donnell R, Vedula V, Ding Y, Marsden AL, Hsiai TK. Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration. J R Soc Interface 2022. [PMID: 35167770 DOI: 10.1101/2021.02.10.430654v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.
Collapse
Affiliation(s)
- Mehrdad Roustaei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kyung In Baek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhaoqiang Wang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Susana Cavallero
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Angela Lai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan O'Donnell
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Yichen Ding
- Department of Bioengineering, University of Texas Dallas, Dallas, TX, USA
| | | | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
8
|
3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing. Essays Biochem 2021; 65:545-554. [PMID: 34269790 DOI: 10.1042/ebc20200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in biofabrication techniques, including 3D bioprinting, have allowed for the fabrication of cardiac models that are similar to the human heart in terms of their structure (e.g., volumetric scale and anatomy) and function (e.g., contractile and electrical properties). The importance of developing techniques for assessing the characteristics of 3D cardiac substitutes in real time without damaging their structures has also been emphasized. In particular, the heart has two primary mechanisms for transporting blood through the body: contractility and an electrical system based on intra and extracellular calcium ion exchange. This review introduces recent trends in 3D bioprinted cardiac tissues and the measurement of their structural, contractile, and electrical properties in real time. Cardiac models have also been regarded as alternatives to animal models as drug-testing platforms. Thus, perspectives on the convergence of 3D bioprinted cardiac tissues and their assessment for use in drug development are also presented.
Collapse
|
9
|
Wang Z, Ding Y, Satta S, Roustaei M, Fei P, Hsiai TK. A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development. PLoS Comput Biol 2021; 17:e1009175. [PMID: 34228702 PMCID: PMC8284633 DOI: 10.1371/journal.pcbi.1009175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/16/2021] [Accepted: 06/11/2021] [Indexed: 01/07/2023] Open
Abstract
Biomechanical forces intimately contribute to cardiac morphogenesis. However, volumetric imaging to investigate the cardiac mechanics with high temporal and spatial resolution remains an imaging challenge. We hereby integrated light-field microscopy (LFM) with light-sheet fluorescence microscopy (LSFM), coupled with a retrospective gating method, to simultaneously access myocardial contraction and intracardiac blood flow at 200 volumes per second. While LSFM allows for the reconstruction of the myocardial function, LFM enables instantaneous acquisition of the intracardiac blood cells traversing across the valves. We further adopted deformable image registration to quantify the ventricular wall displacement and particle tracking velocimetry to monitor intracardiac blood flow. The integration of LFM and LSFM enabled the time-dependent tracking of the individual blood cells and the differential rates of segmental wall displacement during a cardiac cycle. Taken together, we demonstrated a hybrid system, coupled with our image analysis pipeline, to simultaneously capture the myocardial wall motion with intracardiac blood flow during cardiac development. During the conception of the heart, cardiac muscular contraction and blood flow generate biomechanical forces to influence the functional and structural development. To elucidate the underlying biomechanical mechanisms, we have embraced the zebrafish system for the ease of genetic and pharmacological manipulations and its rapidity for organ development. However, acquiring the dynamic processes (space + time domain) in the small beating zebrafish heart remains a challenge. In the presence of a rapid heartbeat, microscopy is confined by temporal resolution to image the cardiac contraction and blood flow. In this context, we demonstrated an integrated light-sheet and light-field imaging system to visualize cardiac contraction along with the flowing blood cells inside the cardiac chambers. Assuming the periodicity of the cardiac cycle, we synchronized the image data in post-processing for 3-D reconstruction. We further quantified the velocity of the various regions of cardiac muscular contraction, and tracked the individual blood cells during the cardiac cycles. The time-dependent velocity maps allow for uncovering differential segments of cardiac contraction and relaxation, and for revealing the patterns of blood flow. Thus, our integrated light-sheet and light-field imaging system provides an experimental basis to further investigate cardiac function and development.
Collapse
Affiliation(s)
- Zhaoqiang Wang
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Yichen Ding
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sandro Satta
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
| | - Mehrdad Roustaei
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (PF); (TKH)
| | - Tzung K. Hsiai
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, United States of America
- * E-mail: (PF); (TKH)
| |
Collapse
|
10
|
Hwang DG, Choi YM, Jang J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Architecture and Pathophysiology for in vitro Studies. Front Bioeng Biotechnol 2021; 9:685507. [PMID: 34136473 PMCID: PMC8201787 DOI: 10.3389/fbioe.2021.685507] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A wide variety of experimental models including 2D cell cultures, model organisms, and 3D in vitro models have been developed to understand pathophysiological phenomena and assess the safety and efficacy of potential therapeutics. In this sense, 3D in vitro models are an intermediate between 2D cell cultures and animal models, as they adequately reproduce 3D microenvironments and human physiology while also being controllable and reproducible. Particularly, recent advances in 3D in vitro biomimicry models, which can produce complex cell structures, shapes, and arrangements, can more similarly reflect in vivo conditions than 2D cell culture. Based on this, 3D bioprinting technology, which enables to place the desired materials in the desired locations, has been introduced to fabricate tissue models with high structural similarity to the native tissues. Therefore, this review discusses the recent developments in this field and the key features of various types of 3D-bioprinted tissues, particularly those associated with blood vessels or highly vascularized organs, such as the heart, liver, and kidney. Moreover, this review also summarizes the current state of the three categories: (1) chemical substance treatment, (2) 3D bioprinting of lesions, and (3) recapitulation of tumor microenvironments (TME) of 3D bioprinting-based disease models according to their disease modeling approach. Finally, we propose the future directions of 3D bioprinting approaches for the creation of more advanced in vitro biomimetic 3D tissues, as well as the translation of 3D bioprinted tissue models to clinical applications.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
11
|
MacRitchie N, Maffia P. Light sheet fluorescence microscopy for quantitative three-dimensional imaging of vascular remodelling. Cardiovasc Res 2021; 117:348-350. [PMID: 32386306 PMCID: PMC7820857 DOI: 10.1093/cvr/cvaa131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
12
|
Ding Y, Gudapati V, Lin R, Fei Y, Sevag Packard RR, Song S, Chang CC, Baek KI, Wang Z, Roustaei M, Kuang D, Jay Kuo CC, Hsiai TK. Saak Transform-Based Machine Learning for Light-Sheet Imaging of Cardiac Trabeculation. IEEE Trans Biomed Eng 2021; 68:225-235. [PMID: 32365015 PMCID: PMC7606319 DOI: 10.1109/tbme.2020.2991754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Recent advances in light-sheet fluorescence microscopy (LSFM) enable 3-dimensional (3-D) imaging of cardiac architecture and mechanics in toto. However, segmentation of the cardiac trabecular network to quantify cardiac injury remains a challenge. METHODS We hereby employed "subspace approximation with augmented kernels (Saak) transform" for accurate and efficient quantification of the light-sheet image stacks following chemotherapy-treatment. We established a machine learning framework with augmented kernels based on the Karhunen-Loeve Transform (KLT) to preserve linearity and reversibility of rectification. RESULTS The Saak transform-based machine learning enhances computational efficiency and obviates iterative optimization of cost function needed for neural networks, minimizing the number of training datasets for segmentation in our scenario. The integration of forward and inverse Saak transforms can also serve as a light-weight module to filter adversarial perturbations and reconstruct estimated images, salvaging robustness of existing classification methods. The accuracy and robustness of the Saak transform are evident following the tests of dice similarity coefficients and various adversary perturbation algorithms, respectively. The addition of edge detection further allows for quantifying the surface area to volume ratio (SVR) of the myocardium in response to chemotherapy-induced cardiac remodeling. CONCLUSION The combination of Saak transform, random forest, and edge detection augments segmentation efficiency by 20-fold as compared to manual processing. SIGNIFICANCE This new methodology establishes a robust framework for post light-sheet imaging processing, and creating a data-driven machine learning for automated quantification of cardiac ultra-structure.
Collapse
Affiliation(s)
- Yichen Ding
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Varun Gudapati
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Ruiyuan Lin
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Yanan Fei
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - René R Sevag Packard
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Sibo Song
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Chih-Chiang Chang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Kyung In Baek
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Zhaoqiang Wang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Mehrdad Roustaei
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Dengfeng Kuang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, and Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - C.-C. Jay Kuo
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Tzung K. Hsiai
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
13
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 2020; 66:34-42. [PMID: 32470820 DOI: 10.1016/j.ceb.2020.04.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.
Collapse
Affiliation(s)
- William C Lemon
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
15
|
Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A. Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Front Endocrinol (Lausanne) 2020; 11:489. [PMID: 32849280 PMCID: PMC7416647 DOI: 10.3389/fendo.2020.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders.
Collapse
Affiliation(s)
- Francesca Tonelli
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Roberta Besio
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Adelbert De Clercq
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Laura Leoni
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Paul J. Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University-University Hospital, Ghent, Belgium
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Forlino
| |
Collapse
|
16
|
Chen B, Zhang JP. Three-dimensional integrated quantitative modeling and fluorescent imaging of doxorubicin-induced cardiotoxicity in a whole organ using a deconvolution microscope. J Pharmacol Toxicol Methods 2020; 101:106662. [DOI: 10.1016/j.vascn.2019.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 11/30/2022]
|
17
|
Marques IJ, Lupi E, Mercader N. Model systems for regeneration: zebrafish. Development 2019; 146:146/18/dev167692. [DOI: 10.1242/dev.167692] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Tissue damage can resolve completely through healing and regeneration, or can produce permanent scarring and loss of function. The response to tissue damage varies across tissues and between species. Determining the natural mechanisms behind regeneration in model organisms that regenerate well can help us develop strategies for tissue recovery in species with poor regenerative capacity (such as humans). The zebrafish (Danio rerio) is one of the most accessible vertebrate models to study regeneration. In this Primer, we highlight the tools available to study regeneration in the zebrafish, provide an overview of the mechanisms underlying regeneration in this system and discuss future perspectives for the field.
Collapse
Affiliation(s)
- Ines J. Marques
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Eleonora Lupi
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Acquifer, Ditabis, Digital Biomedical Imaging Systems, Pforzheim, Germany
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 2029, Spain
| |
Collapse
|
18
|
Merz SF, Korste S, Bornemann L, Michel L, Stock P, Squire A, Soun C, Engel DR, Detzer J, Lörchner H, Hermann DM, Kamler M, Klode J, Hendgen-Cotta UB, Rassaf T, Gunzer M, Totzeck M. Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and response. Nat Commun 2019; 10:2312. [PMID: 31127113 PMCID: PMC6534576 DOI: 10.1038/s41467-019-10338-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Cardioprotection by salvage of the infarct-affected myocardium is an unmet yet highly desired therapeutic goal. To develop new dedicated therapies, experimental myocardial ischemia/reperfusion (I/R) injury would require methods to simultaneously characterize extent and localization of the damage and the ensuing inflammatory responses in whole hearts over time. Here we present a three-dimensional (3D), simultaneous quantitative investigation of key I/R injury-components by combining bleaching-augmented solvent-based non-toxic clearing (BALANCE) using ethyl cinnamate (ECi) with light sheet fluorescence microscopy. This allows structural analyses of fluorescence-labeled I/R hearts with exceptional detail. We discover and 3D-quantify distinguishable acute and late vascular I/R damage zones. These contain highly localized and spatially structured neutrophil infiltrates that are modulated upon cardiac healing. Our model demonstrates that these characteristic I/R injury patterns can detect the extent of damage even days after the ischemic index event hence allowing the investigation of long-term recovery and remodeling processes.
Collapse
Affiliation(s)
- Simon F Merz
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147, Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Lea Bornemann
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Pia Stock
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Anthony Squire
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Camille Soun
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Daniel R Engel
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany
| | - Julia Detzer
- Dept. of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Holger Lörchner
- Dept. of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, 45147, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, 45147, Essen, Germany
| | - Joachim Klode
- Department of Dermatology, Venerology and Allergology, University Hospital Essen, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, 45147, Essen, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
19
|
Ding Y, Ma J, Langenbacher AD, Baek KI, Lee J, Chang CC, Hsu JJ, Kulkarni RP, Belperio J, Shi W, Ranjbarvaziri S, Ardehali R, Tintut Y, Demer LL, Chen JN, Fei P, Packard RRS, Hsiai TK. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight 2018; 3:e121396. [PMID: 30135307 PMCID: PMC6141183 DOI: 10.1172/jci.insight.121396] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced developmental biology and tissue regeneration research. In this review, we introduce a LSFM system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss several studies that have allowed better characterization of developmental and pathological processes in multiple models and tissues. These findings demonstrate the capacity of multiscale light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
Collapse
Affiliation(s)
- Yichen Ding
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Jianguo Ma
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Adam D. Langenbacher
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Kyung In Baek
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Juhyun Lee
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | | | - Jeffrey J. Hsu
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Rajan P. Kulkarni
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - John Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Reza Ardehali
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Yin Tintut
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Linda L. Demer
- Department of Medicine, David Geffen School of Medicine at UCLA, and
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Peng Fei
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | | | - Tzung K. Hsiai
- Department of Medicine, David Geffen School of Medicine at UCLA, and
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
Abiri A, Ding Y, Abiri P, Packard RRS, Vedula V, Marsden A, Kuo CCJ, Hsiai TK. Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach. Ann Biomed Eng 2018; 46:2177-2188. [PMID: 30112710 DOI: 10.1007/s10439-018-02113-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR implementation to recapitulate developmental cardiac contractile function from light-sheet fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from independent segmentations of time-dependent data, thereby enabling the creation of a VR environment that fluently simulates cardiac morphological changes. By analyzing myocardial deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of developmental cardiac morphology to enable high resolution simulation for both basic and clinical science.
Collapse
Affiliation(s)
- Arash Abiri
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Yichen Ding
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Parinaz Abiri
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Vijay Vedula
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Alison Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.,Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - C-C Jay Kuo
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA. .,Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|