1
|
Liu S, Xu L, Cheng Y, Liu D, Zhang B, Chen X, Zheng M. Methylation of the telomerase gene promoter region in umbilical cord blood of patients with gestational diabetes mellitus is associated with decreased telomerase expression levels and shortened telomere length. Front Endocrinol (Lausanne) 2025; 16:1502329. [PMID: 40134806 PMCID: PMC11932890 DOI: 10.3389/fendo.2025.1502329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Objective This study speculates that gestational diabetes mellitus (GDM) may reduce fetal telomere length (TL),which may be related to modification of methylation in the promoter region of the telomerase (TE) gene promoter region. Methods In this study, umbilical cord blood samples from patients with and without GDM (N = 100 each) were analyzed by prospective case-control. The TL, TE expression levels, and methylation levels of TERT and TERC gene promoter regions in two groups were measured. The significance of the methylation level of each CpG locus employed logistic regression analysis of R software, and the analysis of covariance (ANCOVA) was used to control the influence of confounding factors. Correlation analysis was performed by the Spearman. Results The TL and TE expression levels of the offspring of GDM patients were decreased despite adjusting for PBMI, PWG, and TG. A total of two CpG islands were screened in the promoter region of the TERT gene and three fragments (TERT_2, TERT_3, and TERT_4) containing a total of 70 CpG sites were designed. Additionally, four CpG sites of the TERT gene in the GDM group (TERT_2_40, TERT_2_47, TERT_3_46, and TERT_3_212) showed increased methylation levels compared with the control group (all P < 0.05). In the promoter region of the TERC gene, one CpG island containing 19 CpG loci was screened and designed, and the methylation levels of the two CpG sites were significantly different in TERC_1_67 (0.65 ± 0.21 versus 0.57 ± 0.30; P = 0.040) and TERC_1_120 (0.68 ± 0.23 versus 0.59 ± 0.27; P = 0.014). The methylation levels of TERC gene fragments of GDM patients were significantly higher than those of the control group (0.69 ± 0.06 versus 0.65 ± 0.08, P = 0.001). Conclusion This study revealed that GDM may induce decreased TE expression by increasing the methylation levels of TE genes promoter region, thereby reducing the TL.
Collapse
Affiliation(s)
- Shuhua Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Liping Xu
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yan Cheng
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Dehong Liu
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
- Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Mingming Zheng
- Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China
- Department of Obstetrics and Gynecology, Anhui Women and Children’s Medical Center, Hefei, China
- Department of Obstetrics and Gynecology, Maternal and Child Medical Center of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Somala CS, Sathyapriya S, Bharathkumar N, Anand T, Mathangi DC, Saravanan KM. Therapeutic Potential of FTO Demethylase in Metabolism and Disease Pathways. Protein J 2025; 44:21-34. [PMID: 39923206 DOI: 10.1007/s10930-025-10250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 02/10/2025]
Abstract
The crucial involvement of the Fat Mass and Obesity-associated (FTO) protein in both metabolic and non-metabolic diseases has been documented since its discovery. This enzyme, known as FTO, is a demethylase that belongs to the 2-oxoglutarate-dependent nucleic acid demethylases. Its primary function is to target N6-methyladenosine (m6A) in RNA, which is crucial in regulating RNA stability, processing, and expression. This review facilitates understanding the FTO gene variations linked to Body Mass Index (BMI) and obesity, resulting in increased vulnerability to type 2 diabetes. While prior reviews have already discussed the link between FTO and BMI and its impact on type 2 diabetes, the current review additionally examines the emerging evidence suggesting a direct influence of the FTO gene on metabolism. Additionally, the paper discusses the alternative role of FTO and emphasizes the endophenotypes in neurological circuits and the demethylase function of FTO in neurodegenerative disorders. The review further examines the impact of FTO on several physiological systems and emphasizes the need to study FTO as a potential multitarget for future research and therapies.
Collapse
Affiliation(s)
- Chaitanya Sree Somala
- Department of Mind Body Medicine and Lifestyle Sciences, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Selvaraj Sathyapriya
- Sri Ramachandra Innovation Incubation Center (SRIIC) Lab, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | | | - Thirunavukarasou Anand
- Sri Ramachandra Innovation Incubation Center (SRIIC) Lab, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | - Damal Chandrasekar Mathangi
- Department of Mind Body Medicine and Lifestyle Sciences, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India.
| | - Konda Mani Saravanan
- B Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India.
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India.
| |
Collapse
|
3
|
Bass AJ, Bian S, Wingo AP, Wingo TS, Cutler DJ, Epstein MP. Identifying latent genetic interactions in genome-wide association studies using multiple traits. Genome Med 2024; 16:62. [PMID: 38664839 PMCID: PMC11044415 DOI: 10.1186/s13073-024-01329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The "missing" heritability of complex traits may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. We propose a new kernel-based method called Latent Interaction Testing (LIT) to screen for genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Using simulated data, we demonstrate that LIT increases power to detect latent genetic interactions compared to univariate methods. We then apply LIT to obesity-related traits in the UK Biobank and detect variants with interactive effects near known obesity-related genes (URL: https://CRAN.R-project.org/package=lit ).
Collapse
Affiliation(s)
- Andrew J Bass
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| | - Shijia Bian
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Aliza P Wingo
- Department of Psychiatry, Emory University, Atlanta, GA, 30322, USA
| | - Thomas S Wingo
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Michael P Epstein
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Liu YY, Wan Q. Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria. World J Diabetes 2023; 14:1803-1812. [PMID: 38222779 PMCID: PMC10784796 DOI: 10.4239/wjd.v14.i12.1803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Diabetic kidney disease is one of the common complications of type 2 diabetes (T2D). There are no typical symptoms in the early stage, and the disease will progress to moderate and late stage when albuminuria reaches a high level. Treatment is difficult and the prognosis is poor. At present, the pathogenesis of diabetic kidney disease is still unclear, and it is believed that it is associated with genetic and environmental factors. AIM To explore the relationship between the glucokinase regulatory protein (GCKR) gene rs780094 polymorphism and T2D with albuminuria. METHODS We selected 252 patients (126 males and 126 females) with T2D admitted to our hospital from January 2020 to October 2020, and 66 healthy people (44 females and 22 males). According to the urinary albumin/creatinine ratio, the subjects were divided into group I (control), group II (T2D with normoalbuminuria), group III (T2D with microalbuminuria), and group IV (T2D with macroalbuminuria). Additionly, the subjects were divided into group M (normal group) or group N (albuminuria group) according to whether they developed albuminuria. We detected the GCKR gene rs780094 polymorphism (C/T) of all subjects, and measured the correlation between GCKR gene rs780094 polymorphism (C/T) and T2D with albuminuria. RESULTS Gene distribution and genotype distribution among groups I-IV accorded with the Hardy-Weinberg equilibrium. Genotype frequency was significantly different among the four groups (P = 0.048, χ2 = 7.906). T allele frequency in groups II, III, and IV was significantly higher than that in group I. Logistic regression analysis of the risk factors for T2D with albuminuria showed that the CT + TT genotype (odds ratio = 1.710, 95% confidence interval: 1.172-2.493) was a risk factor. CONCLUSION CT + TT genotype is a risk factor for T2D with albuminuria. In the future, we can assess the risk of individuals carrying susceptible genes to delay the onset of T2D.
Collapse
Affiliation(s)
- Yi-Ying Liu
- Department of Endocrinology, Deyang People’s Hospital, Deyang 618000, Sichuan Province, China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
5
|
Fajardo CM, Cerda A, Bortolin RH, de Oliveira R, Stefani TIM, Dos Santos MA, Braga AA, Dorea EL, Bernik MMS, Bastos GM, Sampaio MF, Damasceno NRT, Verlengia R, de Oliveira MRM, Hirata MH, Hirata RDC. Influence of polymorphisms in IRS1, IRS2, MC3R, and MC4R on metabolic and inflammatory status and food intake in Brazilian adults: An exploratory pilot study. Nutr Res 2023; 119:21-32. [PMID: 37716291 DOI: 10.1016/j.nutres.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.
Collapse
MESH Headings
- Adult
- Humans
- Pilot Projects
- Diabetes Mellitus, Type 2/genetics
- Polymorphism, Single Nucleotide
- Brazil
- Obesity/genetics
- Obesity/metabolism
- Eating
- Carbohydrates
- Fatty Acids
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
Collapse
Affiliation(s)
- Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Raquel de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tamires Invencioni Moraes Stefani
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marina Aparecida Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Aécio Assunção Braga
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Egídio Lima Dorea
- Medical Clinic Division, University Hospital, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil; Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Marcelo Ferraz Sampaio
- Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil; Medical Clinic Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | | | - Rozangela Verlengia
- Research Laboratory in Human Performance, Methodist University of Piracicaba, Piracicaba 13400-901, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
6
|
Bass AJ, Bian S, Wingo AP, Wingo TS, Cutler DJ, Epstein MP. Identifying latent genetic interactions in genome-wide association studies using multiple traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557155. [PMID: 37745553 PMCID: PMC10515795 DOI: 10.1101/2023.09.11.557155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genome-wide association studies of complex traits frequently find that SNP-based estimates of heritability are considerably smaller than estimates from classic family-based studies. This 'missing' heritability may be partly explained by genetic variants interacting with other genes or environments that are difficult to specify, observe, and detect. To circumvent these challenges, we propose a new method to detect genetic interactions that leverages pleiotropy from multiple related traits without requiring the interacting variable to be specified or observed. Our approach, Latent Interaction Testing (LIT), uses the observation that correlated traits with shared latent genetic interactions have trait variance and covariance patterns that differ by genotype. LIT examines the relationship between trait variance/covariance patterns and genotype using a flexible kernel-based framework that is computationally scalable for biobank-sized datasets with a large number of traits. We first use simulated data to demonstrate that LIT substantially increases power to detect latent genetic interactions compared to a trait-by-trait univariate method. We then apply LIT to four obesity-related traits in the UK Biobank and detect genetic variants with interactive effects near known obesity-related genes. Overall, we show that LIT, implemented in the R package lit, uses shared information across traits to improve detection of latent genetic interactions compared to standard approaches.
Collapse
Affiliation(s)
- Andrew J. Bass
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Shijia Bian
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Aliza P. Wingo
- Department of Psychiatry, Emory University, Atlanta, GA 30322, USA
| | - Thomas S. Wingo
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
7
|
Santativongchai P, Srisuksai K, Parunyakul K, Thiendedsakul P, Lertwatcharasarakul P, Fungfuang W, Tulayakul P. Effects of Crocodile Oil ( Crocodylus siamensis) on Liver Enzymes: Cytochrome P450 and Glutathione S-Transferase Activities in High-fat DietFed Rats. Vet Med Int 2022; 2022:9990231. [PMID: 36457890 PMCID: PMC9708360 DOI: 10.1155/2022/9990231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Crocodile oil is a highly effective treatment for ailments ranging from skin conditions to cancer. However, the effects of the oil on liver detoxification pathways are not well studied. This study aimed to investigate the effects of crocodile oil on the detoxification enzyme activities and the mRNA expressions of cytochrome P450 1A2 (CYP1A2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) in rats. The rats were divided into four groups (n = 7/group): rats received a standard diet (C), a high-fat diet or HFD (H), and HFD with 1 ml (HCO1) and 3 ml (HCO3) of the oil per kg body weight. Interestingly, the oil yields from this study presented alpha-linolenic acid (0.96%) at similar levels compared with fish oil. The results revealed that HFD significantly increased the activity and relative gene expression of CYP1A2 in the H group (P < 0.05), whereas 3% crocodile oil normalized the enzyme activities compared to the C group. This suggested inhibiting the HFD-induced expression of CYP1A2 mediated by the omega-3 fatty acids found in the oil. Also, crocodile oil supplementation did not reduce the activities of GST. However, the relative gene expression of GSTA1 was significantly decreased (P < 0.05) in the HCO1 and HCO3 groups compared to the H group, which might be attributed to the lower lipid peroxidation that occurred in the liver tissues. Therefore, it could be suggested that using crocodile oil could help in liver detoxification through the CYP1A2 even when offered with a HFD.
Collapse
Affiliation(s)
- Pitchaya Santativongchai
- Bio-Veterinary Sciences (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Krittika Srisuksai
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kongphop Parunyakul
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Piriyaporn Thiendedsakul
- Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Zhang H, Chen N. Adropin as an indicator of T2DM and its complications. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bailén M, Tabone M, Bressa C, Lominchar MGM, Larrosa M, González-Soltero R. Unraveling Gut Microbiota Signatures Associated with PPARD and PARGC1A Genetic Polymorphisms in a Healthy Population. Genes (Basel) 2022; 13:genes13020289. [PMID: 35205333 PMCID: PMC8871880 DOI: 10.3390/genes13020289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed the importance of the gut microbiota in the regulation of metabolic phenotypes of highly prevalent metabolic diseases such as obesity, type II diabetes mellitus (T2DM) and cardiovascular disease. Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear receptors that interact with PPAR-γ co-activator-1α (PPARGC1A) to regulate lipid and glucose metabolism. Genetic polymorphisms in PPARD (rs 2267668; A/G) and PPARGC1A (rs 8192678; G/A) are linked to T2DM. We studied the association between the single-nucleotide polymorphisms (SNPs) rs 2267668 and rs 8192678 and microbiota signatures and their relation to predicted metagenome functions, with the aim of determining possible microbial markers in a healthy population. Body composition, physical exercise and diet were characterized as potential confounders. Microbiota analysis of subjects with PPARGC1A (rs 8192678) and PPARD (rs 2267668) SNPs revealed certain taxa associated with the development of insulin resistance and T2DM. Kyoto encyclopedia of gene and genomes analysis of metabolic pathways predicted from metagenomes highlighted an overrepresentation of ABC sugar transporters for the PPARGC1A (rs 8192678) SNP. Our findings suggest an association between sugar metabolism and the PPARGC1A rs 8192678 (G/A) genotype and support the notion of specific microbiota signatures as factors related to the onset of T2DM.
Collapse
|
10
|
Bucher M, Montaniel KRC, Myatt L, Weintraub S, Tavori H, Maloyan A. Dyslipidemia, insulin resistance, and impairment of placental metabolism in the offspring of obese mothers. J Dev Orig Health Dis 2021; 12:738-747. [PMID: 33185172 PMCID: PMC8606174 DOI: 10.1017/s2040174420001026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Obesity is a chronic condition associated with dyslipidemia and insulin resistance. Here, we show that the offspring of obese mothers are dyslipidemic and insulin resistant from the outset.Maternal and cord blood and placental tissues were collected following C-section at term. Patients were grouped as being normal weight (NW, BMI = 18-24.9) or obese (OB, BMI ≥ 30), and separated by fetal sex. We measured plasma lipids, insulin, and glucose in maternal and cord blood. Insulin resistance was quantified using the HOMA-IR. Placental markers of lipid and energy metabolism and relevant metabolites were measured by western blot and metabolomics, respectively.For OB women, total cholesterol was decreased in both maternal and cord blood, while HDL was decreased only in cord blood, independent of sex. In babies born to OB women, cord blood insulin and insulin resistance were increased. Placental protein expression of the energy and lipid metabolism regulators PGC1α, and SIRT3, ERRα, CPT1α, and CPT2 decreased with maternal obesity in a sex-dependent manner (P < 0.05). Metabolomics showed lower levels of acylcarnitines C16:0, C18:2, and C20:4 in OB women's placentas, suggesting a decrease in β-oxidation. Glutamine, glutamate, alpha-ketoglutarate (αKG), and 2-hydroxyglutarate (2-HG) were increased, and the glutamine-to-glutamate ratio decreased (P < 0.05), in OB placentas, suggesting induction of glutamate into αKG conversion to maintain a normal metabolic flux.Newly-born offspring of obese mothers begin their lives dyslipidemic and insulin resistant. If not inherited genetically, such major metabolic perturbations might be explained by abnormal placental metabolism with potential long-term adverse consequences for the offspring's health and wellbeing.
Collapse
Affiliation(s)
- Matthew Bucher
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of OB/GYN, Oregon Health & Science University, Portland, OR, USA
| | - Kim Ramil C. Montaniel
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- The Graduate Program in Biomedical Sciences (PBMS), Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of OB/GYN, Oregon Health & Science University, Portland, OR, USA
| | - Susan Weintraub
- Department of Biochemistry, The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health, San Antonio, TX, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- The Graduate Program in Biomedical Sciences (PBMS), Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Association between rs619586 (A/G) polymorphism in the gene encoding lncRNA-MALAT1 with type 2 diabetes susceptibility among the Isfahan population in Iran. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Sirdah MM, Reading NS. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clin Genet 2020; 98:525-547. [PMID: 32385895 DOI: 10.1111/cge.13772] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus, also known simply as diabetes, has been described as a chronic and complex endocrine metabolic disorder that is a leading cause of death across the globe. It is considered a key public health problem worldwide and one of four important non-communicable diseases prioritized for intervention through world health campaigns by various international foundations. Among its four categories, Type 2 diabetes (T2D) is the commonest form of diabetes accounting for over 90% of worldwide cases. Unlike monogenic inherited disorders that are passed on in a simple pattern, T2D is a multifactorial disease with a complex etiology, where a mixture of genetic and environmental factors are strong candidates for the development of the clinical condition and pathology. The genetic factors are believed to be key predisposing determinants in individual susceptibility to T2D. Therefore, identifying the predisposing genetic variants could be a crucial step in T2D management as it may ameliorate the clinical condition and preclude complications. Through an understanding the unique genetic and environmental factors that influence the development of this chronic disease individuals can benefit from personalized approaches to treatment. We searched the literature published in three electronic databases: PubMed, Scopus and ISI Web of Science for the current status of T2D and its associated genetic risk variants and discus promising approaches toward a personalized management of this chronic, non-communicable disorder.
Collapse
Affiliation(s)
- Mahmoud M Sirdah
- Division of Hematology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Biology Department, Al Azhar University-Gaza, Gaza, Palestine
| | - N Scott Reading
- Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Maturo MG, Soligo M, Gibson G, Manni L, Nardini C. The greater inflammatory pathway-high clinical potential by innovative predictive, preventive, and personalized medical approach. EPMA J 2020; 11:1-16. [PMID: 32140182 PMCID: PMC7028895 DOI: 10.1007/s13167-019-00195-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND LIMITATIONS Impaired wound healing (WH) and chronic inflammation are hallmarks of non-communicable diseases (NCDs). However, despite WH being a recognized player in NCDs, mainstream therapies focus on (un)targeted damping of the inflammatory response, leaving WH largely unaddressed, owing to three main factors. The first is the complexity of the pathway that links inflammation and wound healing; the second is the dual nature, local and systemic, of WH; and the third is the limited acknowledgement of genetic and contingent causes that disrupt physiologic progression of WH. PROPOSED APPROACH Here, in the frame of Predictive, Preventive, and Personalized Medicine (PPPM), we integrate and revisit current literature to offer a novel systemic view on the cues that can impact on the fate (acute or chronic inflammation) of WH, beyond the compartmentalization of medical disciplines and with the support of advanced computational biology. CONCLUSIONS This shall open to a broader understanding of the causes for WH going awry, offering new operational criteria for patients' stratification (prediction and personalization). While this may also offer improved options for targeted prevention, we will envisage new therapeutic strategies to reboot and/or boost WH, to enable its progression across its physiological phases, the first of which is a transient acute inflammatory response versus the chronic low-grade inflammation characteristic of NCDs.
Collapse
Affiliation(s)
- Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Greg Gibson
- Center for Integrative Genomics, School of Biological Sciences, Georgia Tech, Atlanta, GA USA
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Christine Nardini
- IAC Institute for Applied Computing, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
- Bio Unit, Scientific and Medical Direction, SOL Group, Monza, Italy
| |
Collapse
|
14
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3-GENES GENOMES GENETICS 2020; 10:645-664. [PMID: 31888951 PMCID: PMC7003082 DOI: 10.1534/g3.119.400910] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of Electronic Health Records (EHR) and personalized genetics leads to powerful discoveries relevant to population health. Here we perform genome-wide association studies (GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of 6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity. Each GWAS was followed with two independent PheWASs to examine associations between extensive phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 diabetics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs. control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs validate published associations between BMI and extreme obesity and incidence of specific diagnoses and conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal EHR database to validate known associations and identify putative novel links with BMI and obesity.
Collapse
|
16
|
Zou D, Zhang H, Ke J, Li J, Zhu Y, Gong Y, Yang Y, Tian J, Zhang Y, Peng X, Cai K, Zhong R, Chang J, Miao X. Three functional variants were identified to affect RPS24 expression and significantly associated with risk of colorectal cancer. Arch Toxicol 2020; 94:295-303. [PMID: 31642979 DOI: 10.1007/s00204-019-02600-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
GWAS-identified 10q22.3 loci with lead SNP rs704017 are significantly associated with CRC risk in both Asian and European populations. However, the functional mechanism of this region is unclear. In this study, we performed a fine-mapping analysis to identify the causal SNPs. To identify potential functional SNPs in linkage disequilibrium with the lead SNP, we searched for the potential target genes using a Hi-C database and an RNA interfering-based on-chip approach. The results indicated that rs12263636 (r2 = 0.41) showed the highest potential to be functional. It resided in a region with enhancer markers and a topologically associating domain. We found that RPS24 was the only gene that significantly promoted the proliferation rate of CRC cells and might have promoter-enhancer interaction with rs12263636. Dual-luciferase reporter assays confirmed that the risk alleles of two variants (rs3740253 and rs7071351) in RPS24 promoter could increase the expression of luciferase. Case control study consisting of 1134 cases and 2039 health controls confirmed that both the two variants were associated with risk of CRC (rs3740253: P = 0.0079, OR = 1.15, 95% CI 1.04-1.28; rs7071351: P = 0.0085, OR = 1.15, 95% CI 1.04-1.28). And plasmid containing mutant haplotypes containing all the three mutations (rs12263636 or rs3740253 and rs7071351) could most significantly increase luciferase expression, compared with any haplotype of the three mutations. The study explained the functional mechanism for the 10q22.3 loci and provided new insights into the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Danyi Zou
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongli Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Gastrointestinal Surgery Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Miao
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
17
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Cuervo M, Goni L, Martinez JA. Interplay of an Obesity-Based Genetic Risk Score with Dietary and Endocrine Factors on Insulin Resistance. Nutrients 2019; 12:33. [PMID: 31877696 PMCID: PMC7019905 DOI: 10.3390/nu12010033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
This study aimed to nutrigenetically screen gene-diet and gene-metabolic interactions influencing insulin resistance (IR) phenotypes. A total of 232 obese or overweight adults were categorized by IR status: non-IR (HOMA-IR (homeostatic model assessment - insulin resistance) index ≤ 2.5) and IR (HOMA-IR index > 2.5). A weighted genetic risk score (wGRS) was constructed using 95 single nucleotide polymorphisms related to energy homeostasis, which were genotyped by a next generation sequencing system. Body composition, the metabolic profile and lifestyle variables were evaluated, where individuals with IR showed worse metabolic outcomes. Overall, 16 obesity-predisposing genetic variants were associated with IR (p < 0.10 in the multivariate model). The wGRS strongly associated with the HOMA-IR index (adj. R squared = 0.2705, p < 0.0001). Moreover, the wGRS positively interacted with dietary intake of cholesterol (P int. = 0.002), and with serum concentrations of C-reactive protein (P int. = 0.008) regarding IR status, whereas a negative interaction was found regarding adiponectin blood levels (P int. = 0.006). In conclusion, this study suggests that interactions between an adiposity-based wGRS with nutritional and metabolic/endocrine features influence IR phenotypes, which could facilitate the prescription of personalized nutrition recommendations for precision prevention and management of IR and diabetes.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22427, Mexico
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Goni
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain; (O.R.-L.); (J.I.R.-B.); (F.I.M.); (M.C.); (L.G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
18
|
Obesity and cardiovascular risk: a call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part A: mechanisms of obesity induced hypertension, diabetes and dyslipidemia and practice guidelines for treatment. J Hypertens 2019; 36:1427-1440. [PMID: 29634663 DOI: 10.1097/hjh.0000000000001730] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
: Obesity is a key factor for cardiovascular diseases and complications. Obesity is associated with hypertension, dyslipidemia and type II diabetes, which are the major predictors of cardiovascular disease in the future. It predisposes for atrial fibrillation, heart failure, sudden cardiac death, renal disease and ischemic stroke that are the main causes of cardiovascular hospitalization and mortality. As obesity and the cardiovascular effects on the vessels and the heart start early in life, even from childhood, it is important for health policies to prevent obesity very early before the disease manifestation emerge. Key roles in the prevention are strategies to increase physical exercise, reduce body weight and to prevent or treat hypertension, lipids disorders and diabetes earlier and efficiently to prevent cardiovascular complications.Epidemiology and mechanisms of obesity-induced hypertension, diabetes and dyslipidemia will be reviewed and the role of lifestyle modification and treatment strategies in obesity will be updated and analyzed. The best treatment options for people with obesity, hypertension, diabetes and dyslipidemia will discussed.
Collapse
|
19
|
Saul MC, Philip VM, Reinholdt LG, Chesler EJ. High-Diversity Mouse Populations for Complex Traits. Trends Genet 2019; 35:501-514. [PMID: 31133439 DOI: 10.1016/j.tig.2019.04.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Contemporary mouse genetic reference populations are a powerful platform to discover complex disease mechanisms. Advanced high-diversity mouse populations include the Collaborative Cross (CC) strains, Diversity Outbred (DO) stock, and their isogenic founder strains. When used in systems genetics and integrative genomics analyses, these populations efficiently harnesses known genetic variation for precise and contextualized identification of complex disease mechanisms. Extensive genetic, genomic, and phenotypic data are already available for these high-diversity mouse populations and a growing suite of data analysis tools have been developed to support research on diverse mice. This integrated resource can be used to discover and evaluate disease mechanisms relevant across species.
Collapse
Affiliation(s)
- Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | | | -
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA; UNC Chapel Hill, Chapel Hill, NC, USA; SUNY Binghamton, Binghamton, NY, USA; Pittsburgh University, Pittsburgh, PA, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA.
| |
Collapse
|
20
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
21
|
Olczak E, Kuryłowicz A, Wicik Z, Kołodziej P, Cąkała-Jakimowicz M, Buyanovskaya O, Ślusarczyk P, Mossakowska M, Puzianowska-Kuźnicka M. Glucocorticoid receptor (NR3C1) gene polymorphisms are associated with age and blood parameters in Polish Caucasian nonagenarians and centenarians. Exp Gerontol 2018; 116:20-24. [PMID: 30553025 DOI: 10.1016/j.exger.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Polymorphism of the glucocorticoid receptor gene (NR3C1) may modify protein abundance or function and therefore disturb human homeostasis. METHODS Variant frequencies of the three NR3C1 polymorphisms, rs2963154, rs10515522 and rs2918418, selected in silico as associated with longevity, was analyzed in 552 DNA samples from 95 to 106-year-old individuals and in 284 samples of cord blood DNA from newborns. RESULTS Frequencies of the TT genotypes of rs2963154 and rs10515522, and of the rs291841 CC genotype, were higher in the long-lived study subjects (p = 0.002, p = 0.016 and p = 0.028, respectively). In the long-lived cohort, the rs2963154 CC genotype was associated with higher concentrations of total (p = 0.007) and high-density cholesterol (p = 0.039). The rs10515522 CC genotype was associated with a higher concentration of total cholesterol (p = 0.049). The rs2918418 GG genotype was associated with higher concentrations of total (p = 0.03) and low-density cholesterol (p = 0.03). None of the polymorphisms was associated with fasting glucose, C-reactive protein levels and white blood count, prevalence of diabetes, stroke, myocardial infarction, or cognitive function. However, carriers of the rs10515522 minor allele had significantly better survival rates than carriers of other genotypes. CONCLUSION NR3C1 polymorphisms modify cholesterol levels, and may affect the survival rates of individuals in their tenth and eleventh decades of life.
Collapse
Affiliation(s)
- Elżbieta Olczak
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-776 Warsaw, Poland
| | - Alina Kuryłowicz
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Zofia Wicik
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Paulina Kołodziej
- Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | | | - Olga Buyanovskaya
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Przemyslaw Ślusarczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland..
| | - Malgorzata Mossakowska
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109 Warsaw, Poland..
| | - Monika Puzianowska-Kuźnicka
- Mossakowski Medical Research Centre, PAS, Pawinskiego 5, 02-106 Warsaw, Poland; Medical Centre of Postgraduate Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
22
|
Ionescu-Tirgoviste C, Gagniuc PA, Gagniuc E. The electrical activity map of the human skin indicates strong differences between normal and diabetic individuals: A gateway to onset prevention. Biosens Bioelectron 2018; 120:188-194. [DOI: 10.1016/j.bios.2018.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 01/09/2023]
|
23
|
DiStefano JK, Kingsley CB. Identification of Disease Susceptibility Alleles in the Next Generation Sequencing Era. Methods Mol Biol 2018; 1706:3-16. [PMID: 29423790 DOI: 10.1007/978-1-4939-7471-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of next generation sequencing (NGS) technologies has transformed the study of human genetic variation. In less than a decade, NGS has facilitated the discovery of causal mutations in both rare, monogenic diseases and common, heterogeneous disorders, leading to unprecedented improvements in disease diagnosis and treatment strategies. Given the rapid evolution of NGS platforms, it is now possible to analyze whole genomes and exomes quickly and affordably. Further, emerging NGS applications, such as single-cell sequencing, have the power to address specific issues like somatic variation, which is yielding new insights into the role of somatic mutations in cancer and late-onset diseases. Despite limitations associated with current iterations of NGS technologies, the impact of this approach on identifying disease-causing variants has been significant. This chapter provides an overview of several NGS platforms and applications and discusses how these technologies can be used in concert with experimental and computational strategies to identify variants with a causative effect on disease development and progression.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA.
| | | |
Collapse
|
24
|
Xie F, Chan JCN, Ma RCW. Precision medicine in diabetes prevention, classification and management. J Diabetes Investig 2018; 9:998-1015. [PMID: 29499103 PMCID: PMC6123056 DOI: 10.1111/jdi.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Diabetes has become a major burden of healthcare expenditure. Diabetes management following a uniform treatment algorithm is often associated with progressive treatment failure and development of diabetic complications. Recent advances in our understanding of the genomic architecture of diabetes and its complications have provided the framework for development of precision medicine to personalize diabetes prevention and management. In the present review, we summarized recent advances in the understanding of the genetic basis of diabetes and its complications. From a clinician's perspective, we attempted to provide a balanced perspective on the utility of genomic medicine in the field of diabetes. Using genetic information to guide management of monogenic forms of diabetes represents the best-known examples of genomic medicine for diabetes. Although major strides have been made in genetic research for diabetes, its complications and pharmacogenetics, ongoing efforts are required to translate these findings into practice by incorporating genetic information into a risk prediction model for prioritization of treatment strategies, as well as using multi-omic analyses to discover novel drug targets with companion diagnostics. Further research is also required to ensure the appropriate use of this information to empower individuals and healthcare professionals to make personalized decisions for achieving the optimal outcome.
Collapse
Affiliation(s)
- Fangying Xie
- Department of Medicine and TherapeuticsPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
| | - Juliana CN Chan
- Department of Medicine and TherapeuticsPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- Hong Kong Institute of Diabetes and ObesityPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- CUHK‐SJTU Joint Research Centre in Diabetes Genomics and Precision MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
| | - Ronald CW Ma
- Department of Medicine and TherapeuticsPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- Hong Kong Institute of Diabetes and ObesityPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
- CUHK‐SJTU Joint Research Centre in Diabetes Genomics and Precision MedicinePrince of Wales HospitalThe Chinese University of Hong KongShatinHong Kong
| |
Collapse
|
25
|
Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LH, Teodoro BG, Queiroz AL, Serdan TD, Torres RP, Mancini-Filho J, Rodrigues AC, Alba-Loureiro TC, Pithon-Curi TC, Gorjao R, Silveira LR, Curi R, Newsholme P, Hirabara SM. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 2018; 55:76-88. [DOI: 10.1016/j.jnutbio.2017.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
|
26
|
Zore T, Palafox M, Reue K. Sex differences in obesity, lipid metabolism, and inflammation-A role for the sex chromosomes? Mol Metab 2018; 15:35-44. [PMID: 29706320 PMCID: PMC6066740 DOI: 10.1016/j.molmet.2018.04.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sex differences in obesity and related diseases are well established. Gonadal hormones are a major determinant of these sex differences. However, sex differences in body size and composition are evident prior to exposure to gonadal hormones, providing evidence for gonadal-independent contributions attributable to the XX or XY sex chromosome complement. Large-scale genetic studies have revealed male/female differences in the genetic architecture of adipose tissue amount and anatomical distribution. However, these studies have typically neglected the X and Y chromosomes. SCOPE OF THE REVIEW Here we discuss how the sex chromosome complement may influence obesity, lipid levels, and inflammation. Human sex chromosome anomalies such as Klinefelter syndrome (XXY), as well as mouse models with engineered alterations in sex chromosome complement, support an important role for sex chromosomes in obesity and metabolism. In particular, the Four Core Genotypes mouse model-consisting of XX mice with either ovaries or testes, and XY mice with either ovaries or testes-has revealed an effect of X chromosome dosage on adiposity, hyperlipidemia, and inflammation irrespective of male or female gonads. Mechanisms may include enhanced expression of genes that escape X chromosome inactivation. MAJOR CONCLUSIONS Although less well studied than effects of gonadal hormones, sex chromosomes exert independent and interactive effects on adiposity, lipid metabolism, and inflammation. In particular, the presence of two X chromosomes has been associated with increased adiposity and dyslipidemia in mouse models and in XXY men. The enhanced expression of genes that escape X chromosome inactivation may contribute, but more work is required.
Collapse
Affiliation(s)
- Temeka Zore
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Palafox
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Opposite Genetic Effects of CMIP Polymorphisms on the Risk of Type 2 Diabetes and Obesity: A Family-Based Study in China. Int J Mol Sci 2018; 19:ijms19041011. [PMID: 29597287 PMCID: PMC5979311 DOI: 10.3390/ijms19041011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
C-Maf Inducing Protein (CMIP) gene polymorphisms were reported to be associated with type 2 diabetes mellitus (T2DM). Whether the association between CMIP and T2DM is mediated via obesity-related phenotypes is still unclear. We analyzed the association of CMIP rs2925979 with T2DM and a comprehensive set of obesity-related phenotypes in 1576 families ascertained from a Chinese population. These families included a total of 3444 siblings (1582 with T2DM, 963 with prediabetes, and 899 with a normal glucose level). Using multi-level mixed effects regression models, we found that each copy of CMIP rs2925979_T allele was associated with a 29% higher risk of T2DM in females (p = 9.30 × 10-4), while it was not significantly associated with T2DM in males (p = 0.705). Meanwhile, rs2925979_T allele was associated with lower levels of body mass index (BMI), waist circumference (WC), hip circumference (HC), percentage of body fat (PBF), PBF of arms, PBF of legs, and PBF of trunk in nondiabetes females (all p < 0.05). The opposite associations of rs2925979_T allele with T2DM and obesity-related phenotypes suggest that CMIP may exert independent pleiotropic effects on T2DM and obesity-related phenotypes in females.
Collapse
|
28
|
Liu HM, He JY, Zhang Q, Lv WQ, Xia X, Sun CQ, Zhang WD, Deng HW. Improved detection of genetic loci in estimated glomerular filtration rate and type 2 diabetes using a pleiotropic cFDR method. Mol Genet Genomics 2018; 293:225-235. [PMID: 29038864 PMCID: PMC5819009 DOI: 10.1007/s00438-017-1381-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies (GWAS) have been shown to have the potential of explaining more of the "missing heritability" of complex human phenotypes by improving statistical approaches. Here, we applied a genetic-pleiotropy-informed conditional false discovery rate (cFDR) to capture additional polygenic effects associated with estimated glomerular filtration rate (creatinine) (eGFRcrea) and type 2 diabetes (T2D). The cFDR analysis improves the identification of pleiotropic variants by incorporating potentially shared genetic mechanisms between two related traits. The Q-Q and fold-enrichment plots were used to assess the enrichment of SNPs associated with eGFRcrea or T2D, and Manhattan plots were used for showing chromosomal locations of the significant loci detected. By applying the cFDR method, we newly identified 74 loci for eGFRcrea and 3 loci for T2D with the cFDR criterion of 0.05 compared with previous related GWAS studies. Four shared SNPs were detected to be associated with both eGFRcrea and T2D at the significant conjunction cFDR level of 0.05, and these shared SNPs had not been reported in previous studies. In addition, we used DAVID analysis to perform functional analysis of the shared SNPs' annotated genes and found their potential hidden associations with eGFRcrea and T2D. In this study, the cFDR method shows the feasibility to detect more genetic variants underlying the heritability of eGFRcrea and T2D, and the overlapping SNPs identified could be regarded as candidate loci that provide a thread of genetic mechanisms between eGFRcrea and T2D in future research.
Collapse
Affiliation(s)
- Hui-Min Liu
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Jing-Yang He
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Qiang Zhang
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Wan-Qiang Lv
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Xin Xia
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Chang-Qing Sun
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China
| | - Wei-Dong Zhang
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China.
| | - Hong-Wen Deng
- College of Public Health Zhengzhou University, No.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, People's Republic of China.
- Department of Biostatistics and Data Science, Tulane Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
29
|
Lipner EM, Greenberg DA. The Rise and Fall and Rise of Linkage Analysis as a Technique for Finding and Characterizing Inherited Influences on Disease Expression. Methods Mol Biol 2018; 1706:381-397. [PMID: 29423810 DOI: 10.1007/978-1-4939-7471-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For many years, family-based studies using linkage analysis represented the primary approach for identifying disease genes. This strategy is responsible for the identification of the greatest number of genes proven to cause human disease. However, technical advancements in next generation sequencing and high throughput genotyping, coupled with the apparent simplicity of association testing, led to the rejection of family-based studies and of linkage analysis. At present, genetic association methods, using case-control comparisons, have become the exclusive approach for detecting disease-related genes, particularly those underlying common, complex diseases. In this chapter, we present a historical overview of linkage analysis, including a description of how the approach works, as well as its strengths and weaknesses. We discuss how the transition from family-based studies to population comparison association studies led to a critical loss of information with respect to genetic etiology and inheritance, and we present historical and contemporary examples of linkage analysis "success stories" in identifying genes contributing to the development of human disease. Currently, linkage analysis is re-emerging as a useful approach for identifying disease genes, determining genetic parameters, and resolving genetic heterogeneity. We posit that the combination of linkage analysis, association testing, and high throughput sequencing provides a powerful approach for identifying disease-causing genes.
Collapse
Affiliation(s)
- Ettie M Lipner
- Center for Genes, Environment, and Health, National Jewish Health, 1400 Jackson Street, Denver, CO, 80602, USA.
- Department of Pharmacology, University of Colorado Denver, School of Medicine, Aurora, CO, USA.
| | - David A Greenberg
- Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
30
|
Huang F, Nilholm C, Roth B, Linninge C, Höglund P, Nyman M, Ohlsson B. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. Int J Food Sci Nutr 2017; 69:729-740. [PMID: 29199483 DOI: 10.1080/09637486.2017.1408059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Okinawan-based Nordic (O-BN) diet improves anthropometry and metabolism in type 2 diabetes mellitus (T2DM) patients. The aim of this study was to study mechanisms behind improvements by examining Enterobacteriaceae abundance, microbial diversity, and concentrations of short-chain fatty acids (SCFAs). A secondary aim was exploring if metformin treatment affects microbiota or SCFAs. Thirty T2DM patients received the O-BN diet for 12 weeks. Faecal and blood samples were collected at baseline, 12 and 28 weeks. Although patients experienced weight loss and improved metabolic parameters, there were no significant changes in Enterobacteriaceae abundance or microbial diversity. Patients on metformin displayed higher Enterobacteriaceae abundance throughout the study (p = .008, p = .038, and p = .001, respectively). Isovaleric acid was decreased after 12 weeks (p = .018). Butyric acid was decreased at follow-up (p = .007). Improved anthropometry and metabolism in T2DM after introduction of the O-BN diet is not associated with changes in Enterobacteriaceae abundance, microbial diversity or SCFA concentrations.
Collapse
Affiliation(s)
- Fang Huang
- a Food for Health Science Centre , Lund University , Lund , Sweden
| | - Clara Nilholm
- b Department of Internal Medicine , Skane University Hospital, Lund University , Malmö , Sweden
| | - Bodil Roth
- b Department of Internal Medicine , Skane University Hospital, Lund University , Malmö , Sweden
| | - Caroline Linninge
- c Department of Food Technology, Engineering and Nutrition , Lund University , Lund , Sweden
| | - Peter Höglund
- d Department of Clinical Chemistry & Pharmacology , Skane University Hospital, Lund University , Lund , Sweden
| | - Margareta Nyman
- a Food for Health Science Centre , Lund University , Lund , Sweden
| | - Bodil Ohlsson
- b Department of Internal Medicine , Skane University Hospital, Lund University , Malmö , Sweden
| |
Collapse
|
31
|
Zhang Q, Wu KH, He JY, Zeng Y, Greenbaum J, Xia X, Liu HM, Lv WQ, Lin X, Zhang WD, Xi YL, Shi XZ, Sun CQ, Deng HW. Novel Common Variants Associated with Obesity and Type 2 Diabetes Detected Using a cFDR Method. Sci Rep 2017; 7:16397. [PMID: 29180724 PMCID: PMC5703959 DOI: 10.1038/s41598-017-16722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWASs) have been performed extensively in diverse populations to identify single nucleotide polymorphisms (SNPs) associated with complex diseases or traits. However, to date, the SNPs identified fail to explain a large proportion of the variance of the traits/diseases. GWASs on type 2 diabetes (T2D) and obesity are generally focused on individual traits independently, and genetic intercommunity (common genetic contributions or the product of over correlated phenotypic world) between them are largely unknown, despite extensive data showing that these two phenotypes share both genetic and environmental risk factors. Here, we applied a recently developed genetic pleiotropic conditional false discovery rate (cFDR) approach to discover novel loci associated with BMI and T2D by incorporating the summary statistics from existing GWASs of these two traits. Conditional Q-Q and fold enrichment plots were used to visually demonstrate the strength of pleiotropic enrichment. Adopting a cFDR nominal significance level of 0.05, 287 loci were identified for BMI and 75 loci for T2D, 23 of which for both traits. By incorporating related traits into a conditional analysis framework, we observed significant pleiotropic enrichment between obesity and T2D. These findings may provide novel insights into the etiology of obesity and T2D, individually and jointly.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Ke-Hao Wu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jing-Yang He
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yong Zeng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
- College of Sciences, Beijing Jiao Tong University, Beijing, China
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xin Xia
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Hui-Min Liu
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Wan-Qiang Lv
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Southern Medical University, Guang Zhou, P.R. China
| | - Wei-Dong Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Yuan-Lin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Xue-Zhong Shi
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China
| | - Chang-Qing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China.
| | - Hong-Wen Deng
- College of Public Health, Zhengzhou University, Zhengzhou, NO.100 Kexue Road, High-Tech Development Zone Of States, Zhengzhou, P.R. China.
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
32
|
Affiliation(s)
- David Meyre
- Department of Health Research Methods, Evidence, and Impact and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
33
|
Pulit SL, Laber S, Glastonbury CA, Lindgren CM. The genetic underpinnings of body fat distribution. Expert Rev Endocrinol Metab 2017; 12:417-427. [PMID: 30063432 DOI: 10.1080/17446651.2017.1390427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, has reached epidemic proportions; people who are overweight (BMI > 25 kg/m2) or obese now comprise more than 25% of the world's population. Obese individuals have a higher risk of comorbidity development including type 2 diabetes, cardiovascular disease, cancer, and fertility complications. Areas covered: The study of monogenic and syndromic forms of obesity have revealed a small number of genes key to metabolic perturbations. Further, obesity and body shape in the general population are highly heritable phenotypes. Study of obesity at the population level, through genome-wide association studies of BMI and waist-to-hip ratio (WHR), have revealed > 150 genomic loci that associate with these traits, and highlight the role of adipose tissue and the central nervous system in obesity-related traits. Studies in animal models and cell lines have helped further elucidate the potential biological mechanisms underlying obesity. In particular, these studies implicate adipogenesis and expansion of adipose tissue as key biological pathways in obesity and weight gain. Expert commentary: Further work, including a focus on integrating genetic and additional genomic data types, as well as modeling obesity-like features in vitro, will be crucial in translating genome-wide association signals to the causal mechanisms driving disease.
Collapse
Affiliation(s)
- Sara L Pulit
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- b Department of Genetics , University Medical Center Utrecht , Utrecht , The Netherlands
- f Program in Medical and Population Genetics , Broad Institute , Cambridge , Massachusetts , USA
| | - Samantha Laber
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- c MRC Harwell Institute , Mammalian Genetics Unit , Harwell , Oxford , UK
- d Department of Physiology , Anatomy and Genetics, University of Oxford , Oxford , U.K
| | - Craig A Glastonbury
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- e Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Cecilia M Lindgren
- a Big Data Institute , Li Ka Shing Centre for Health Information and Discovery, University of Oxford , Oxford , UK
- e Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine , University of Oxford , Oxford , UK
- f Program in Medical and Population Genetics , Broad Institute , Cambridge , Massachusetts , USA
| |
Collapse
|
34
|
Giese AK, Schirmer MD, Donahue KL, Cloonan L, Irie R, Winzeck S, Bouts MJRJ, McIntosh EC, Mocking SJ, Dalca AV, Sridharan R, Xu H, Frid P, Giralt-Steinhauer E, Holmegaard L, Roquer J, Wasselius J, Cole JW, McArdle PF, Broderick JP, Jimenez-Conde J, Jern C, Kissela BM, Kleindorfer DO, Lemmens R, Lindgren A, Meschia JF, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Thijs V, Woo D, Worrall BB, Kittner SJ, Mitchell BD, Rosand J, Golland P, Wu O, Rost NS. Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study. Neurol Genet 2017; 3:e180. [PMID: 28852707 PMCID: PMC5570675 DOI: 10.1212/nxg.0000000000000180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. METHODS MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. CONCLUSIONS The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
Collapse
Affiliation(s)
| | | | | | - Lisa Cloonan
- Author affiliations are provided at the end of the article
| | - Robert Irie
- Author affiliations are provided at the end of the article
| | - Stefan Winzeck
- Author affiliations are provided at the end of the article
| | | | | | | | - Adrian V Dalca
- Author affiliations are provided at the end of the article
| | | | - Huichun Xu
- Author affiliations are provided at the end of the article
| | - Petrea Frid
- Author affiliations are provided at the end of the article
| | | | | | - Jaume Roquer
- Author affiliations are provided at the end of the article
| | | | - John W Cole
- Author affiliations are provided at the end of the article
| | | | | | | | - Christina Jern
- Author affiliations are provided at the end of the article
| | | | | | - Robin Lemmens
- Author affiliations are provided at the end of the article
| | - Arne Lindgren
- Author affiliations are provided at the end of the article
| | | | - Tatjana Rundek
- Author affiliations are provided at the end of the article
| | - Ralph L Sacco
- Author affiliations are provided at the end of the article
| | | | - Pankaj Sharma
- Author affiliations are provided at the end of the article
| | | | - Vincent Thijs
- Author affiliations are provided at the end of the article
| | - Daniel Woo
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Polina Golland
- Author affiliations are provided at the end of the article
| | - Ona Wu
- Author affiliations are provided at the end of the article
| | - Natalia S Rost
- Author affiliations are provided at the end of the article
| |
Collapse
|
35
|
Lewis SL, Holl HM, Streeter C, Posbergh C, Schanbacher BJ, Place NJ, Mallicote MF, Long MT, Brooks SA. Genomewide association study reveals a risk locus for equine metabolic syndrome in the Arabian horse. J Anim Sci 2017; 95:1071-1079. [PMID: 28380523 DOI: 10.2527/jas.2016.1221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Equine obesity can cause life-threatening secondary chronic conditions, similar to those in humans and other animal species. Equine metabolic syndrome (EMS), primarily characterized by hyperinsulinemia, is often present in obese horses and ponies. Due to clinical similarities to conditions such as pituitary pars intermedia dysfunction (formerly equine Cushing's disease), conclusive diagnosis of EMS often proves challenging. Aside from changes in diet and exercise, few targeted treatments are available for EMS, emphasizing the need for early identification of at-risk individuals to enable implementation of preventative measures. A genomewide association study (GWAS) using Arabian horses with a history of severe laminitis secondary to EMS revealed significant genetic markers near a single candidate gene () that may play a role in cholesterol homeostasis. The best marker, BIEC2-263524 (chr14:69276814 T > C), was correlated with elevated insulin values and increased frequency of laminitis ( = 0.0024 and = 9.663 × 10, respectively). In a second population of Arabian horses, the BIEC2-263524 marker maintained its associations with higher modified insulin-to-glucose ratio (MIRG) values ( = 0.0056) and BCS ( = 0.0063). Screening of the predicted coding regions by sequencing identified a polymorphic guanine homopolymer and 5 haplotypes in the 3' untranslated region (UTR). An 11 guanine (11-G) allele at was correlated with elevated insulin values in the GWAS population ( = 0.0008) and, in the second population, elevated MIRG and increased BCS > 6.5 ( = 0.0055 and = 0.0162, respectively). The BIEC2-263524-C and the 3' UTR -11(G) polymorphisms were correlated at a 98% frequency, indicating strong linkage disequilibrium across this 150-kb haplotype. Assays for these markers could diagnose horses with a genetic predisposition to develop obesity. Additionally, discovery of FAM174A function may improve our understanding of the etiology of this troubling illness in the horse and warrants investigation of this locus for a role in metabolic- and obesity-related disorders of other species.
Collapse
|
36
|
Røder ME. Hyperproinsulinemia in obesity and in type 2 diabetes and its relation to cardiovascular disease. Expert Rev Endocrinol Metab 2017; 12:227-239. [PMID: 30058886 DOI: 10.1080/17446651.2017.1331735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disproportionately elevated fasting levels of proinsulin immunoreactive material (PIM)relative to insulin immunoreactivity (IRI) are a well-established abnormality in type 2 diabetes. Thesignificance of this abnormality has been investigated and discussed in several studies. Areas covered: The present review focuses on the role of proinsulin and its conversion intermediates inthe development of type 2 diabetes, obesity and insulin resistance, and the potential role as a marker ofcardiovascular risk, including the most important studies in this field. Expert commentary: The composition of plasma PIM is heterogeneous comprising des(31,32)-proinsulin,intact proinsulin and small amounts of des(64,65)-proinsulin. Disproportionate hyperproinsulinemiaseems to occur early in the development and before the diagnosis of type 2 diabetes, and seemsassociated to disease progression. Obesity and insulin resistance does not influence fasting PIM/IRI levels in type 2 diabetes. Fasting PIM/IRI levels in type 2 diabetes are closely associated with the degree of impairment in insulin secretory capacity. Different type 2 diabetes alleles have been described associated with elevated PIM/IRI levels. Recent data suggests that proinsulin and its conversion intermediates may have a role as markers of increased risk of cardiovascular disease in glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Michael E Røder
- a Center for Diabetes Research , Gentofte Hospital , Hellerup , Denmark
| |
Collapse
|
37
|
Farook VS, Reddivari L, Mummidi S, Puppala S, Arya R, Lopez-Alvarenga JC, Fowler SP, Chittoor G, Resendez RG, Kumar BM, Comuzzie AG, Curran JE, Lehman DM, Jenkinson CP, Lynch JL, DeFronzo RA, Blangero J, Hale DE, Duggirala R, Vanamala JKP. Genetics of serum carotenoid concentrations and their correlation with obesity-related traits in Mexican American children. Am J Clin Nutr 2017; 106:52-58. [PMID: 28515064 PMCID: PMC5486195 DOI: 10.3945/ajcn.116.144006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Dietary intake of phytonutrients present in fruits and vegetables, such as carotenoids, is associated with a lower risk of obesity and related traits, but the impact of genetic variation on these associations is poorly understood, especially in children.Objective: We estimated common genetic influences on serum carotenoid concentrations and obesity-related traits in Mexican American (MA) children.Design: Obesity-related data were obtained from 670 nondiabetic MA children, aged 6-17 y. Serum α- and β-carotenoid concentrations were measured in ∼570 (α-carotene in 565 and β-carotene in 572) of these children with the use of an ultraperformance liquid chromatography-photodiode array. We determined heritabilities for both carotenoids and examined their genetic relation with 10 obesity-related traits [body mass index (BMI), waist circumference (WC), high-density lipoprotein (HDL) cholesterol, triglycerides, fat mass (FM), systolic and diastolic blood pressure, fasting insulin and glucose, and homeostasis model assessment of insulin resistance] by using family data and a variance components approach. For these analyses, carotenoid values were inverse normalized, and all traits were adjusted for significant covariate effects of age and sex.Results: Carotenoid concentrations were highly heritable and significant [α-carotene: heritability (h2) = 0.81, P = 6.7 × 10-11; β-carotene: h2 = 0.90, P = 3.5 × 10-15]. After adjusting for multiple comparisons, we found significant (P ≤ 0.05) negative phenotypic correlations between carotenoid concentrations and the following traits: BMI, WC, FM, and triglycerides (range: α-carotene = -0.19 to -0.12; β-carotene = -0.24 to -0.13) and positive correlations with HDL cholesterol (α-carotene = 0.17; β-carotene = 0.24). However, when the phenotypic correlations were partitioned into genetic and environmental correlations, we found marginally significant (P = 0.051) genetic correlations only between β-carotene and BMI (-0.27), WC (-0.30), and HDL cholesterol (0.31) after accounting for multiple comparisons. None of the environmental correlations were significant.Conclusions: The findings from this study suggest that the serum carotenoid concentrations were under strong additive genetic influences based on variance components analyses, and that the common genetic factors may influence β-carotene and obesity and lipid traits in MA children.
Collapse
Affiliation(s)
- Vidya S Farook
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | | | - Srinivas Mummidi
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Sobha Puppala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX; Departments of
| | - Rector Arya
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Juan Carlos Lopez-Alvarenga
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | | | - Geetha Chittoor
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC; and
| | - Roy G Resendez
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Birunda Mohan Kumar
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX; Departments of
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | | | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Jane L Lynch
- Pediatrics, University of Texas Health San Antonio, San Antonio, TX
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Daniel E Hale
- Pediatrics, University of Texas Health San Antonio, San Antonio, TX
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX; Departments of
| | - Jairam KP Vanamala
- Food Science and,Center for Molecular Immunology and Infectious Diseases, Penn State University, University Park, PA
| |
Collapse
|
38
|
Liston A, Todd JA, Lagou V. Beta-Cell Fragility As a Common Underlying Risk Factor in Type 1 and Type 2 Diabetes. Trends Mol Med 2017; 23:181-194. [DOI: 10.1016/j.molmed.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
39
|
Owusu D, Pan Y, Xie C, Harirforoosh S, Wang KS. Polymorphisms in PDLIM5 gene are associated with alcohol dependence, type 2 diabetes, and hypertension. J Psychiatr Res 2017; 84:27-34. [PMID: 27693979 DOI: 10.1016/j.jpsychires.2016.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
Abstract
The PDZ and LIM domain 5 (PDLIM5) gene may play a role in alcohol dependence (AD), bipolar disorder, and major depressive disorder; however, no study has identified shared genetic variants within PDLIM5 gene among AD, type 2 diabetes (T2D), and hypertension. This study investigated the association of 72 single nucleotide polymorphism (SNPs) with AD (1066 AD cases and 1278 controls) in the Study of Addiction - Genetics and Environment (SAGE) sample and 47 SNPs with T2D (878 cases and 2686 non-diabetic) and hypertension (825 cases and 2739 non-hypertensive) in the Marshfield sample. Multiple logistic regression models in PLINK software were used to examine the associations of genetic variants with AD, T2D, and hypertension and SNP x alcohol consumption interactions for T2D and hypertension. Twenty-five SNPs were associated with AD in the SAGE sample (p < 0.05); rs1048627 showed the strongest association with AD (p = 5.53 × 10-4). Of the 25 SNPs, 5 SNPs showed associations with both AD in the SAGE sample and T2D in the Marshfield sample (top SNP rs11097432 with p = 0.00107 for T2D and p = 0.0483 for AD) while 6 SNPs showed associations with both AD in the SAGE sample and hypertension in the Marshfield sample (top SNP rs12500426 with p = 0.0119 for hypertension and p = 1.51 × 10-3 for AD). SNP (rs6532496) showed significant interaction with alcohol consumption for hypertension. Our results showed that several genetic variants in PDLIM5 gene influence AD, T2D and hypertension. These findings offer the potential for new insights into the pathogenesis of AD, T2D, and hypertension.
Collapse
Affiliation(s)
- Daniel Owusu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yue Pan
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
40
|
Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front Physiol 2016; 7:439. [PMID: 27746742 PMCID: PMC5040721 DOI: 10.3389/fphys.2016.00439] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Mary E Curtis
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Letimicia S Fears
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| | - Samuel N Nahashon
- Department of Agricultural and Environmental Sciences, Tennessee State University Nashville, TN, USA
| | - Hugh M Fentress
- Department of Biological Sciences, Tennessee State University Nashville, TN, USA
| |
Collapse
|
41
|
Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab 2016; 5:795-803. [PMID: 27617202 PMCID: PMC5004229 DOI: 10.1016/j.molmet.2016.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diabetes, obesity, and the metabolic syndrome are multifactorial diseases dependent on a complex interaction of host genetics, diet, and other environmental factors. Increasing evidence places gut microbiota as important modulators of the crosstalk between diet and development of obesity and metabolic dysfunction. In addition, host genetics can have important impact on the composition and function of gut microbiota. Indeed, depending on the genetic background of the host, diet and other environmental factors may produce different changes in gut microbiota, have different impacts on host metabolism, and create different interactions between the microbiome and the host. SCOPE OF REVIEW In this review, we highlight how appropriate animal models can help dissect the complex interaction of host genetics with the gut microbiome and how diet can lead to different degrees of weight gain, levels of insulin resistance, and metabolic outcomes, such as diabetes, in different individuals. We also discuss the challenges of identifying specific disease-associated microbiota and the limitations of simple metrics, such as phylogenetic diversity or the ratio of Firmicutes to Bacteroidetes. MAJOR CONCLUSIONS Understanding these complex interactions will help in the development of novel treatments for microbiome-related metabolic diseases. This article is part of a special issue on microbiota.
Collapse
|
42
|
Breimer LH, Mikhailidis DP. Does bilirubin protect against developing diabetes mellitus? J Diabetes Complications 2016; 30:728-37. [PMID: 26922581 DOI: 10.1016/j.jdiacomp.2016.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 01/05/2023]
Abstract
After 25 years of evaluating bilirubin as a possible protective agent in neonatal and cardiovascular disease, interest has moved on to a exploring a possible protective role in diabetes mellitus (DM). This review finds conflicting prospective data for a protective relationship though there are retrospective, case-controlled data, that can only show association, which is not causality. Only prospective studies can show causality. Also, it would appear that the underlying biochemical assumptions do not readily translate from the animal to the human setting. Given that many factors impact on circulating bilirubin levels, it is not surprising that a clear-cut answer is not available; the jury is still out. Any relationship between DM and bilirubin might relate to intermediates in bilirubin metabolism, including relationships involving the genes for the enzymes participating in those steps. Nevertheless, the pursuit of bilirubin in disease causation is opening new avenues for research and if it is established that serum bilirubin can predict risks, much will have been achieved. The answer may have to come from molecular genetic analyses.
Collapse
Affiliation(s)
- Lars H Breimer
- Dept of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro University Hospital, SE-701 85, Örebro, Sweden.
| | - Dimitri P Mikhailidis
- Dept. of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), London, NW3 2QG, UK
| |
Collapse
|
43
|
Guarrera S, Fiorito G, Onland-Moret NC, Russo A, Agnoli C, Allione A, Di Gaetano C, Mattiello A, Ricceri F, Chiodini P, Polidoro S, Frasca G, Verschuren MWM, Boer JMA, Iacoviello L, van der Schouw YT, Tumino R, Vineis P, Krogh V, Panico S, Sacerdote C, Matullo G. Gene-specific DNA methylation profiles and LINE-1 hypomethylation are associated with myocardial infarction risk. Clin Epigenetics 2015; 7:133. [PMID: 26705428 PMCID: PMC4690365 DOI: 10.1186/s13148-015-0164-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Background DNA methylation profiles are responsive to environmental stimuli and metabolic shifts. This makes DNA methylation a potential biomarker of environmental-related and lifestyle-driven diseases of adulthood. Therefore, we investigated if white blood cells’ (WBCs) DNA methylation profiles are associated with myocardial infarction (MI) occurrence. Whole-genome DNA methylation was investigated by microarray analysis in 292 MI cases and 292 matched controls from the large prospective Italian European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (EPICOR study). Significant signals (false discovery rate (FDR) adjusted P < 0.05) were replicated by mass spectrometry in 317 MI cases and 262 controls from the Dutch EPIC cohort (EPIC-NL). Long interspersed nuclear element-1 (LINE-1) methylation profiles were also evaluated in both groups. Results A differentially methylated region (DMR) within the zinc finger and BTB domain-containing protein 12 (ZBTB12) gene body and LINE-1 hypomethylation were identified in EPICOR MI cases and replicated in the EPIC-NL sample (ZBTB12-DMR meta-analysis: effect size ± se = −0.016 ± 0.003, 95 % CI = −0.021;−0.011, P = 7.54 × 10−10; LINE-1 methylation meta-analysis: effect size ± se = −0.161 ± 0.040, 95 % CI = −0.239;−0.082, P = 6.01 × 10−5). Moreover, cases with shorter time to disease had more pronounced ZBTB12-DMR hypomethylation (meta-analysis, men: effect size ± se = −0.0059 ± 0.0017, PTREND = 5.0 × 10−4; women: effect size ± se = −0.0053 ± 0.0019, PTREND = 6.5 × 10−3) and LINE-1 hypomethylation (meta-analysis, men: effect size ± se = −0.0010 ± 0.0003, PTREND = 1.6 × 10−3; women: effect size ± se = −0.0008 ± 0.0004, PTREND = 0.026) than MI cases with longer time to disease. In the EPIC-NL replication panel, DNA methylation profiles improved case-control discrimination and reclassification when compared with traditional MI risk factors only (net reclassification improvement (95 % CI) between 0.23 (0.02–0.43), P = 0.034, and 0.89 (0.64–1.14), P < 1 × 10−5). Conclusions Our data suggest that specific methylation profiles can be detected in WBCs, in a preclinical condition, several years before the occurrence of MI, providing an independent signature of cardiovascular risk. We showed that prediction accuracy can be improved when DNA methylation is taken into account together with traditional MI risk factors, although further confirmation on a larger sample is warranted. Our findings support the potential use of DNA methylation patterns in peripheral blood white cells as promising early biomarkers of MI. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0164-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simonetta Guarrera
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| | - Giovanni Fiorito
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| | | | - Alessia Russo
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alessandra Allione
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| | - Cornelia Di Gaetano
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| | - Amalia Mattiello
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | | | - Paolo Chiodini
- Department of Public Health, Second University of Naples, Naples, Italy
| | - Silvia Polidoro
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy
| | - Graziella Frasca
- Cancer Registry and Histopathology Unit, "Civile-M.P. Arezzo" Hospital, ASP 7, Ragusa, Italy
| | - Monique W M Verschuren
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands.,Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jolanda M A Boer
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, IS Italy
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civile-M.P. Arezzo" Hospital, ASP 7, Ragusa, Italy
| | - Paolo Vineis
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Epidemiology and Public Health, Imperial College London, London, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Salvatore Panico
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | | | - Giuseppe Matullo
- Human Genetics Foundation (HuGeF), Via Nizza 52, Turin, I-10126 Torino Italy.,Medical Sciences Department, University of Turin, Turin, Italy
| |
Collapse
|